
Hah! All the cpu
can do is simple
calculations?

Wait a second...
Don’t jump to
conclusions.

I don’t know
why I was

ever worried!

Ayumi is a world-class shogi (Japanese

chess) player who can’t be beaten—that is,

until she loses to a powerful computer

called the Shooting Star. Ayumi vows to

find out everything she can about her new

nemesis. Lucky for her, Yuu Kano, the genius

programmer behind the Shooting Star, is

willing to teach her all about the inner

workings of the microprocessor—the

“brain” inside all computers, phones, and

gadgets.

Follow along with Ayumi in the Manga
Guide to Microprocessors and

you’ll learn about:

⭑	How the CPU processes information

and makes decisions

t
h
e
 m

a
n
g

a
 g

uid

e

™ t
o

 Mic

r
o

p
r
o

c
e
ss

o

r
s

S
h
ib

uy
a

To
n
a
g
i

O
ff

ic
e
 S

a
w

a

MicroprocessorsMicroprocessors
Michio Shibuya
Takashi Tonagi
Office SAWA

The Manga Guide™ to Comics

 inside!

Find more Manga Guides at www.nostarch.com/manga shelve in: computers/hardware

Price: $24.95 ($33.95 CDN)TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

A Cartoon Guide to Microprocessors

⭑	How computers perform arithmetic

operations and store information

⭑	logic gates and how they’re used in

integrated circuits

⭑	the Key components of modern

computers, including registers,

GPUs, and RAM

⭑	Assembly language and how it differs

from high-level programming languages

Whether you’re a computer science student

or just want to understand the power of

microprocessors, you’ll find what you

need to know in The Manga Guide to
Microprocessors.

Praise for the Manga Guide series

“Highly recommended.”
—choice magazine on the manga guide to databases

“The Manga Guides definitely have a place on my bookshelf.”
—smithsonian magazine

“The art is charming and the humor engaging. A fun and fairly painless lesson on what
many consider to be a less-than-thrilling subject.”
—school library journal on the manga guide to statistics

“Stimulus for the next generation of scientists.”
—scientific computing on the manga guide to molecular biology

“The series is consistently good. A great way to introduce kids to the wonder and vastness of
the cosmos.”
—discovery.com

“Absolutely amazing for teaching complex ideas and
theories . . . excellent primers for serious study of physics
topics.”
—physics today on the manga guide to physics

“A great fit of form and subject. Recommended.”
—otaku usa magazine on the manga guide to physics

“I found the cartoon approach of this book so compelling
and its story so endearing that I recommend that every
teacher of introductory physics, in both high school and
college, consider using it.”
—american journal of physics on the manga guide to physics

“This is really what a good math text should be like. Unlike
the majority of books on subjects like statistics, it doesn’t
just present the material as a dry series of pointless-
seeming formulas. It presents statistics as something fun
and something enlightening.”
—good math, bad math on the manga guide to statistics

“A single tortured cry will escape the lips of every thirty-
something biochem major who sees The Manga Guide to
Molecular Biology: ‘Why, oh why couldn’t this have been
written when I was in college?’”
—the san francisco examiner

Wow!

“A lot of fun to read. The interactions between the characters are lighthearted, and the
whole setting has a sort of quirkiness about it that makes you keep reading just for the joy
of it.”
—hackaday on the manga guide to electricity

“The Manga Guide to Databases was the most enjoyable tech book I’ve ever read.”
—rikki kite, linux pro magazine

“The Manga Guide to Electricity makes accessible a very intimidating subject, letting the
reader have fun while still delivering the goods.”
—geekdad

“If you want to introduce a subject that kids wouldn’t normally be very interested in, give it
an amusing storyline and wrap it in cartoons.”
—make on the manga guide to statistics

“A clever blend that makes relativity easier to think about—even if you’re no Einstein.”
—stardate, university of texas, on the manga guide to relativity

“This book does exactly what it is supposed to: offer a fun, interesting way to learn calculus
concepts that would otherwise be extremely bland to memorize.”
—daily tech on the manga guide to calculus

“Scientifically solid . . . entertainingly bizarre.”
—chad orzel, scienceblogs, on the manga guide to relativity

“Makes it possible for a 10-year-old to develop a decent working knowledge of a subject
that sends most college students running for the hills.”
—skepticblog on the manga guide to molecular biology

“The Manga Guide to the Universe does an excellent job of addressing some of the biggest
science questions out there, exploring both the history of cosmology and the main riddles
that still challenge physicists today.”
—about.com

“The Manga Guide to Calculus is an entertaining comic with colorful characters and a fun
strategy to teach its readers calculus.”
—dr. dobb’s

The Manga Guide™ to Microprocessors

The Manga Guide™ to

Microprocessors

Michio Shibuya,
Takashi Tonagi, and

Office Sawa

The Manga Guide to Microprocessors.
Copyright © 2017 by Michio Shibuya, Takashi Tonagi, and Office sawa.

The Manga Guide to Microprocessors is a translation of the Japanese original, Manga de wakaru CPU, published by Ohmsha, Ltd.
of Tokyo, Japan, © 2014 by Michio Shibuya, Takashi Tonagi, and Office sawa.

This English edition is co-published by No Starch Press, Inc. and Ohmsha, Ltd.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechani-
cal, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of
the copyright owner and the publisher.

ISBN-10: 1-59327-817-9
ISBN-13: 978-1-59327-817-5

Publisher: William Pollock
Production Editor: Serena Yang
Author: Michio Shibuya
Illustrator: Takashi Tonagi
Producer: Office sawa
Developmental Editors: Jan Cash and Tyler Ortman
Translators: Fredrik Lindh and Akino Lindh
Technical Reviewer: Dan Romanchik
Copyeditor: Paula L. Fleming
Compositors: Max Burger and Serena Yang
Proofreader: Shannon Waite
Indexer: BIM Creatives, LLC

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com; http://www.nostarch.com/

Library of Congress Cataloging-in-Publication Data
A catalog record of this book is available from the Library of Congress.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and company
names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol with every
occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in
the preparation of this work, neither the authors nor No Starch Press, Inc. shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.

All characters in this publication are fictitious, and any resemblance to real persons, living or dead, is purely coincidental.

Contents

Preface . xi

1
What Does the CPU Do? . 1

Computers Can Process Any Type of Information . 11
The CPU Is the Core of Each Computer . 14
The Five Components of a Modern Computer . 16
ALUs: The CPU’s Core . 22
CPUs Process Operations and Make Decisions . 25
What Is Information Anyway? . 30
The Difference Between Analog and Digital Information . 31

2
Digital Operations . 35

The Computer’s World Is Binary . 36
The Reciprocal States of 1 and 0 . 37
Decimal vs. Binary Number Systems . 38
Expressing Numbers in Binary . 40
Fixed-Point and Floating-Point Fractions . 42
Addition and Subtraction in Binary . 44

What Are Logic Operations? . 48
Integrated Circuits Contain Logic Gates . 48
The Three Basic Logic Gates: AND, OR, and NOT . 51
Truth Tables and Venn Diagrams . 53
A Summary of the AND, OR, and NOT Gates . 55
Other Basic Gates: NAND, NOR, and XOR . 57
A Summary of the NAND, NOR, and XOR Gates . 58
De Morgan’s Laws . 60

Circuits That Perform Arithmetic . 62
The Addition Circuit . 62
The Half Adder . 64
The Full Adder and Ripple Carry Adder . 66
The Carry Look-Ahead Adder . 68

Circuits That Remember . 70
Circuits with Memory Are a Necessity! . 70
Flip-Flop: The Basics of Memory Circuits . 74
The RS Flip-Flop . 76
The D Flip-Flop and the Clock . 78
The T Flip-Flop and Counters . 81

Modern Circuit Design: CAD and FPGA . 85

viii C ontents

3
CPU Architecture . 87

All About Memory and the CPU . 88
Memory Has Assigned Addresses . 89
Data Passes Through the Bus . 92
Bus Width and Bits . 94
R/W Signals and I/O Signals . 98
Instructions Are Made of Operands and Opcodes . 101
Accumulators and Other Registers Are Used in Operations . 103

CPU Instruction Processing . 106
Classic CPU Architecture . 106
The Instruction Cycle . 107
The Instruction We Process Changes Depending on the Program Counter 112

All Kinds of Memory Devices . 115
A Comparison Between HDD and Memory . 116
RAM Space, ROM Space, and I/O Space . 119

What Are Interrupts? . 122
Interrupts Are Useful . 122
The Stack and the Stack Pointer . 126
Interrupt Priority . 128

Memory Classifications . 132
I/O Ports and the GPU . 132
Clock Frequency and Degrees of Accuracy . 133
Clock Generators . 134
Timer Interrupts . 135
Reset Signals . 136
CPU Performance Is Measured in FLOPS . 137

4
Operations . 139

Types of Operations . 140
There Are Many Types of Instructions . 142
Instructions for Arithmetic and Logic Operations . 144
What Are Bit Shifts? . 145
The Sign Bit Lets Us Express Negative Binary Numbers . 147
Logical Shifts and Arithmetic Shifts . 149
Circular Shifts (Rotating Shifts) . 152
Data Transfer Operations . 153
Input/Output Instructions . 154
Branch Instructions . 155
Condition Evaluation and Status Flags . 158
Putting Branches and Condition Evaluation Together . 161

Operand Types . 162
How Many Operands Do We Have? . 162
Operands Take Many Forms . 165
Immediate Value Processing . 166
Address References . 167

Contents  ix

What Are Addressing Modes? . 168
Addressing Mode Overview . 172

The Structure of Operations in the ALU . 176
A Look Inside the ALU . 176
Basic Circuit Architecture of the 74S181 . 178

Serial Transmission and Parallel Transmission . 185
An Overview of Some Basic Registers . 186
An Overview of Some Basic Status Flags . 187
The SLEEP Instruction . 188

5
Programs . 189

Assembly and High-Level Languages . 190
What Are Assembly Languages? . 192
The Characteristics of Assembly Languages and High-Level Languages 194
The Difference Between Programs and Source Code . 199

Program Basics . 200
What Can You Make Using Conditions and Jumps? . 200
What Should We Make the Computer Do? . 204

Where are Programs Stored? . 208
What Happens Before a Program Is Executed? . 208

6
Microcontrollers . 211

What Are Microcontrollers? . 212
Microcontrollers Are in All Kinds of Products . 213
The Function of a Microcontroller . 214
Architecture of a Microcontroller . 219

What Are DSPs? . 222
DSPs and Multiplier-Accumulate Operations . 224
Microcontrollers in Industrial Machines . 224

Epilogue . 227

Afterword . 239

Index . 241

Preface

Ever since the 1950s, when computers saw their debut in markets all over the world, inter-
est in information technology (IT) has seen a steady rise. The core that supports this tech-
nology is a semiconductor known as the CPU, or central processing unit. Since the start of
the 21st century, advancements in circuit design theory and manufacturing technology have
led to rapid progress in both processing speed and chip size, allowing us to embed them in
most of the electronics we use on a daily basis. In addition to personal computers, smart-
phones, and tablets, you’ll even find CPUs in things like air conditioners, refrigerators, wash-
ing machines, and other major appliances, just to name a few.

It’s worth noting that the CPUs found in modern PCs are extremely powerful, and
many of their applications are outside the scope of this book. We also will not delve into
computer architecture which has had a research boom in recent years. Instead, I think that
the best way to give insight into what CPUs are—and, by extension, how programs work—is
to go back and analyze how the first CPUs worked and examine the concepts and principles
by which they were designed.

Let me share an allegory with you. It’s been quite some time since we first started
taking automobiles for granted in our daily lives, but despite their ubiquity, very few people
today can explain how an engine works or how the energy generated by the engine gets
translated into forward momentum for the car. In the 1950s, you had to answer engine
design questions on your driver’s license examination, but no such questions remain in
today’s tests. Essentially, this means that to learn things about the internals of a car engine
today, you really have to be an incredibly curious person.

In that vein, my wish is that this book will not only act as a platform to teach readers a
range of different topics but also to sate their curiosity on the subject by having them learn
some of the deeper principles of the CPUs that have so nonchalantly permeated our daily
lives.

In regards to the publication of this book, I would like to thank Sawako Sawada of Office
sawa, who thought up the fun story, and Takashi Tonagi for the illustration work.

Michio Shibuya
November 2014

1

What Does the CPU Do?

Ayumi

Wow,
Ayumi...

Strong as
ever, I see.

Phew!

Hmm, twenty wins
in a row...

Bang!

Bang!

Clack

* A
 J

a
p
a
n
e
s
e
 b

o
a
r
d
 g

a
m

e
 s

im
il

a
r
 t

o
 c

h
e
ss

Good job!

I bet our booth will
be the most popular
one at the festival!

And it’s all thanks
to you, Ayumi!
Marry meeee!

I’m a good
sport, but that
might be a bit

much...

That’s my girl! Now wear
this for the next game!

Take a
break already.

You’re ridiculous.

Well, you’re
unbeatable whether
I’m here cheering

or not.

See you
around!

...

Unbeatable,
huh?

Crowd
pull

er

Ra
tt

le

Hug!

Ayumi

She’s right!
I am strong!

Or actually,
everyone else
is so weak it’s
boring me to

tears....
Knock

knock

Excuse me.

Do you...
have time

for a game?

Oh, sure!

I’d love to!

I see...
well then...

FUHAHAHAHAHAHA!
Behold! Unleashed from
The Chasm of darkness!

The Shooting Star!!

What’s he so
excited about?!
It’s just a black

computer!!

Just my luck...
a real weirdo.

What? It’s
just a shogi

board...?

Indeed...

I’d actually like you
to play against my
computer, not me.

Thu
nk

Er, you want me,
a real shogi player,

to play your
video game?

Heh...
It’s not just a

computer game.

This laptop, the
Shooting Star, is

running a program
of my own design.

And...
it’s stronger

than you!

Welll... I don’t really
get what you’re saying,
but it’s obvious you’re
looking down on me.

I just have to win, right?
I hope you’re ready to

be destroyed...

I’m a
busy person,
you know...

Crash

Fu
ry

Rumble
Crack

I lost...?

How is that possible??

No way!

Is this some kind
of prank?

Even the
national champion
Ayumi Katsuragi...

stands no chance
against my

Shooting Star!

Be swallowed in
its dark depths and
taste utter defeat!

FUHAHAHAHAHAHAHAHAHA!

I... I can’t
believe it...

I lost to
someone
like this...?

Like what?

I can’t believe someone as intelligent
and wonderful as me could lose to
someone as weird and lame as you!!

A wonderful
person indeed...

Oh, but wait
a sec.

It’s not like I
lost to you.

I just played a
computer game.

So I didn’t
really lose!

You coward!
How about you fight
me yourself instead!

8 C hapter 1  What Does the CPU Do?

Ayumi Katsuragi!
Know when you

are beaten!

It’s true that it
wasn’t me who

beat you.

it also means
that yours truly,

Yuu Kano, the genius
programmer who

brought that CPU to
life, possesses an

equal—

No! An even
more impressive

intellect!

huh?

But that also means
your intellect was

no match for the CPU,
the Shooting Star’s

intellect!

And that’s a fact!

CPU?

﻿  9

Isn’t a CPU
some kind of

computer chip?

Like this?
But why would you
say that the CPU is
your computer’s

intellect?

What does
a CPU do
anyway?

Heh, that would
take some time

to explain.

But if you insist,
you could convince
me, the Yuu Kano, by
asking really nicely.

If you don’t hurry up and
tell me, this shooting star
might come crashing down

at any minute!

Such
barbarism!!

Even if I did tell
you, it would take
quite some time...

are you sure you’re
up for this?

I already asked.
Just get on

with it!

Leave the computer
alone first!

Only meteorites

crash to earth!

Don’t wave

it around
like that!

10 C hapter 1  What Does the CPU Do?

Computers Can Process Any
Type of Information

Let’s take
our time and

start from the
beginning.

Well then. First off, the
word computer comes

from the word compute.

The first computers
were just computing
machines, like modern

calculators.

E-even I can do math!
I’ll have you know
I’m really good at
mental arithmetic!

Whoa, take
it easy!

It’s true that humans
can do math too...

But We
can all agree it’s

much more practical
to do large

calculations on
calculators, right?

Ngh... yeah...
so computers...

are really good at
doing calculations

really fast.

Yup, but modern
computers are...

much more
than just

calculators!

9 times 9
is 81!

Hmm...

All kinds of information is
being digitized now. Things

like music, photographs, and
video can be represented

using just 1s and 0s.

When we translate any type
of data into digital form
(that is, represent it with

1s and 0s), it becomes a lot
easier to process using

a computer.

Oh, I’ve heard of that before.
Like digital TV and
digital cameras,

right?

Only 1s and 0s!

I guess that means
computers in general

live in the digital world,
where only 1s and 0s

are allowed...

But what’s
so great

about that?

Well, digitizing
information made a
lot of new things

possible.

Digital technology
is really important
to many aspects of

modern life.

12 C hapter 1  What Does the CPU Do?

So you mean all of
these things are
thanks to digital

technology?

Surfing the web,
looking at news and

videos...

Buying digital music and
transferring it to my

MP3 player!

Transfer!

Editing and

processing!

Editing photos taken
with my digital camera
on my computer and

emailing them...

Email

Digital

camera

That’s right! All
these things use

digital technology.

And, at the core of all
this technology, the CPU

is acting as the brain.

There’s that word
again! So what does
the CPU actually do?

Oh!

Computers Can Process Any Type of Information  13

The CPU Is the Core of Each Computer

CPU is short for Central
Processing Unit. is in charge of the

computer’s operations!

Whaaaaaaaat! Operations?!!
what are

operations?

Operations
are computer
calculations,

calculations using
only 1s and 0s.

It’s also worth mentioning
that CPUs perform two kinds

of operations.

which means that
the CPU...

14 C hapter 1  What Does the CPU Do?

The Operations of the CPU*

Arithmetic Operations

The only arithmetic
operations that computers
can perform are addition

and subtraction.

Logic operations deal with
comparing pairs of 1s or 0s in a

few simple ways.

Plus

Minus

Logic Operations

Hah! All it can
do is simple

calculations?
I don’t know

why I was
ever worried!

Wait a second...
don’t jump to
conclusions.

* In addition to these operational units, modern CPUs also contain FPUs (Floating Point Units)
that can handle multiplication and division. But this book just sticks to the basics.

Here
comes the
important

part!

For a computer
to work...

You need more
components than

just the CPU!

What?!
There’s more??

And Or
Not

The CPU Is the Core of Each Computer  15

16 C hapter 1  What Does the CPU Do?

Of course! If Santa
Claus gave you a CPU
for Christmas after

promising you a
computer...

Wouldn’t you be a
little confused?

With a Santa that
worthless, I’d put shogi
pieces in his mouth and

punch both cheeks.

You have a pretty
twisted mind, do
you know that?

The Five Components
of a Modern Computer

Here’s a quick
overview of the most
important parts of a

computer.

Let’s call these the
computer’s five primary

systems. As you can see, the
CPU contains both the control

unit and the arithmetic unit.

Control
unit

Arithmetic
unit

Input
device

Memory
system

Output
device

Control flow Primary memory

Data flow Secondary memory

Uh, that’s a lot of
stuff... seems kind

of difficult...

I’ll go through
the five systems
one by one, so
don’t worry.

The computer’s five primary systems

Data is exchanged through
the input/output system.

Fist

The Five Components of a Modern Computer  17

First off, input devices
are systems for

supplying the computer
with instructions and

input data.

The keyboard
and mouse for

your home
computer are

great examples.

Output devices, on the
other hand, are systems
that translate internal
data into an external

representation.

Monitors and printers
are good examples of
home computer output

devices.

I guess it’s true that I
input information using

my keyboard and access
information by looking at

my monitor.

Furthermore, we talked
about the arithmetic unit

before, which is the system
that performs operations

(or calculations).

The name is
kind of self-
explanatory.

But here comes an
extremely important

point!

For the arithmetic unit
to work, it needs to
cooperate with both

the memory system and
the control unit.

The memory
system?

The control
unit?

what do they do?

First off, the memory
system is responsible

for storing and
retrieving data.

Memory comes
in two flavors:

primary memory and
secondary memory.

When learning about
the CPU, we’re mainly

concerned with
primary memory.

It looks
like this.

Memory... why is that
so important?

It’s because when the CPU
performs operations, it

always needs to operate on
some type of information

stored in memory.

Operate on
memory?

* The CPU may use either registers or cache memory.

Primary memory

When we say “memory,”

we generally mean

primary memory.

18 C hapter 1  What Does the CPU Do?

Yes, both the data
that’s operated on and
the computer program
are stored in memory.
Operations use these

as input.

Depending on
the operation, data may

be retrieved from memory
for input, or the result
of the operation may be

returned back into memory
for storage.*

Control
unit

Arithmetic
unit

input data

Program
(instructions)

output data

Primary
Memory

Retrieving and returning...
The CPU really exchanges

information!

By the way,
I’ve heard that word

program before,
but what is it?

* The CPU may use either registers or cache memory.

To put it simply...

Programs are
instructions that
people give the

computer.

Instructions about
what data to use, and

which operations
to run and in what

order.

All those
instructions

are written in
programs.

I see. Programs
are directions that
tell the computer

what to do.

Program
(instructions)

Please do

it like this.

Human Computer

Okay!

The Five Components of a Modern Computer  19

Control unit

Input
Memory

Arithmetic
unit

Output

There’s one system
we haven’t talked

about yet!

The control unit
tells the other four

systems what to do! It
gives out instructions

and controls the
computer.

That seems pretty arrogant!
So it’s like some kind of
overseer that gives out
orders left and right?

Yeah, that’s right. Also, like
I said before, programs
are stored in memory.

The control unit
reads the program
instructions from

memory and interprets
them.

It gives orders to all
the other systems, telling
them how to process the
program’s instructions.

Get data from
over there!

Then add these two!

And then save that sum
over there!

Program

read from

memory
Instructio

n

Instruction

Controls everything

20 C hapter 1  What Does the CPU Do?

Oh, I see! So the
control unit is

necessary because it
makes sure that...

the program’s
instructions are

processed!

Exactly. Now we’ve
gone over all

five systems, but...

Yeah! Now I know what
all the things in the

diagram are!

And the arrows
between them illustrate

data exchange and
instruction flow,

right?

To understand
how the CPU

works, data and
instruction flow

seem really
important...

FUHAHAHAHA!
It pleases me
that you are
grasping the

basics!!

Well then!
Let us move
on to the

next topic!!

Wow, he’s all kinds
of energetic...

He must really
like CPUs.

Hmm

Output Input

Con-

trol

Uni
t

Memory

Arith-
metic
Unit

HA

HA
HA

HA
HA

HA

HA

The Five Components of a Modern Computer  21

ALUs: The CPU’s Core

You’re catching
on pretty quickly,

it seems.

So let’s talk a bit
about ALUs.

ALUs? Not CPUs?
What’s the difference?

Well, ALUs are what
perform operations

inside the CPU.

ALUs are the
arithmetic unit’s

principal components.

Control Unit

Arithmetic Unit
(ALU)

Oh! That seems like
it’s super important!

Yes, ALU is short for
Arithmetic Logic Unit.

It performs the
arithmetic and logic

operations we talked
about before.

22 C hapter 1  What Does the CPU Do?

And this is what ALUs
look like.

Command
input/

opcode

Output

Status
output

Input A Input B

F S

Y

Uh... Why is it shaped
like a bowl or a V

or whatever?

simple! It has the two inputs, A
and B, which it combines

using an operation...

to produce some
output Y.

Oh, I see. So if we wanted to,
for example, calculate 5 - 3 = 2,
we would have 5 and 3 as inputs

and get a 2 as output, right?

Exactly!

Subtraction

ALUs: The CPU’s Core  23

So the command input
F is what we want the

ALU to do...

Input

Command
input/

opcode

Output

Status
output

Input

like addition or
subtraction, for example.

And the status output
S tells us how the

operation went.

This could be
information on

whether our output
value was positive or
negative, for example.

So in the case of 5 – 3 = 2,
since the result of the

calculation is 2, the status
output should say it’s a
positive value, right?

But why does anyone
need to know whether
the output was positive

or negative?

That’s a good question. As
a matter of fact, the status
output can be used to make
decisions based on whether
the output satisfies some

given condition.

Decisions?
Conditions?

F S

Command
input

Subtraction
Positive
value

Status
output

24 C hapter 1  What Does the CPU Do?

CPUs Process Operations and Make Decisions

Let’s use a
concrete
example.

Let’s assume that this
computer controls an ATM.

I use ATMs
sometimes.

When withdrawing cash,
the computer has to check

the customer’s account
balance as well.

Let’s say the 5 – 3 in this
case means, “An account
balance of $500 minus a

withdrawal of $300.”

Oh! I see
what you

mean.

So that’s why the
status output is

so useful!

Cash Deposit

Account
History

Account
balance

Account
statement

CPUs Process Operations and Make Decisions  25

Because what happens after
the subtraction is done will be
completely different depending

on whether the result was
positive or negative.

If the result is positive, that
means you have enough money

in your account, so the ATM will
give the money to you.

But if the result is
negative, that means you
tried to withdraw more

money than what was
available...

And you’ll get a message
saying that you have an

insufficient balance so you
can’t withdraw that amount.

The operation result was positive.

Please take your money.

The operation result was negative.

Insufficient
balance

That’s it! In other words,
the status output will tell

you if you have enough
money in your account to

make a withdrawal.

The CPU will make a decision
based on whether the

result of the subtraction
was positive or negative
and change its behavior

accordingly.

So depressing...

Ack...

26 C hapter 1  What Does the CPU Do?

That’s how the CPU is able
to process operations as
well as make decisions!

Okay! So if you give
the CPU a program,
it will be able to

process instructions
and make decisions.

And by repeating that
process, computers are

able to perform all kinds
of tasks, right?

Yes, computers are able to
perform certain tasks faster
than humans, process amounts
of information far too great
for humans to comprehend,
and surpass humans in many

different skills.

Like shogi,
for example...
no offense...

I see! I feel like I
understand the CPU
a bit better now.

Hmm, but I bet
there’s a lot I still

don’t know.

Oh?

Heh
heh
heh

Operatio
n

Decision

CPUs Process Operations and Make Decisions  27

I gotta study more!

Of course, I was a
little frustrated that

I lost at shogi...

No, I was super
frustrated! I’m probably

so mad I won’t be able to
sleep tonight!!!

But I see the CPU
that beat me as

my rival!

And I want to learn
everything I can about

my new rival!

Well, I have to admit I find
it pretty fun to explain

computers to other
people...

I... I mean, I suppose I find
it amusing to educate the
ignorant masses from

time to time. FUHAHAHAHAHA!

Oh, I see! I think
I finally get

why you’re so
enthusiastic about

explaining this
to me!

...?

Ugaaa !

28 C hapter 1  What Does the CPU Do?

You don’t have any
friends, right?

I’m right, aren’t I?

You’re just happy to finally have
someone to talk to, right? I

understand that it’s fun to hole
up and write programs all by

your lonesome, but it’s important
to talk to people, too...

Are you
pitying me?!

It’s okay—this is a
great opportunity
for you! Teach me

about CPUs!

Or I should say...
If you don’t,

you aren’t getting
this back...

Don’t take it
hostage!!

I’ll take that as a yes!
Let’s get studying!

Hey! Don’t put
words in my mouth!!
I’ve got a life too!

Hehehe...

30 C hapter 1  What Does the CPU Do?

What Is Information Anyway?

Information technology (IT) became an everyday phrase back in the 20th century. The
term is frequently heard when people talk about the internet and other computer tech-
nology, but it’s worth noting that this term predates the use of computers.

First off, what does the word information actually mean?To put it simply, information
is everything in our environment that can be registered with any of our five senses.

Everything that occurs in nature or in paintings, photographs, music, novels, news,
radio, TV broadcasts, and so on is an example of information. Most of these things have
been around for a lot longer than our society has had access to electricity. As information
spreads throughout society, it affects our lives.

Every day, people and organizations value useful information while trying to filter
out everything else. Information that is not important is called noise, and important
information is called signal. Finding ways to maximize the signal-to-noise ratio—that is,
the amount of signal in an output compared to the amount of noise—without accidentally
losing necessary information is important.

One type of information that historically has been important both to people and
organizations is information about food—what’s safe or healthy to eat, how to find or
grow it, and how far away it is or how much it costs to buy. Related information, such as
climate and weather forecasts, is also vital. Obviously, information like this was valued
long before the rise of the internet. For example, merchants like Bunzaemon Kinokuniya
from Japan’s Edo period specialized in products such as citrus and salmon and thrived
because they valued this type of information. Indeed, the value of information has been
respected for as long as people have needed to eat.

However, the digital age has affected many aspects of life. How has it affected our
access to information? Well, thanks to the digitization of data, we are now able to process
diverse data like text, audio, images, and video using the same methods. It can all be
transmitted the same way (over the internet, for example) and stored in the same media
(on hard drives, for example).

Everything that I can perceive is information!

The five

senses
Nature

Vision, hearing, touch,

taste, and smell

Art
News

The Difference Between Analog and Digital Information  31

Computers that are connected to the same network can exchange digitized informa-
tion. By using computers to match and analyze large sets of data instead of analyzing
each instance or type of data individually, people can discover otherwise hidden trends or
implications of the information.

Like the storage of data, information transmission has made incredible advances,
thanks to important discoveries in electronics and electrical engineering. Commercial
applications of this technology in devices such as telephones, radio, and television have
played a role in accelerating this development. Today, almost all of Japan enjoys digital
television, which uses digital transmission and compression technologies. CPUs play a
central part in these applications by performing countless operations and coordinating
the transfer of information.

The Difference Between Analog and Digital Information

We have been talking about digitizing data into 1s and 0s so that information can be
processed by a CPU. But before they are digitized, text, audio, video, and so on exist as
analog data.

What is the difference between these two types of data? An example that illustrates
the difference is thermometers. Analog thermometers contain a liquid that expands as
it heats up, such as mercury or alcohol, in a gradated capillary tube that is marked with
lines indicating the temperature. To determine the temperature, we look at the level of
the liquid in the tube and compare it to the markings on the tube. We say that the analog
thermometer has a continuous output because the temperature reading can fall any-
where between the marks on the tube.

Digital thermometers use a sensor to convert temperature into voltage* and then
estimate the corresponding temperature. Because the temperature is represented numeri-
cally, the temperature changes in steps (that is, the values “ jump”). For instance, if the
initial temperature reading is 21.8 degrees Celsius and then the temperature increases,
the next possible reading is 21.9 degrees Celsius. Because 0.1 is the smallest quantity
that can be shown by this thermometer, changes in temperature can only be represented
in steps of 0.1 and the value could never be between 21.8 and 21.9 degrees. Thus, digital
output is said to be discrete.

*  Voltage is a way of measuring electric currents and is expressed in volts.

Different types
of information

In the past,
different media

were used
for each.

Storage!

The
internet

Exchanging data!

Another devicecomputer

32 C hapter 1  What Does the CPU Do?

The word digital comes from the act of counting off numbers using our fingers—or
digits. This tends to lead people to believe that digital computers can only work with data
comprised of integers (whole numbers), which is not necessarily true.

In the digital world, everything is expressed in 1s and 0s. Indeed, they are not
even what the CPU works with. Note that these are not actually numbers in this context.
Instead, a 1 and a 0 are merely symbols. The CPU consists of transistors that transmit or
inhibit electrical signals and consequently output either low or high voltages. It is these
voltages that we represent as 1 or 0. A high voltage is represented with a 1, since the
transistor’s state is “on,” and a low voltage, or an “off” transistor, is represented with a 0.
In text, you could illustrate this by using the symbols  and . The 1s and 0s are called
primitives, meaning they are basic data types. Computers can work with decimal numbers
as long as the value has a finite number of digits. Values such as these are also digital.
The important thing to remember is that for any digital number, you can never add or
remove a quantity smaller than the smallest possible value expressible.

Let’s compare some analog data and its digitized version to better understand how
they are alike and how they differ by looking at the figure on the next page. The first pair
of images shows audio data, and the second pair shows image data.

As you can see, every time we translate analog data into digital data, some informa-
tion is lost. But as you’ve undoubtedly experienced, most modern digitization processes
are so good that humans can’t tell the difference between the original and the digital
copy, even when they are presented side by side.

To store and transmit digital data of a quality such that our senses can’t detect any
loss of information, we use special compression techniques. These techniques always
involve trade-offs among how much space is used, how much information is lost during
compression, and how much processing time is needed to compress and decompress
the data.

Analog

Even small changes are visible.

Attention!

Hmm, it’s
a bit less
than 22°C,
I think...

Digital

A discrete value is expressed in
a certain number of digits.

Beep!

I see...

After 21.8°C comes
21.9°C. There are no
values in between.

The Difference Between Analog and Digital Information  33

When heavily compressing audio or video data, we often use lossy techniques that
change and simplify the data in such a way that we usually do not notice a difference.
While this approach saves a lot of space, as the name implies, reconstructing the original
data perfectly is impossible since vital information is missing. Other techniques—most
notably all text compression techniques—use lossless compression, which guarantees that
the original data can be completely reconstructed.

In any case, with the appropriate arithmetic and logic operations, as long as the data
is digital, a CPU can use any compression technique on any form of information. Although
digitizing data can involve the loss of some information, a major advantage of digital data
over analog data is that it allows us to control noise when transmitting the data.

Audio Waveform

Graphic or Video

Analog Data

Analog Data

Digital Data

Digital Data

As long as the information is
made up of 1s and 0s, I’ll keep

applying operations!

When color information is translated into digital form, it is split into
three base component colors, most often red, green, and blue (known
as RGB). These colors are combined to create a composite color on a
screen. Each component color can be represented by a number, with
larger numbers indicating there’s more of that color.

2

Digital Operations

And

Or
Not

Okay!
Today is
my treat!

But that also means
you have to teach me

about CPUs!

Wow... you’re
pretty pushy...

I don’t know why I
agreed to meet you

after school.

After
school...?!

Does that mean you’re
not a shut-in anymore?

So you’re an ex-
hikikomori* now??

Could you
please set your
crazy-switch to
off for once?!

The Reciprocal States of 1 and 0

I am a bit
hungry

though...

The Computer’s World Is Binary

* Hikikomori are people who withdraw
from society, refusing to leave their

homes for months or even years.

Ayumi

37

The Reciprocal States of 1 and 0

Okay, let me start
off with a question!

Last time, you said,
“computers live in a world
of 1s and 0s,” but that was

all pretty abstract.

what do you
mean by 1s and 0s

anyway?

Good question... You can
think of 1s and 0s as two
reciprocal states that

are opposites.

They’re more like
indicators than
numbers, really.

Two reciprocal
states...

You mean like
light and dark,

life and death, or
on and off?

Precisely!

To put it another way, the
voltages in computer circuits
generally fall into two bands.
High voltages are close to the

supply voltage, and low voltages
are close to ground. *

Time

Voltage changes with time

Low

High

Vo
lt

a
g

e

* Ground is the
reference point for

voltage and is equivalent
to zero Volts.

38 C hapter 2  Digital Operations

I see!
If it’s just two

voltages, it’s all
pretty clear then.

The voltage is
either low (0) or
high (1). It’s really

simple!

Yeah.

All computers use
these two values (0 and 1,
or low and high*) when
performing operations.

Decimal vs. Binary
Number Systems

* In this book, we’ll treat low as 0 and high as 1, but it’s
possible to do it the other way around as well. It’s up
to the system designer as to which assignment to use.

Hmm... but what can you
really do with just

1s and 0s?

Wouldn’t you
only be able to
do very simple
calculations?

Hehehe! Narrow-minded,
foolish human!

Computers and humans
think in different ways!

Humans use the decimal
number system, which

uses the ten digits
from 0 to 9.

But computers express all
numbers in binary using

only 1s and 0s.

Binary
(or base 2)

Decimal
(or base 10)

Decimal Binary

Comparing decimal
and binary

As you can see,
you don’t need more

than 1s and 0s!!

Wow, It really is
only 1s and 0s! But

the number of digits
increases really fast

in binary...

By the way, a binary digit
(a 1 or a 0) is also called a

bit in computer terminology.
That’s really important, so

don’t forget it!

A four-digit binary number
is four bits.

So to express the
decimal number 9, we
would need four bits

(1001), right?

Come now, are you
prepared to dive

into the world of
1s and 0s?!

swish

Ah, sure!

I wonder if
he’s always
this hyper...

Another
digit!

Another
digit!

Another
digit!

Another
digit!

40 C hapter 2  Digital Operations

Expressing Numbers in Binary

Well then, let’s learn the basics of binary, or base 2, math! Let’s start by thinking about the
decimal, or base 10, system that we use every day. For example, the number 356 is divided
up, and then each digit is multiplied by successive powers of ten to get the final value.

Hundreds Tens Ones*

Okay! It’s really easy if I think of the digits like different coin denominations: 356 yen is just
three 100-yen coins (102), five 10-yen coins (101), and six 1-yen coins (100) added together.

That’s right. The next step is to apply that same logic to binary. We just swap the 10 in our
decimal calculations for a 2 in the binary case to get the appropriate factors for each digit.
Take a look at the following illustration.

* Any number to the power of zero is equal to one. For example, 100 = 1, and 20 = 1.

The Computer’s World Is Binary  41

Uh-huh! I don’t think anyone uses coins like this, though. But if someone did, I would just
take either 1 or 0 of each of the 8-yen, 4-yen, 2-yen, and 1-yen coins, right?

So the binary 1011 translates to 8 + 0 + 2 + 1 = 11 in decimal. As soon as you under-
stand the basic principle, it’s easy!

So, it’s the same reasoning with binary, right? We would use 2−1, 2−2, 2−3 and so on as we
add more digits after the decimal point. So the factors would be one-half (0.5), one-fourth
(0.25), one-eighth (0.125), and so on. It seems a bit cumbersome, but I think I get it.

By the way, this calculation also works for fractional expressions. Take a look at this.

In decimal, each digit after the decimal point has factors using negative powers. One-
tenth (0.1) is 10−1, one-hundredth (0.01) is 10−2, and so on.

(Decimal)

ones twosfoursEights

one-hundredthsone-tenthsOnes

42 C hapter 2  Digital Operations

Fixed-Point and Floating-Point Fractions

Next up, I’ll teach you a really important concept. In computers, there are two ways to
store fractions—either fixed point or floating point.

When using extremely small values like 0.00000000000000 . . . 001 or very large
values like 1000000000000000 . . . , it’s a lot more practical to use floating-point
fractions.

Hmm . . . why is that? What’s the difference?

Well, for example, instead of writing a billion in decimal as 1,000,000,000, you could write
it as 109 to save some space, right? And if you had a number like 1,230,000,000, you could
represent it as 1.23 × 109 instead. We call this form scientific notation or standard form,
where the n in 10n is called the exponent and the 1.23 is called the significand. Floating-
point numbers use scientific notation when storing values.

In contrast, fixed-point numbers express values the way we’re used to, with a decimal
point. When expressing integers with this method, you can imagine the decimal point being
at the far right of the number. Here’s a comparison of the two.

Fixed point Floating point

decimal
point

The Computer’s World Is Binary  43

Oh, okay. So if you’re using fixed-point fractions to express really large or really small
numbers, the number of digits you need increases by a lot. But if you’re using floating-
point, only the exponent gets bigger or smaller while the number of digits stays the same.
Yeah, that’s really useful!

That’s right. That last example was in decimal, but since computers use binary, the prin-
ciple becomes even more relevant. The most common variant used is this one.

I used the decimal 1.69 just to make it easier to understand. The number would be in
binary in a computer. The important part here is that this significand always has to be
greater than 1 and less than 2.

An example
significand

Significand

Exponent

Base

Hm . . . so this representation makes it easy for computers to handle extremely small and
extremely large numbers. They’re also easy to use in calculations, right?

Yes! And it’s also important to understand that the speed with which you can calculate
using floating-point numbers is critical to CPU performance. Gaming systems that process
real-time, high-fidelity graphics also use floating-point arithmetic extensively. (See “CPU
Performance Is Measured in FLOPS” on page 137 for a more detailed explanation.)

Generally, scientific calculations require an accuracy of only around 15 digits, but in
some cases, 30 are used. Some modern encoding algorithms even use integers of up to
300 digits!

Ugh . . . I don’t think I could do those calculations in my head. I hate to lose to computers,
but I hope they’re at least advancing some fields of science!

An example of floating-point representation inside a computer
(using a base 10 number as the significand for illustration)

44 C hapter 2  Digital Operations

Addition and Subtraction in Binary

It’s finally time to talk about binary arithmetic. Let’s start by thinking about addition. First
off, adding two bits works like this!

Okay, that’s easy! The last equation, 1 + 1 = 10, means that we carried the 1 to the next
place value and the first digit became 0, right?

Yeah. If you understand how to add one bit to another, you should be able to understand
calculations with more digits, as well. For example, when adding the binary numbers
(1011)

2
 + (1101)

2
,* you just need to start from the right and work your way to the left,

carrying digits as you go. Take a look here.

Uh-huh, I just have to be careful with the carries, right? Binary addition is pretty simple!
Or, it might just be my genius shining through.

0 + 0 = 0,  0 + 1 = 1,  1 + 0 = 1,  1 + 1 = 10

Carry

Don’t
forget

to carry
the 1s!

Hey! Okay then, let’s take a look at subtraction next. When doing subtraction, it is impor-
tant to learn how to create negative values using a technique called two’s complement.

Adding the two’s complement (a number that corresponds to the negative version of
a number) of a binary number A to another binary number B is the same as subtracting A
from B!! What do you think—pretty cool, right?

Carried to
the next place

value

* ()
2
 means the number is in binary representation, and ()

10
 means it’s in decimal representation.

The Computer’s World Is Binary  45

Ahh . . . I’m sorry to stop you when you’re on a roll, but I didn’t understand that at all.
What are you talking about?

Let’s start out slow in decimal. First off, let’s agree that subtracting 15 is the same as add-
ing −15. But what would you do if you weren’t allowed to use the minus sign at all? Is there
some other number that we can use to represent the number −15?

I . . . I have no idea. Stop putting on airs and just teach me already!

Where did your genius go? Well, have a look at these two equations then.

Whaaa . . . ? You’re right, 0 and 00 are the same! But what happens to the 1 in the equa-
tion B result of 100?

Hah! Since we’re doing two-digit math at the moment, we don’t care about digits that carry
over beyond those two. Just pretend you can’t see them! We call those overflow, and we
just ignore them.

What kind of twisted reasoning is that? Is that even allowed?

Equation A Equation B

Ignore!

Looking at just the final two digits of these equations, we see that the result of equa-
tion A is 0 and the result of equation B is 00. We could therefore say that for the last two
digits, the results of 15 + (-15) and 15 + 85 are the same!

46 C hapter 2  Digital Operations

Heh heh heh! Surprised? In situations like this, we say that 85 is the ten’s complement of
15. In other words, we say that a number’s complement in some base is the smallest num-
ber you have to add to the original number to make the number’s digits overflow. As the
name suggests, you can think of the numbers as “complementing” each other to reach the
next digit. And this complement corresponds to the original value’s negative form. So in
this case, 85 is essentially equal to -15.

Let’s take another example. When calculating 9647 – 1200 = 8447, we might
as well calculate 9647 + 8800 = 18447 and ignore the carry. That’s because in
the result we see that the lower four digits are the same. Therefore, we can use
8800 as the ten’s complement of 1200 during addition to get the same result as
we would get using subtraction.

As you can see, when you add two binary numbers and ignore the overflow, the two
numbers are complementary if the result equals 0. To subtract a number, simply add its
complement instead.

Okay, but finding the complement seems kinda hard. . . .

Don’t worry, there is a really easy way to find a two’s complement. Just follow these steps.

It’s not far-fetched—it’s awesome! It’s logical!! Let me show you how to do it in binary.

Uhh . . . this is getting pretty hard to grasp! So using complements, we can perform sub-
traction by adding instead. I suppose that might be useful. So what happens if we try this
far-fetched solution with binary numbers?

Add the two numbers:
if the result is
0 (ignoring the

overflow), it means
the numbers are
complementary.

Ignore!

The Computer’s World Is Binary  47

Sweet! I tried finding the complement of that last example. Using this method, it was easy.

Computers (actually the ALUs) use these two steps all the time for arithmetic operations
(addition and subtraction). The only difference is that most ALUs perform subtraction by
adding the first number and the inverted second number. Then, they add 1 to that sum.
The order of operations is different, but the end result is the same, right?

And since computer calculations only deal with 1s and 0s, this method is both really
simple and incredibly fast at the same time.

I see. So there are some merits to binary, I suppose!

By the way... Don’t
french fries kinda

look like 1s and
onion rings kinda

look like 0s?

This must be like...
binary in the fried-

food world!

Let’s find the two’s complement to do subtraction!

Step 1: Invert all the digits of the first number from 1 to 0 and vice versa. (This is also
called finding the one’s complement.)

Step 2: Add 1 to this inverted version of the number, and you’ll end up with the two’s
complement!

...

Flip
all the
digits!

Add 1!

Complement

A great
discovery!

48 C hapter 2  Digital Operations

Integrated Circuits Contain
Logic Gates

Well then, let’s
get into today’s

main topic.

First off,
have a careful
look at these!!

Don’t bring bugs
into restaurants!!

They’re
not bugs!

This is an extremely important
electronic component called

an integrated circuit (IC).

They’re inside many
different electronics...

Even CPUs are just
very advanced and

complicated integrated
circuits.

Long time, no see!

What Are Logic Operations?

What Are Logic Operations?  49

Even so, this bug...
this IC... sure has a lot

of silvery legs...

They’re called pins, and
they are the paths in and

out of the circuit.

Digital electronic
signals transmitted as 1s

and 0s (high and low voltage)
pass through these pins as

input and output.

Oh, so they’re
not just

decorations
then.

And here’s the
important part!

Lo and behold! Inside, the circuit
performs logic operations on

the 1s and 0s on the input pins and
produces the appropriate 1s and 0s

on the output pins!!

Logic operations...?
That seems
even more

complicated than
those arithmetic

operations...

No, I’ve decided to
think logically,
so that’ll make
understanding
them a breeze!!

...I think?

There’s no need to
get so defensive
about it. logic

operations are really
simple and easy to

understand.

Wow !!

Logic
operations!

Pin

50 C hapter 2  Digital Operations

First, I want you to get
the general idea. The

inside of an integrated
circuit looks something

like this...

This is a 74LS08
integrated circuit.

A diagram of the
inside of this chip

scritch

Hmm. Yeah, I can
see that there are
four symbols that

look the same,
and they seem to
be connected to
three pins each...

Now let’s focus
on one of those

symbols.

Pins

Attention!

Input A

Input B
Output

Looking closely,
you can see that they
each have two inputs

and one output. We call
each of these pins a

logic gate.

I see,
so that means...

The Three Basic Logic Gates:
AND, OR, and NOT

scritch

Pins

Each logic gate
is like a magic
box where you

get some output
if you put things
into the inputs!

And the inputs
and outputs are,

of course,
1s and 0s.

Yeah, that’s
right.

The Three Basic Logic Gates:
AND, OR, and NOT

Let me use your
magic box

analogy as we
get into the
specifics.

The most basic
logic gates are these:

the AND gate, the OR gate,
and the NOT gate.

Memorize all of
them together!!

All of them??
Is this a

bootcamp?!

Don’t worry,
these gates’ rules are

really simple.

Just think
of it like an
oral exam!

Each input and
the output can

either be 1 or 0.

Output ZLogic gate

Input A

Input B

52 C hapter 2  Digital Operations

Let’s assume that the
inputs are represented

by two interviewers
who can give either a

pass or a fail...

And that 1 means a
pass and 0 means a

fail in this case.

sounds
stressful...

So if both don’t give
a pass, the result

will be a fail...

In the case of an AND gate, the
output will only be a 1 (pass) if
both inputs are 1s (passes). If

either input or both are 0 (fail),
the output will also

be a 0 (fail).

For an OR gate, if
at least one of the
inputs is a 1 (pass),
the output will be

a 1 (pass).

So if even a single
input gives a pass, it
means you passed.

what a relief...

Truth Tables and
Venn Diagrams

Fail

Pass

inputs

What Are Logic Operations?  53

The NOT gate will flip
the input. So an input of

1 (pass) will give the
output 0 (fail).

Really?? So it
always completely

disregards the
interviewer’s

opinion?!

…well yeah, it’s
just how logic

gates work.

But the important part is
that you understand that

even with the same input, AND
and OR gates can produce

different outputs.

I’m still shocked by that
last NOT gate. I wonder

how the interviewer
must be feeling...

Truth Tables and
Venn Diagrams

But there are even more
patterns, right? Like where

both inputs are 0s (fail),
the output would still

have to be a 0 (fail), right?
Just thinking about it is
making me depressed...

Hah! I have something
I want to show you!

A truth table spanning
all possible patterns!!
It’s a table containing

all possible input/output
combinations!

Whip—

54 C hapter 2  Digital Operations

This is it!
Burn it into
your mind!!!

Oooh! You can see all the
input and output possibilities.

that’s super useful!!

Also, when thinking
about logic gates,
Venn diagrams are

really handy.

Oh, I remember
those from
junior high.

Yes, but the important
thing here is that these
Venn diagrams illustrate

two states.

Assuming
the world consists

only of regions
without color (0)
or with color (1)...

...then using Venn
diagrams, we can
visualize the 1s

and 0s. Nice!

That’s right.
Let’s use this

to take a
look at the
three logic
gates again
all at once,
shall we?

If A and B are both 1,
the output is 1.

If A is 0 and B is 1,
the output is 0.

If A is 1 and B is 0,
the output is 0.

If both A and B are 0,
the output is 0.

OutputInput

Truth table for
the AND gate

The area inside the
rectangle is a world

of only 1s and 0s.

In this example, there
is color (1) only where

A and B intersect.

SWAT—

What Are Logic Operations?  55

A Summary of the AND, OR, and NOT Gates

Let’s summarize the first three basic gates. Let’s look at the symbols, truth tables, and
Venn diagrams as sets!

AND gate (Logic intersection gate)

Symbol

AND gates output 1 only when both inputs are 1, and they are sometimes expressed
in equation form as Z = A · B. The symbols used to represent AND are those for logical
intersections: × or Ç.

Inputs Output

Truth table Venn diagram

OR gate (Logic union gate)

OR gates output 1 when either input or both is 1, and they are sometimes expressed
in equation form as Z = A + B. The symbols used to represent OR are those for logical
unions: + or È.

Symbol Truth table Venn diagram

Inputs Output

56 C hapter 2  Digital Operations

NOT gate (Logic negation gate)

NOT gates output 0 only when the input is 1, and they are sometimes expressed in
equation form as Z = A−. The symbol used to represent NOT is the one for logical negation
(complement): −.

This white circle
indicates that 0 and 1
should be flipped!

Good. Be extra careful about this though! In the examples here, we showed AND and OR
gates having only the two inputs A and B, but it’s not uncommon for these gates to have
three or more inputs.

Ohh! So you can also write them as A × B, A + B, or A−. I think I understand all these
forms now.

So these input and output lines are called signals and can either be a 1 or 0. That’s easy to
remember.

In these cases, we require that all inputs of the AND gate be 1 for the output to be 1.
In the case of OR gates, we require that at least one input be 1 for the output to be 1.

Symbol Truth table Venn diagram

Input Output

Sometimes
more than

three!

Signal
pathways

What Are Logic Operations?  57

Other Basic Gates: NAND, NOR, and XOR

Okay, let’s take a
look at NAND, NOR,

and XOR* gates next.

WHAT?!

* XOR is written as EOR or EXOR in some cases.

You just said that AND, OR,
and NOT were the three

basic gates...

Are you just going to
take that back? Liar!
There’s even more

of them?!

Stop whining
and calm
down!!

You should know
about NAND, NOR,

and XOR, too.

And the
reason is...

Something
you’ll realize

after you learn
about them!!!

Even more
zealous than

usual!

Let’s do it!

Tottering

58 C hapter 2  Digital Operations

A Summary of the NAND, NOR, and XOR Gates

Okay, let’s talk about the other basic gates. These gates are really just combinations of
AND, OR, and NOT gates!

NAND gate (Logic intersection complement gate)

The NAND gate is an AND gate wired to a NOT gate. The NAND gate’s output is therefore
the output of an AND gate run through a NOT (negation) gate. It’s sometimes written
as the equation Z = A B× .

NOR gate (Logic union complement gate)

Symbol Truth table Venn diagram

Symbol Truth table Venn diagram

Inputs Output

Inputs Output

The same!

What Are Logic Operations?  59

The NOR gate is an OR gate wired to a NOT gate. The NOR gate’s output is therefore the
output of an OR gate run through a NOT (negation) gate. It’s sometimes written as the
equation Z = A B+ .

XOR gate (Exclusive logic union gate)

The XOR gate outputs 1 only when the inputs A and B are different. This gate is some-
times written as the equation Z = A Å B.

The XOR gate’s function is shown in the schematic above, where you see a combina-
tion of AND, OR, and NOT gates. The X in XOR stands for exclusive.

Oho! You were right. These gates really are just combinations of the three basic gates.

Symbol Truth table Venn diagram

Inputs Output

The same!

The same!

60 C hapter 2  Digital Operations

De Morgan’s Laws

This might be kind of off topic, but don’t you feel a certain fascination whenever you hear
the word theorem or law? It’s so charming and cool, I can’t help but feel my heart throb
wistfully every time. . . . Well, let me tell you about an important theorem: De Morgan’s
indispensable laws for logic operations. Here it is!

Aah, I might have eaten a little too much today. But fast food can be really good some-
times, don’t you think?

Stop ignoring me! Well, I suppose formulas like this can look complicated at first glance. . . .
Let’s start with the important part. This law basically just says a NAND gate is the same
as using an OR gate on each input’s complement, and a NOR gate is the same as using an
AND gate on each input’s complement. Does that make it clearer?

Oh

De Morgan’s Theorem

What Are Logic Operations?  61

Yeah! I can see that the left and right sides have big differences in how they use × (AND)
and + (OR). So according to De Morgan’s law you can swap AND for OR operators and vice
versa by using complements.

That’s it! It also means that we can use De Morgan’s laws to show our circuits in different
ways. Using this technique, it’s easy to simplify schematics when necessary. Here are some
conversions using De Morgan’s laws.

But they’re completely different! Is there really no problem even though the left and right
side look nothing alike?

I see. . . . Then you won’t mind if I just rewrite all of them? This is a law I like!

Yeah, the expressions might be different, but their functions are the same. Since logic gates
(digital gates) only work with 1s and 0s, everything stays logically the same even if you
switch out all the gates. We’re just leveraging that particular feature of the math.

Both of these are NAND gates!

Both of these are NOR gates!

62 C hapter 2  Digital Operations

The Addition Circuit

Heh, it seems I’ve
finally mastered

all the gate
symbols...

Look! Revel in my skill!

Snort

Hey, that’s rude!

Sorry
about that.

But if you’re
really satisfied with

scribbles like those, then
I suppose you’re still far
from understanding the

subtleties of logic gates.

Logic gates aren’t good for
anything unless you make a circuit

that actually does something useful!!

Wha-what do you mean?!

Tada!

Point!

Scribb
le

Scribble

Circuits That Perform Arithmetic

Here is a circuit that
actually does something

worthwhile!

Take a good look at
the magnificence of this

half adder circuit!!

!!

This is a very
old, rudimentary

circuit but...

a useful one
that performs

addition.

It does feel a bit
magnificent, all wired up
like that... I see it’s using

AND and XOR gates!

But I don’t see
how it can add

numbers...

I-I will let you
explain it to me!

If you want me
to tell you, just

say so...

Thunder!

64 C hapter 2  Digital Operations

The Half Adder

Let me explain what the half adder I showed you is all about (though I suspect you won’t
need that much explanation at this point). First off, do you remember single-bit addition?

If we bundle all of these together, it kind of starts to look like a truth table, doesn’t it?
Let’s treat the two bits as inputs A and B, and let’s standardize our output to two digits. So,
an output of 1 looks like 01.

Well then, do you notice anything? Pay special attention to the gray area.

Wh—what? Could it be . . . ? The lower digit output... it looks just like an XOR gate’s truth
table (see page 59)! XOR produces an output of 1 only if the inputs are different, right?

0 + 0 = 0,  0 + 1 = 1,  1 + 0 = 1,  1 + 1 = 10

The lower digit

output

(The digit is
carried.)

Circuits That Perform Arithmetic  65

That’s correct. This time, look only at the upper output digit.

Hmm, that looks just like the truth table for an AND gate (see page 55)! An AND gate’s
output is 1 only when both inputs are 1. . . .

That must mean that by combining an XOR and an AND gate, we can get two outputs
(one for the upper digit and one for the lower digit) and perform single-bit addition!

As soon as you get that part, it seems really easy, right? The lower digit comes from output
S, and the upper digit comes from output C. In this case, S stands for sum, and C for carry.

This is how we can get two outputs from two inputs with the same half adder circuit. And
this is also how we can add two bits together!

Half Adder

The upper digit

output

(The digit is
carried.)

output
S

input

output
C

input

(Carry)

(The value
of A + B)

66 C hapter 2  Digital Operations

The Full Adder and Ripple Carry Adder

After learning how the half adder works, it seems really simple! Hmm . . . but, there’s still
something that bothers me about it.

In that circuit, there’s an output for the carry, but there’s no input for the carry from
the previous digit. That means you can only ever add two single digits, right? That doesn’t
seem very useful. In fact, only being able to add two single digits seems pretty useless!

Heh, an acute observation, for sure. It’s true that the half adder cannot deal with carries
from previous digits and can therefore only ever add two single bits. That’s why half adders
are just that: “half an adder.” It’s no use putting it down for something it can’t help.

I’m not dissing anyone! Why am I the bad guy all of a sudden?!

Don’t underestimate the half adder though! By using two half adders, you can make a full
adder. In addition to having the inputs A and B, you can use an additional input for the
carry in this circuit.

Take a look at this next schematic. We call this circuit with three inputs and two out-
puts a full adder. We’ll put each half adder into its own box to make the diagram a bit easier
to understand.

Think of water ripples

C A

Circuits That Perform Arithmetic  67

You were right—it’s using two half adders! Two halves really make a whole. I guess C
in
 is the

carry input and C
out

 is the carry output then.

That’s right. And by connecting one half adder and several full adders, we can add any
number of bits! We call a circuit like this a ripple carry adder.

In this example, we’re using four adders, so we can add four digits. We’ve also put the
individual adders into their own boxes. During subtraction, we would deal with the inverse
carry instead (borrow).

Uh-huh. So each adder’s carry output goes into the next adder’s carry input. This is how
the carry flows so that we’re able to do the calculation properly.

Full adder

Ripple carry adder

Three
inputs

Half adder Half adder

Full adderFull adderFull adder

The carries are propagated.

Half adder

68 C hapter 2  Digital Operations

The Carry Look-Ahead Adder

But even then . . . that ripple carry adder kind of makes me feel like there’s something
familiar with how it moves the carry after each step in the calculation. It’s really similar to
how we humans do calculations with pen and paper by moving the carry from each lower
place value to the next higher place value.

Yeah. But that’s actually a big problem—it takes a lot of time to keep moving the carry from
one calculation to the next.

In ripple carry adders, the more digits there are, the slower the calculation speed will
be because of the larger propagation delay.

Yeah, that seems a bit slow. . . . Addition and subtraction are pretty common, too, so I sup-
pose they’re not something you want to be doing slowly. Hmm. So what do we do about it?!

Propagation delay in a ripple carry adder

I’m so bored...

Upper digit

Still
nothing...

Okay,
roger
that!

Here! A
carry!

Heh heh heh. To fix this problem, someone came up with what is known as a carry look-
ahead adder.

Circuits That Perform Arithmetic  69

The carry look-ahead adder basically delegates the carry calculations to a completely
different circuit that serves its results to each digit’s adder. Using this method, the upper
digits can do their calculations right away, without having to wait!

Eeeh, is that even possible? So does that mean there’s some other dedicated circuit that
decides whether or not there’s a carry?

Yeah. It determines whether there is a carry in either direction during addition and sub-
traction. The downside is that the circuit is a lot bigger, but calculation times are drastically
reduced.

Hmm. So it’s reducing calculation times with all kinds of smart tricks then. When we first
talked about making a circuit for addition, I was imagining something pretty small, but the
final product is quite impressive.

Upper digit
The circuit that deals

 with carries
(Look-ahead-carry unit)

They don’t have to wait for the carry!

70 C hapter 2  Digital Operations

Circuits with Memory
Are a Necessity!

Now, let’s get
into today’s
last topic.

Let’s talk about
circuits with

memory.

Okay... this memory has
to be the same memory
we talked about last

time, right?

Back then, you
showed me

these things...

Hmm, yeah. It’s true
that when we say

“memory,” we usually
mean primary memory

like this.

But there’s
actually memory

storage inside the
CPU as well.

And this storage is called
registers!!

Data and
program

instructions,
along with other

things used in
operations

Memory!

RegistersMemory!

Circuits That Remember

(See page 18.)

Circuits That Remember  71

Registers?
Never heard

of ‘em.

What are those
things?

A simple analogy
for registers might
be something like a
disposable notepad.

When performing
operations,

registers are
used to store

temporary
values!

This kind of memory
is more short-term
than other types of

memory.

So there are many
types of memory,
each made for a

specific task.

Well, the important thing with
all of them is that by using
them, we are able to use a

previous memory (the state)
in future operations.

That is, previous memories
can affect future

calculation outputs!!

Could you...
say that again in
plain language,

please?

72 C hapter 2  Digital Operations

Okay, then.
Imagine...

That you are about
to buy a drink from a

vending machine.

Yay! I’ll have a coke!!

Hey, we’re talking
hypothetically here!

To buy a 130-yen cola, you
have to put in a 100-yen coin

and then a 50-yen coin...
after that, the machine
should display a total

of 150 yen, right?

That just means that the
machine remembers the sum

of the 100 yen you put in
before and the 50 yen you

inserted just now.

What do you think?
Do you understand how
the previous memory

of 100 yen affected the
end result of 150 yen?

Ah, it seems very obvious
now. The reason why it’s
able to show the sum

of 150 yen is that it has
memory.

Fully
motivated!!

Circuits That Remember  73

If it didn’t have
any memory...

What a rip-off!
I’d have no choice
but to destroy it!!

Calm down.
Violence solves

nothing!

They compare current
memory to past memory.

I sold 3 apples today, and
I sold 2 apples yesterday.

This means I sold more
today than yesterday.

This is why computers,
such as the one in the vending
machine, need to have memory

circuits to be useful.

They use results from previous
calculations and new data as
input to other calculations.

I sold 6 apples
yesterday, and
I sold 3 today.

I’ve sold 9 in total.

Many program
instructions are

like this.

I see. I guess it
makes sense that

memory circuits are
important then.

...Now that that’s
settled, I think
I’ll go and have
another cola.

She got thirsty?
The power of
suggestion...

Apple Yay!

Not that I recall...

Didn’t I

jus
t put i

n

100 yen??

Wha-at!!

74 C hapter 2  Digital Operations

Flip-Flop: The Basics of Memory Circuits

Ngh. I can’t even imagine a circuit that has memory. Even human memory is really compli-
cated, you know. . . .

Yeah. You have to think really simply. Computers can only use 1s and 0s, right? That means
that to a computer, memory means somehow storing the states of 1s and 0s.

I’ve already explained that these 1s and 0s actually correspond to different voltage
levels (low and high) (see page 37). This means that to save a 1, we would have to create
something that can retain that state over a longer period of time, as in the graph below.
We call storing data like this latching.

I see. But it’s probably not very useful if it just stays in that state forever. What if I want it
to go back to 0 later on or I want to overwrite the memory with something else? Wouldn’t
it make sense to be able to store whatever I want, whenever I want?

Yeah, that’s right! For example, if you turn on a room’s light switch, it would stay on until
someone turns it off again, and then it would stay off until someone turns it on again. It
would be great if we could create some kind of trigger condition to freely swap the 1 and 0
states, just as we do with the light switch.

That is, we would like to be able to store 1s and 0s indefinitely while still being able to
flip each bit individually whenever we want. This is exactly what memory circuits do!

State remains 1

Time

So this
is a latch

then!

Circuits That Remember  75

Um, that sounds a bit selfish, doesn’t it? I want to store 1s and 0s, but I also want to be
able to flip them at will.

It is selfish, but flip-flop circuits are a basic component of any memory circuit.

Flip-flop . . . that’s a cute name, but how are they useful?

They’re super useful!! They grant us the ability to change states. First, take a look at the
picture below. To make it easier to understand, I’ve put the flip-flop in its own box. Using
one of these, we can store one bit of data.

Yes. Pay special attention to the Q output! This is the output that will stay either 1 or 0. Q
will always be the inverse of Q−. So, if Q is 1, then Q− will be 0. Q− can be very useful to have
when designing a circuit, but we’re going to ignore it for now.

Uh-huh. Then how does it work? Tell me what’s inside that box!

All in good time. First off, there are several types of flip-flops. Both the function and circuit
depend on the type. Out of these types, I’ll teach you about RS flip-flops, D flip-flops, and
T flip-flops.

Okay. There are inputs. . . . And two outputs Q and Q− . . .

The reason why there are no concrete symbols for the inputs is that they change
depending on the type of flip-flop we use.

In
p
ut

s

Important!

O
ut

p
ut

s

76 C hapter 2  Digital Operations

The RS Flip-Flop

Okay, I guess RS flip-flops come first. So the box has two input signals, R and S. Rice . . .
sushi . . . rice and sushi?!

Um, no. R means reset and S means set. The reset and set inputs are the two main fea-
tures of this type of circuit.

I might be jumping to the main point too quickly here, but setting S to 1 will set Q to
1 and setting R to 1 will reset Q to 0. Once Q has changed state, removing the input signal
won’t change it back. It will keep that state until the countersignal (S for R and vice versa) is
sent. As soon as that happens it will, of course, flip the saved state back.

Yeah. It might seem a bit complicated here, but the circuit looks like the figure on the next
page. In accordance with De Morgan’s laws (see page 60), it can be created using either
NAND gates or NOR gates.

Whoa. It looks a bit weird. . . . There are two NAND gates (or NOR gates), but they’re all
tangled up in figure eights.

Yep! The two circuits are interconnected, with the output of one acting as one of the inputs
of the other.

Hmm, so that means that it remembers which of the two got set to 1 last? If S got set
to 1 most recently, then the latch remembers 1, and if R was the last 1, it remembers 0!
Is that it?

They’re also sometimes
called RS latches.

You can also flip the
R and S and call them

SR flip-flops.

Circuits That Remember  77

It’s thanks to this figure eight that the circuit is able to retain either a 1 or a 0. We call this
a latch. You could say this figure eight is the most important characteristic of a memory
circuit!

Hmm, even so, it’s pretty complex. If I look back and forth between the schematic and the
truth table, I get the feeling I kind of get it, but still. . . .

Let’s see, the part of the truth table that says “does not change” means that output Q
either stays a 1 or a 0 indefinitely, right? But what does the “not allowed” on the bottom
mean? What’s not allowed?!

Oh, I see. So just follow the traffic, er, circuit rules, right?

Ah, yeah. That just means that you are not allowed to trigger both set and reset at the
same time. Remember that since the circuit is active-low, this means that both inputs can’t
be 0 at the same time. If you were to set both to 0, this would make both Q and Q− output 1
until you changed one of them back—but the outputs are always supposed to be either 0
and 1, or 1 and 0. It’s not allowed to invalidate the rules we set for this logic circuit.

RS flip-flop

FunctionOutputsInputs

Does not
change

Retains its
current output

Set

Not allowed

Reset

Note that S and
R have negation

symbols! This is called
active-low, and it means
they are activated when

the input voltage is
low (0) instead of

high (1).

78 C hapter 2  Digital Operations

The D Flip-Flop and the Clock

Let’s see. The next one is the D flip-flop. The inputs are D and . . . what’s this triangle next
to the C?! It looks like that piece of cloth Japanese ghosts wear on their headbands!!

That observation is pretty far removed from the computer world. But I suppose it’s a bit
cryptic and warrants an explanation. First off, it’s easiest to think of the D as standing for
data. That triangle is the symbol for a rising edge, and the C stands for clock.

That’s right! Computers need some kind of fixed-interval digital signal to synchronize all
the operational states in their circuits. That’s what the clock does!

Just like a normal clock measuring time, it flips between high and low voltage (1
and 0) in fixed intervals. It has nothing to do with the circuit’s input or output though—
it’s completely separate.

Um . . . Rising edge?? And the clock—is that just a normal clock?

An edge is when a signal
transitions between two levels

(0 and 1, for example).

A clock

Time

Circuits That Remember  79

Hmm. It really reminds me of a clock . . . tick-tock, tick-tock. . . . Just like we plan our days
with the help of clocks, I guess circuits need them, too.

Yeah. When a circuit needs to take some action, the clock can sometimes act as its cue.
Inside the clock, what is known as the rising edge acts as that action signal. Have a look!

Ohh! Those arrows are at even intervals on the clock graph.

When the clock goes from low to high (0 to 1), we see a rising edge, and when it goes back
from high to low (1 to 0), we see a falling edge.

Oho, I think I get it. So the rising and falling edges are like ringing bells on the clock, right?
When the bell rings, it acts as a signal to take action, like at the start and end of class, for
example.

That’s just it! That’s a pretty good analogy coming from you.

When the clock goes
from high to low

Falling edge

When the clock goes
from low to high

Rising edge

80 C hapter 2  Digital Operations

Okay, let’s get back to the problem. In a D flip-flop, every time a rising edge passes, the
D input 1 or 0 is copied directly to the Q output.

It might be easier to understand by looking at the timing diagram below. A timing
diagram is a good way to see how signals change their state over time.

Mmmh. It’s a bit complicated, but I think I get it now that I’ve looked over the timing
diagram. In any case, the main characteristic of the D flip-flop seems to be that it acts in
sync with the clock’s rising edges! Hmm, it seems like clocks are super important both to
modern man and circuits.

The important lesson here is that the D input can change as much as it wants,
but Q won’t change until a rising edge arrives!

Copy!
Clock

Circuits That Remember  81

The T Flip-Flop and Counters

So the last one is the T flip-flop. Wait, it has only one input! Did you forget to draw
the rest?

Fuhahaha! Like I would ever forget! The T flip-flop has only one input, as you can see, and
is pretty simple. Whenever the input T changes from 0 to 1, or 1 to 0, the output stored in
Q flips state. It looks something like this time chart.

Oh, this was super easy to understand! It’s a memory circuit even though it has only one
input.

There are T
flip-flops that
activate just on
falling edges
instead (1 to 0).

Output Q

Input T

FlipFlipFlip

82 C hapter 2  Digital Operations

By the way, flipping between 1 and 0 is called toggling. The T in T flip-flop actually stands
for toggle! Also, by connecting several T flip-flops, as in the following schematic, you can
make a circuit that can count—a counter circuit.

Several T flip-flops toggled by the falling
edge of an input signal can act as a counter.

Looking at the time chart, do you see that each output signal has half as many toggles as
its input signal? This means that the period of the output signals is twice as long as the
period of the input signals. I’ve put all three of the flip-flops in the schematic above into
this time chart so you can see all of their individual outputs next to each other when they
are connected.

If you look at each column in this graph individually, you should see that the digits from
Q

2
, Q

1
, and Q

0
 form binary numbers! Isn’t it cool that every time we have a falling edge on

the input of the first T flip-flop, this binary number increases by 1? It’s counting!

Umm, but why do we say that the circuit can count?

Counter circuits

The first flip-flop will toggle its output state every time the input on the far left
changes from high to low. Consequently, the second flip-flop will toggle its output when-
ever the first flip-flop’s output changes from high to low. All following outputs will keep
toggling in this pattern. If the input signal is connected to a clock, then each flip-flop in
the series will toggle every 2(n − 1) clock cycles if n is the flip-flop’s position in the series. Put
another way, the period of each flip-flop’s output signal will be 2n of the original signal’s
period.

Counters that work this way are called asynchronous counters, since not all flip-flops
are connected to the same clock but, instead, each flip-flop’s clock after the first is the out-
put signal of the flip-flop that came before. In contrast, there is a circuit commonly found
in CPUs called a synchronous counter. As the name here implies, all flip-flops in this type
of counter trigger on the signal from the same clock, meaning they all toggle at the same
time, in parallel. It’s worth mentioning that I’ve simplified these descriptions to make them
easier to understand.

Input

Circuits That Remember  83

Wow, you’re right! Q
2
 corresponds to the 22 digit, Q

1
 to 21, and Q

0
 to 20, right?

If you look at Q
2
, Q

1
, and Q

0
 in order, the first column forms 000 (the number 0), the

second one 001 (1), the third 010 (2), and the fourth 011 (3) in binary. So using this tech-
nique, you can actually make the circuit count! That’s a really smart design.

Yeah. In this example, we used three flip-flops, so that lets us express 23 (8) numbers,
meaning we can count from zero to seven.

You can actually make counters from other types of flip-flops, like D flip-flops, for
example. Using some other tricks, you can also make circuits that count down, if you want.

Yeah, well that’s it for flip-flops. Just don’t forget what I said at the start: flip-flops are the
foundation of any memory circuit!

This means that both primary memory and CPU registers use flip-flops at their core.
And flip-flops are also the basis of any counter circuit, just like what we just talked about.

Haha, so they’re the base for a lot of different devices, basically. And even though they have
a cute name, they’re super useful circuits we can’t do without!

Oh, that seems like it could be really useful for a lot of things.

84 C hapter 2  Digital Operations

Thanks for today!
I learned a lot!

Heh, well the things
we talked about

today are still just
the basics.

Don’t forget
them, though.

Don’t worry!! There’s no
way that someone with
my exceptional memory
and intelligence would

forget anything!

Exceptional
memory, huh...

So that means that
you remember every

shogi opponent
you’ve ever
played then?

Wellllll, you
know, it’s like,

see...

It’s not like the heroine
of the story remembers

every slimeball she’s
slain, right...?

...you fell right into
that one, wow......

I-I can’t help it if I
don’t remember!!!!

Modern Circuit Design: CAD and FPGA  85

Modern Circuit Design: CAD and FPGA

Multipurpose integrated circuit design is surprisingly similar to software development
these days. It’s usually accomplished using a hardware description language (HDL) to
define the operation of a circuit.

In the past, circuits were drawn using logical circuit symbols, much like the ones we
have shown in this book, but these symbols are now used mostly for very simple circuits.
The development of computer-aided design (CAD) programs allows people to design com-
plicated circuits with relative ease.

But, it’s important to learn the basics. It can be useful to know these symbols if
you’re trying to figure out how data flows through a digital circuit or when you’re trying
to understand a particular feature of some schematic.

At the dawn of CPU development, it was common to create reference circuits con-
sisting of many AND, OR, and NOT gates. These were then used when iterating, proto-
typing, and evaluating new generations of CPUs and other ICs.

By doing this, it was possible to test each function of the advanced circuit individually
and even hardwire the circuits together to try to work out problems in the design if some
error was detected.

Nowadays, reference circuits like these are rarely used in development. Instead
much more flexible field-programmable gate array (FPGA) circuits are preferred.

FPGAs consist of a series of logic blocks that can be wired together in different ways
depending on the programming. Some of these blocks contain lookup tables to map
the 4–6 bits of input to output in a format that’s similar to a truth table. The number of
lookup tables in an FPGA can range anywhere from a few hundred to more than several
million, depending on the FPGA model.

And of course, it’s possible to reprogram all of the tables whenever needed. In this
way, the same FPGA circuit can be used to perform the functions of many different types
of ICs. You can simulate the function of a CPU using an FPGA if you want to, but it’s a
lot cheaper and easier to mass-produce a dedicated circuit instead. Even so, since the
price of FPGAs is dropping and development costs for new ICs are high, if the life span or
projected sales of a particular IC are not high enough, it might be more cost-effective to
simply use an FPGA.

FPGAs can, just as the name suggests, be reprogrammed
“in the field” to change the function of the IC completely.

They are indispensable to circuit designers.

Clac
k

Clac
k

Awesome,
I’m going
to tailor
this to my

needs!

3

CPU Architecture

Ayumi

All About Memory and the CPU

Really...
to think we’d be
hanging out even

on Saturdays...

Well, I want
to learn about
CPUs over the
weekend, too!

And I want to
try this cafe!

Their cakes look
really good.

And it’d be kind
of embarrassing

to go alone...

I see... you
don’t have any

friends...

I do! I have
like a hundred

friends!!!

Sounds like
someone’s

overcompensating...

Memory Has Assigned Addresses

Well then...

Do you know what
addresses are?

Of course I do!
Like I wouldn’t know

where my friends live!!

Uh, I wasn’t
talking

about mailing
addresses.

You see, locations
in memory...

...are called
addresses.

I remember
memory.

Data and programs are
stored in memory, and
memory communicates

those things to the CPU,
right?

Lie

CPU Memory
Operation

output data

Programs
Data for

operations

90 C hapter 3 C PU Architecture

That’s right.

Programs and
data are saved

to memory in an
organized way.

Everything is
assigned a unique

address depending
on where it is

stored.

You’re right!!
Everything

has a unique
address and is
neatly sorted

in order.

You should also
remember that

the CPU...

has full
control over
this address

space, which can
also be called
memory space.

Address space
(Memory space)

Uh-huh. So the CPU
controls the memory

space...

And if it can read and
write wherever it

wants...

Data for
use in

operations

Data

Data

Data

Data

Programs Instruction

Instruction

Instruction

Instruction

Instruction

TypeAddress

Data

Data

Data

Data

Instruction

Instruction

Instruction

Instruction

Instruction

TypeAddress

Inside memory

okay!

All About Memory and the CPU  91

Doesn’t that make the
CPU look kind of like

a bad guy?

You have a
pretty dark
imagination.

But why do
data need

addresses?

How is
assigning

them numbers
useful?

Heh... don’t
you see?

Addresses make it
possible to find data

just by pointing to the
correct number.

Actually, this is how
the CPU accesses all
data and programs
(or stores them,
for that matter)...

By pointing to
an address!

Oh, it just
sends the

number along!

I guess using
numbers is pretty
practical and easy

to understand.

But it seems so
mechanical and
cold... devoid
of humanity...

Well, it is
a machine,
you know.

Data

Instruction

Instruction

TypeAddress

I claim dominion over this memory...

Address space
(memory space)

Heh heh heh...

Memory

Address
pointerCPU

Number 83,
please!

Instruction

Instruction

Instruction

Data

Data

Data

92 C hapter 3 C PU Architecture

Data Passes Through the Bus

Well since we
already talked

about addresses,
let’s also talk

a bit about
the bus.

The bus...?
Yeah, it actually
comes from the
word omnibus.

But the kind of
bus we’re talking about
is a path that transmits
data inside a computer.

And, as shown in this
picture, we call the
bus that transports

address pointers
the address bus.

Appropriately, we also call
the bus that transports data—

wait for it—the data bus.

I see. So they’re kind
of like two routes

with completely
different purposes.

Yeah, and there are
also external buses

and the internal
data bus.

memory
dataData

Data bus

Address bus

A numberA number

Oh, just
like the

name says.

And inside the internal
bus, there are switches

that can change the
flow of data, just like

in this picture...

These switches
are called

multiplexers (MUX).

These switches make
it possible to simplify

the CPU’s internal
data buses.

They’re super
useful!

Oooh, they’re really
like bus routes

after all!

And they’re
designed to make
everything as easy
as possible. I can
appreciate that!

The external
bus connects

the CPU to memory
and external

devices. The most
common one is the

Universal Serial
Bus (USB).

The internal data
bus is a bus that
passes internally
through the CPU.

A path from B to YA path from A to Y

Multiplexer
(MUX)

Memory

External
bus

Internal

data bus

CPU

94 C hapter 3 C PU Architecture

Bus Width and Bits

Let’s talk a bit more about buses. I said that buses are for transporting data, but to be
more exact, they’re actually bundled signal pathways.

Uh-huh. So that means that the number of pathways equals the number of bits. With four
pathways, we can send and receive 16 (24) different numbers from 0000 (0 in decimal) to
1111 (15 in decimal).

Ah, signal pathways, I remember those from before. They’re lines that transmit 1s and 0s,
right?

That’s right! And, the number of pathways determines how many values those pathways
can represent. For example, if you have four pathways, and each can be a 0 or a 1, then
those pathways can be used to send or receive a four-digit (four-bit) binary number.

4 bits

16 wide

With 4 bits...

(20)	O nes

(21) 	 Twos

(22) 	 Fours

(28) 	E ights

Four signal
pathways

All About Memory and the CPU  95

Heh heh heh, good guess. You’re correct! We call the number of signal pathways (or bits)
the bus width. A wider bus width gives the CPU faster processing capabilities.

For example, the ALU in the following diagram can process four-bit operations. This
means that the data bus serving this ALU also has to be four bits wide.

Haha! So that just means that the CPU’s performance is determined in part by the width of
the data bus. And the wider the data bus, the better the CPU’s performance!

We chose 4 bits to make the diagram simpler, but most modern ALUs work with 64 bits.
It makes sense to use a bus with a bus width that matches the ALU’s data width, which
means buses end up being 64 bits wide more often than not. In general, the 64-bit CPUs
that you hear so much about have 64-bit ALUs and 64-bit data buses.

Hah! I think I might have figured out something important! Doesn’t that mean that the
more signal pathways you have, the better? If you can express larger numbers, that also
has to mean you can process more data.

It’s worthwhile to point out that the data bus doesn’t necessarily have to have
the same width as the working bit length of the CPU. For example, in 1982,
you could find 16-bit CPUs with 16-bit ALUs using an 8-bit wide data bus.
This simply meant that you had to send data over the bus two times before
the CPU could start doing any work.

64

64-bit
bus width

64-bit CPU

64-bit data
width ALUs

4-bit
output

4-bit
inputs

96 C hapter 3 C PU Architecture

You should try to remember these things about data bus width.

By looking at the width of the external bus between the CPU and memory, you can see
how many bits can be sent between these two systems at once. By looking at the width of
the internal data bus, you can see how many bits can be processed at the same time in a
single operation.

Yeah. On the other hand, if we have an address bus width of 32 bits, that would give us 232,
or 4,294,967,296, different addresses. We can say that the size of our address space for 32
bits is roughly 4.3 gigabytes.

The address space size . . . ? Does that mean how many addresses there are? Then if
the address bus has a width of 4 bits, wouldn’t that give us 24, so a total of 16 different
addresses?

That’s it for now about data buses. Let’s talk a bit about the address bus. By looking at the
address bus width, you can see how large your system memory is. We call this the address
space size.

Okay! So data bus width is super important. Gotcha!

For an address
bus width of

32 bits, we have
232, or roughly
4.3GB, different

addresses.

A
dd

r
e
ss

b
u
s

All About Memory and the CPU  97

And the size of the address bus directly relates to memory capacity (see “Memory Capacity
and Bus Width” below).

Hmm, so address bus width is also really important. Does that mean it should be as large
as possible?

Is that greed or naive honesty I detect? Well I suppose it’s true that the bigger the buses,
the better.

Memory Capacity and Bus Width

Let’s think a bit about the relationship between memory capacity and bus width by
looking at a simple example. As shown in the diagram, one byte corresponds to one
address. One byte is eight bits. A byte is a unit commonly used to describe the size
of data.

If instead our address space (address bus width) was 12 bits, then we would
have 212, or 4,096 addresses. Each address fills 1 byte, so that means our memory
capacity is 4,096 bytes, or roughly 4 kilobytes (KB).

An 8-bit data bus that
sends 8 bits at a time

8 bits = 1 byte

Address

98 C hapter 3 C PU Architecture

R/W Signals and I/O Signals

Next up, I’ll explain a bit about control signals. Do you happen to know what R/W stands for?

Red and white . . . is it something related to festivities . . . ? Santa?

Ah. Well, it sure seems festive inside that head of yours. It actually stands for two really
important terms related to the CPU—read and write.

Read means to extract data that has previously been stored somewhere. Write means
to save data to some place. We also sometimes use the words load and store instead.

What Is the Difference Between
Read/Write and Load/Store?

Read/write is the term we use when speaking from the
hardware perspective, and load/store is the term we use
when speaking from the software perspective.

R/W is an electrical operation in the memory, and the
memory doesn’t care where the data is going or where we
want to save something.

In contrast, a load operation reads some particular
data to store it in a register. Conversely, a store opera-
tion grabs some register data and writes it to memory.
So these operations deal with data flow.

Output

In
pu

tWrite
Rea

d

All About Memory and the CPU  99

Ah, in that case, I think I kind of get it. The CPU deals with memory and data, right? It
reads data to use for operations and then writes the result of those operations to memory.

Yes! It seems you’re really getting the hang of it. So the CPU issues read and write instruc-
tions to the memory—instructions such as “Fetch some data” or “Save some data.” We call
these R/W instruction signals.

We’ve talked about the address bus and data buses, but there is one more really
important bus—the control bus! And it’s this bus that is conveying these control signals
from the CPU.

Hmm. So if, for example, I wanted the data in number 83, I would send 83 on the address
bus and read on the control bus, like in the picture! And the data I wanted would then
arrive on the data bus.

Yeah, that’s it. You seem to be getting it now, so let’s move on to the next topic. Have you
heard of I/O before?

Maybe . . . ice cream and oreos? Hee!

Memory

Control bus

Add ress bus

Data Bus
CPU

100 C hapter 3 C PU Architecture

Ah, you’re just choosing words at random now, huh? I/O stands for input/output.

Input is data traveling from the outside world into the computer. Conversely, output is
data traveling from the computer to the outside world.

Yeah, I know. The keyboard and mouse are two input devices, and the monitor and printer
are two output devices, right? Input and output!

Yeah. To control external devices like this, we use I/O control signals. You should also
remember the term I/O port. Just as the word port suggests, ports are the gateway we use
when communicating data to external devices.

The CPU is connected to external devices like keyboards* through these I/O ports!
Have a look at the image below.

Port . . . Yeah, it really feels like there are unknown seas at the end of the map! But these
ports don’t connect to other lands; they just connect to other devices.

Yeah. And additionally, we have an address port and a data port between the CPU and
memory, which in turn connect to the address bus and data bus, respectively.**

** The address port, data port, R/W control, and I/O control are shown in the helpful CPU overview diagram
on page 106.

There is actually
a USB controller

between USB devices
(such as mice and
keyboards) and

the I/O port.

* Other external devices, such as the display, are not necessarily in direct communication with the CPU,
however.

Keyboard

I/O port

Connected directly!

CPU

All About Memory and the CPU  101

Instructions Are Made of Operands and Opcodes

By the way, I have
one question...

When you first
showed me memory,
there were these

instructions.

What are they?
They seem

awfully full of
themselves.

It’s been bothering
me for ages! Hurry

up and tell me
already!!

She says while
giving me

instructions,
all high and

mighty!!

Uhh, yeah... Instructions are
parts of programs written

by humans that the CPU
executes.

Program

You could say
that programs
are chains of
instructions.

Oh, so it’s kinda like
how cake recipes say:
“Break some eggs.”

“Mix the eggs with
sugar.” Programs are
a chain of instructions

like that?

Instructions

These

Instruction

Instruction

Instruction

Instructions

Instructions

102 C hapter 3 C PU Architecture

Yeah. Although the
instructions we’re

talking about actually
look like this.

The opcode (short for
operation code) is what to Do,
and the operand is what the

CPU operates on.

And there are lots
of instructions
other than just
“add these two.”

Uh-huh! But the
important part is that
instructions tell the
CPU what to do and
what to operate on,

right?

Yes, but be careful!
Operands might also
be an address instead

of a value.*

* The accumulators and registers we’re going
to talk about next can also be operands.

Accumulators and Other Registers Are
Used in Operations

operand operand

Oh

Jump

Store this

Compare

these two

Lots of opcodes

The operand is an address!
Add the data at address 30
to the data at address 31.

2 + 3

opcode

A-ha, so it’s like
this then.

A number

Instructions (the
program) themselves
also reside at some

address...

And the operands
the instruction

operates on also
reside at their own

addresses.

It’s not that
hard after all!

Managing all of
them by number...
It’s so rational
and economical!

Weren’t you
just complaining
about the lack
of humanity?!

Accumulators and Other Registers Are
Used in Operations

Okay, we just talked
about the “adding”

instruction...

But to execute an
instruction...

You always
need

registers!!!!

OpcodeOperands

Number Y

Address

Instruction

Fu

Swat!

Number Z

104 C hapter 3 C PU Architecture

Um, registers were those
small memory circuits
inside the CPU, right?

Like a
notepad!

Yeah, that’s right.
Let’s have a look at
these two types of

registers first.

Accumulators are like
notepads that are only
used for calculations.

General-purpose
registers can be used

for calculations
or anything else

you want.

Both of these types
will be used anytime

operations are
processed!

Hm...What do
you mean?

For example, when executing the
instruction to add the data at

address X and the data at address Y,
this is what actually happens.

Just remember that
data is saved to
registers here.

Notes

Anything

Used for all kinds
of things, as the
name suggests

General-purpose
register Addition

Used for
calculations and
increasing values

Accumulator

  105

After saving the data
stored at address X
(2) in the accumulator
register and saving
the data stored at
address Y (3) in a
general-purpose

register, Perform an
addition of the two.

Accumulator

Then automatically store the
result of the operation (5) to the

accumulator register again.

Ooooh, yeah,
I see a lot of

registers being
used here!

It seems a bit
roundabout, but I

guess that’s just how
the CPU works!

There are many
other types of

registers as well.

For example, the
instruction register is

used to temporarily store
program instructions read

from memory.

It executes the
instruction after
decoding* it, huh...

So there are lots
of different registers

for all kinds of
purposes then!

I’d better register
what I’ve learned
on the back of
this receipt!!

That’s a note
you’ll lose

pretty quickly.

General-
purpose
register

Accum-
ulator

address Yaddress X

Memory

Instructions
(program)

Instruction
register

Inside the CPU

Instruction

* see page 109.

Classic CPU Architecture

Then let’s
finally get

into some CPU
architecture.

Behold! The
architecture of
a classic CPU!!

* All buses are simplified in this diagram and are drawn only as single lines.

fwip!!

E
x
t
e
r
n
a
l
 m

e
m

o
r
y

External
devices

R/W
control

D
a
ta

p
o

r
t

A
dd

r
e
ss

 p
o

r
t

I/O
control

Timer
interrupt
control

Instruction
decoder

Instruction
register

Address
register

Accumulator
(internal shift

register)

A
r
it

h
m

e
t
ic

l
o

g
ic

 u
n
it

Program counter

Stack pointer

Temp register

Internal
RAM

Overview of a Classic CPU

CPU Instruction Processing

CPU Instruction Processing   107

Hey, look! A tea
leaf is standing
up in my coffee!

That’s good luck!!

Don’t change
the subject!!

The Instruction Cycle

Uhh... so many
words I don’t
understand...

What’s this
program

counter, for
example?

Since it has
program in its
name, it seems

important...

So, is my intuition that
the program counter
is important right or

wrong?!

Aren’t I the
teacher here??

Why is she
quizzing me?!

Yeah, I guess it’s true
that the program

counter (PC for short)
is really important.

Every CPU has one,
and it holds the

address of the next
instruction to be

executed.

Stack pointer

TEMP register

Umm..

Huh?

Program counter

This!

108 C hapter 3 C PU Architecture

The address
of the next

instruction to
be executed...?

So that means
that this guy is
always thinking
one step ahead!!

That’s exactly
how any shogi
player has to

think!

Next up is
the seventh
instruction.

Yeah, I guess.
Although it’s not a
person, you know.

And after the
operation* is executed,

the address of the
next instruction
contained in the

program counter...

is then
temporarily

transferred to the
address register
and forwarded

to memory.

So it’s called the
address register
because it stores

addresses, eh?

That’s so
simple!!

I don’t want
to hear that
from you.

* You can also perform calculations on memory addresses.

Mr. Program
Counter

Memory

The
instruction’s

address
pointer

Number
seven

Address register

Address

Calculation

Number
seven...

Program counter

CPU internals

CPU Instruction Processing   109

Let’s move on.

The memory
then sends the

instruction located
at that address
back to the CPU.

It is then temporarily
stored in the instruction
register and decoded by
the instruction decoder. I suppose the

decoder is pretty
self-explanatory.

But why is decoding
necessary at all?

Can’t the CPU just use
what was sent from
memory right away?

No.

Instructions must
be decoded because the

instruction code stored in
memory is not the same as
the machine code the CPU

understands.

Instruction
decoder

The instruction retrieved from memory
needs to be broken down before
it can be used in an operation. The

decoder translates from instruction-
level language to hardware-friendly

machine code format.

The instruction
decoder puts the

instructions read from
memory into a form that
can be used in operation

execution.

Oh wow, it seems
a lot of different

processes are
necessary...

CPU internals

Memory

Instruction
(program)

Instruction
register

Instruction

Decoding!

Instruction
decoder

110 C hapter 3 C PU Architecture

And, as soon as the
instruction has been
decoded... Behold!!

The operands and opcode
are revealed!!

Oooh! So this ties in
to what you taught

me before!

Operations are
performed on

the ALU using the
accumulator,

right?

That’s
right.

And finally, the result
is stored in either a
register or memory.

And if it’s stored
in memory, we also

need to specify what
address to store it at.

operand

...to something

Instruction code
(opcode)

Do something...

Memory

Store!

Operational
result data

Accumulator

Data

CPU internals

Tada !

CPU Instruction Processing   111

Ha! So that
marks the end
of processing

one instruction...
right?

Yeah, to tie it
together... let’s have a look

at all the steps
necessary for the

CPU to process
one instruction.

As soon as
one instruction is
over, it has to get

the next one...
The poor thing...

But before that, it should
celebrate the completion of
the previous instruction! Raise

your glasses and toast!

...do I need to
remind you that

I’m trying to
teach you stuff?

Go to
the next

instruction

Write the result
of the instruction

Execute the
instruction

Decode the
instruction

Read the
instruction

(also called fetch)

CPU instruction processing

112 C hapter 3 C PU Architecture

The Instruction We Process Changes
Depending on the Program Counter

Hmm, about that CPU overview diagram from before, though (see page 106). . . . There
are still a lot of words there I don’t know. It all feels a bit hazy now.

Well, there’s no rush. Take another look after the next lesson. But for now, let’s look at the
program counter (PC).

Ooh, that guy who’s always one step ahea— no, I mean the guy who remembers the
address to the next instruction! That reminds me, didn’t we talk about counters before?
The circuits that count?

After the seventh instruction is done, we go to the eighth, and then the ninth, and
so on. . . . Is that how the saved address keeps changing?

Basically, yes. And by the way, the instruction register gets saved at the same time as the
counter changes, like in the image below.

HAAH!!

15

87

Instruction 8 is
in the instruction

register.

Instruction 7 is
in the instruction

register.

countCount

CPU Instruction Processing   113

But be careful! Instruction number eight doesn’t necessarily follow instruction number
seven here.

The program counter stores the address of the instruction to be executed next. After
7, it might jump to number 15 or return to number 3.

Eeeeeh, why?! Why would the address return and jump around like that?

Hah! This is important, so pay attention. The reason it can jump around like this is that a
program might contain conditionals such as branches and loops!

When the program encounters one of these conditionals, the address of the instruc-
tion to be executed next might jump. It might be easier to understand this by looking at a
diagram.

Ah! It’s like the ATM example we talked about a while back! It decided that the balance
was insufficient, so the outcome changed. And the ATM might throw you back to the main
screen if your PIN code is wrong.

Imagining a loop

Execution

Condition

R
e
t
u
r
n
!

Execution

Imagining a branch

ExecutionExecution

Branch!
Condition

Execution

114 C hapter 3 C PU Architecture

Yeah, the ATM is a great example! And to accomplish these branches and loops, we only
have to rewrite the address inside the program counter to the address we want to jump to.

I see. So by rewriting the address in the program counter, we can change which instruction
to execute! This way, the program is able to proceed appropriately.

It’s also good to know that the bit width of the program counter (the bit width of the
addresses in the PC) is the same as both the address bus bit and the address space bit
width. If you think calmly about that for a bit, you should realize that they have to have
the same bit width.

I see. It seems obvious, but it feels really nice to see the relationship between the different
things we’ve talked about so far!

By the way, the program counter only knows what the next step is, right? Shogi
players have to read reeeally far into the future, so maybe the program counter and
shogi players are slightly different after all!

Slightly? You’re joking, right?!

The address
we want to

jump to!

Virtual Memory

Most computer programmers don’t have to care about the CPU address bit length of
the programs they write for any modern operating system (such as Windows). It is the
operating system that decides how it will actually interact with the physical memory, and it
exposes this through something called virtual memory. The hardware that maps this virtual
memory to its physical counterparts is known as the memory management unit (MMU).

All Kinds of Memory Devices  115

This might be a
bit sudden, but I’d
like you to try to

remember...

I said
something like
this on the day
of the cultural

festival...

Memory
comes in two

flavors...

There is main memory
and secondary memory, but

when learning about the
CPU, the main memory, also

called primary memory, is a
lot more important.

Uh, sure,
but why...?

Well, it turns out
that secondary
memory is also

really important!!

The most representative
type of secondary memory
is the Hard Disk Drive (HDD),
sometimes just called a
hard disk!! Almost every

computer has one!

Can you
please stop

changing
your mind?!

When we say “memory,”
we generally mean
primary memory.

Primary memory

All Kinds of Memory Devices

116 C hapter 3 C PU Architecture

A Comparison Between HDD and Memory

Umm, I’m shocked by this new information. So what does this small box-looking thingy . . .
this hard drive (secondary memory) . . . do?

The easiest way to answer that is to compare it to primary memory. Let’s start with the
first big difference! When you turn your computer off, everything in primary memory dis-
appears! But any data stored on your hard drive does not.

This is why the operating system running your computer (for example Windows), all
your programs, and any data you might have created or downloaded (text, video, and so
on) are stored on your hard drive.

Eeeeeee!! That’s amazing!! But didn’t you say that all data and programs used for opera-
tions are stored in primary memory?

Yeah. Actually, when you turn on your computer’s power, certain parts of the data in your
hard drive are copied to primary memory. Anyway, when you turn your computer off, all
your data is safely stored on your hard drive. Take a look below.

On top of the desk
(primary memory)

If the top of
your desk is large,
you can do a lot of

things at once.

Intellect (CPU)

If you’re really
smart, you can
process things

quickly.

Drawers
(hard drive)

If your drawers
are large, you can

save a lot of things.

Music

Video

Text

Video
playback

WritingWebsite

Software

All Kinds of Memory Devices  117

Let’s imagine how the CPU, memory, and hard drive interact. We could say your memory is
like the top of your desk and your hard drive is like the drawers of that desk. You should be
able to understand their roles better by using this analogy.

Oooh, they’re really different! If primary memory is large, it becomes easier to process
large amounts of data at once! And if the hard drive is large, you can save and store a lot
of data.

Now, let’s talk about the second difference between the two. The CPU can read directly
from primary memory but not from the hard drive!

The CPU sends control signals to something called the hard disk interface located in
a piece of memory called the I/O space. It is this hard disk interface that then controls the
hard drive itself.

This might seem counterintuitive since we manipulate the data on the hard drive all the
time when using our computers. But really it works like in the picture above.

That is, your CPU only works directly with the address space, which your hard drive is
not part of!!

Aha. The only things that can interact with the CPU directly are the primary memory and
I/O devices. So that’s why you placed so much emphasis on the importance of primary
memory. . . .

The CPU cannot access memory
addresses on the hard drive directly!

Managed

I/O space

HDD
interface

Control
signal

118 C hapter 3 C PU Architecture

Then let’s talk about the third and final difference: hard drives are a lot slower than pri-
mary memory!

There are lots of different types of memory inside any computer, but by compar-
ing each of their relative storage sizes and speeds, you end up with something like this
pyramid.

That’s it. So, for example, registers have fast processing speeds but small memory sizes. A
good comparison might be a small, handy notepad.

Yeah. Anyway, I think I understand the difference between primary memory and hard
drives now. Even though they’re both memory devices, their uses are completely different.

But that’s why we can play to their strengths, when appropriate.

An interesting example is that today’s computers, especially laptops, have started
using solid state drives (SSDs) instead of mechanical hard disk drives (HDDs). SSDs store
all data using semiconductor memory technology. This makes SSDs much faster and more
resistant to shaking and other types of blunt force than mechanical disks.

Huh?! So memory close to the CPU is fast but small. As you get further away from the
CPU, it gradually grows larger but slower!

Reg-
isters

Cache
memory*

Primary memory

Disk cache*

Hard drive (Secondary memory)

* Cache memory is
used to temporarily

store frequently
used data. This makes
it easier to quickly

access data you
might want.

Memory storage size

Inside
the CPU

Slow
P
r
o

c
e
ss

in
g

 s
p
ee

d

Fast

All Kinds of Memory Devices  119

Okay, let’s talk a bit about address space (memory space) again. Do you remember what I
taught you before?

Yeah, no problem! It’s the dark space ruled by the CPU’s iron fist. . . . No, I mean . . . it’s the
space directly managed by the CPU, right?

Hmm? All the memory space outside of the CPU? That seems a bit convoluted. Are there
other types of memory in there other than primary memory?

Yes. This is important. The address space is actually divided into two parts: RAM (memory
you can read from and write to) and ROM (memory you can only read from). We say that
we have RAM space and ROM space inside our memory space.

Indeed. But to be more exact, address space comprises all the memory space outside of the
CPU that is controlled by the CPU.

RAM Space, ROM Space, and I/O Space

Type Address
Instruction

Instruction

Instruction

Instruction

Instruction

Data

Data

Data

Data

Just a little bit...

I/O space

ROM
space

RAM
space

Address space
(memory space)

120 C hapter 3 C PU Architecture

Huh? What’s this about rams and roms?! Okay, so RAM is our old friend the primary
memory, right? We can read from and write to it, and its data disappears if you turn off
the power. . . .

But what about ROM? So the data is intact even if you turn off the power and you
can only read from it, and this is somehow part of the memory space? Umm, what is it,
though?!

Yeah. We haven’t really talked about it yet, but there is ROM on something called the moth-
erboard inside the computer. This is where you can find the program the CPU runs when
you start your computer. This program that runs before any others is called the BIOS.

I see. So if it couldn’t run this program, the computer would just be a very expensive
box? That’s why the BIOS is put into a special part of read-only memory—so it won’t be
forgotten!

You can both read
from and write to it.
The data disappears
if you turn off the

power.

You can only read
from it. The data is
saved even if you

turn off the power.

What Is the BIOS?

The BIOS (Basic Input/Output System) is a program found
in ROM that the computer runs when you first turn it on.
The BIOS checks that all the devices in your computer
are in working order after you turn on the power. It also
launches your operating system from your hard disk.

Example: BIOS-ROMExample: Primary Memory

Whrr
r

The BIOS is the
first step.

All Kinds of Memory Devices  121

In addition to the RAM space and ROM space, there is also a very tiny space called the
I/O space.

Hoho! Go CPU! So that means that since external devices use the address space managed
by the CPU, they are also managed by the CPU, right? In any case, I think I get that there
are different types of spaces inside the address space!

I think I remember hearing you mention I/O earlier today. Ice cream and oreos . . . no . . .
input/output, right?

Yeah. The I/O ports live inside this I/O space. As I explained before, the CPU uses these I/O
ports to talk to external devices directly (such as keyboards and mice). This is why your
computer responds when you press a key on the keyboard.

* In some systems, the
I/O space is not part of

the address space.

Small

I/O space*

ROM space

RAM space

address
Space

Keyboard

I/O port

Address
space

CPU

122 C hapter 3 C PU Architecture

Interrupts Are Useful

Let’s wrap up today
by talking about

interrupts.

Interrupts...!
Gah. I suppose the

world is full
of unpleasant
interruptions.

But for computers,
interrupts are a...

Really! Useful!
feature!!

What do
you mean?

Imagine you’re
cooking

something.

But if your
phone rings, you
temporarily stop

cooking to answer it,
right?

Yeah, I
guess.

Just

remembering it!!

Rage

Whip!

What Are Interrupts?

What Are Interrupts?  123

While answering the
phone will interrupt
your previous task

(cooking)...

that might be a
good thing if the

call happens to be
important.

I see...
I guess

that’s true.

I don’t mind
interruptions if they’re

really important.

The call might be from a
senior I gave up my train

seat to who wants to give
me his enormous inheritance,

who knows?!

I’ve never seen
thoughts as optimistic
as this. She’s way past

delusional!!

Well, uh, I guess
what I want to say is
that interrupts are

really useful...

Since they let you
advance multiple
tasks efficiently.

Phone
call

Task B

Cooking

Task A

So even if your CPU
is busy with some

calculation...

it will still respond*
right away when you
move the mouse or
press keys on the

keyboard.

Ah! Yeah, I wouldn’t
want to be ignored
by my computer just
because it was doing
some calculations.

* We call the process of the computer
keeping pace with signals from

external devices synchronization.

Because of
interrupts...

The computer can
concentrate on

that previous task.

Let’s assume the CPU had
to monitor the keyboard

periodically to check whether
a key had been pressed...

If there were no interrupts... If there are interrupts...

Look! Doesn’t
that seem
wasteful?!

Whoa. There would
be a world of
difference in
productivity...

Someone
pressed a

button!

Oh!

There’s no
one here

you know...

Keyboard

Did someone
press a key?

Did someone
press a key?

Did someone
press a key?

Calculations
are going
slowly...

Also, after
the interrupt

is over...

It’s important that
the CPU is able to

easily return to the
previous calculation.

So it has to
save where

the program
counter was

and all the data
it was using
somewhere.

Hmm, yeah
that makes

sense.

It would be
pretty annoying if the
ingredients I was using
disappeared whenever I

was interrupted.

And I wouldn’t like
to forget where

I was, either.

That’s
right.

And that’s why...

I’d like to
explain

interrupts.

nex-

You’re going
to explain them

to me?!

Don’t interrupt me!!!

Number 77 and so on...

Just a small

reminder!

126 C hapter 3 C PU Architecture

The Stack and the Stack Pointer

Okay, let’s get right into it. As I said, to be able to return to the task it was doing before the
interrupt, the computer needs to take some memos before it starts a new task.

It uses something called the stack—a part of main memory reserved for bookkeeping—
to do this. The way it does this is pretty interesting—take a look.

Ooh, that’s a funny way to remember things! It’s kind of like a stack of books that you can
keep piling up, but if you want to take one out, you always have to take one from the top.
You can’t just take data from anywhere.

That’s exactly right. And a special register holds something called the stack pointer (SP for
short) that points to the last stack address we worked with.

I see. While the program counter keeps track of the address for the next instruction, the
stack pointer keeps track of the last address on the stack.

You push data
to add it to the

stack...

...And pop data
to remove it

from the stack.

But removes
in the reverse
order... 3, 2, 1

Stack

It saves
in order...

1, 2, 3

The address
that the

stack pointer
remembers

What Are Interrupts?  127

When using stacks, it’s important to use the stack pointer correctly. Because . . .

With just one interrupt, everything is fine. But if you keep adding interrupts one after
another, the stack will keep growing and eventually bad stuff will happen. . . .

Whoaaa! I’m not sure I’m getting what’s happening there.

When working with the CPU, interrupts can be really efficient. But if you don’t know how to
work with the stack, you’re bound to make a program that runs into problems like this. And
that’s all I have to say about that!!

So you were also like that once, right? You didn’t know how to work with the stack and
something happened right? I’m right, aren’t I?!

Fuhahahah! I’m just talking hypothetically!

Ah! Have you ever made one of your programs go out of control like this?

Bugs or even just frequent interrupts that the stack has no coping mechanisms for can
result in the stack pointer losing control over the program’s execution.

This usually means that the person or people who wrote the software didn’t properly
understand the implications of using a stack...

The data that is saved during an interrupt consists of the
accumulator, status registers, and the program counter.

Data from the
main process

Data from
interrupt B

Data

Data from
interrupt A

Stack
pointer

128 C hapter 3 C PU Architecture

Interrupt Priority

Ahem. Let’s try to refocus and talk a bit about interrupt priority.

Let’s once again assume that you were interrupted with a phone call while cooking.
Now let’s assume that you also hear the doorbell while on the phone. What would you do?

Eeeeh!? That’s just bad timing! I don’t think I could deal with that. I’d rather people would
stop interrupting me all the time. . . .

Heh heh heh. Yeah, I thought so. This is when interrupt masks are really useful! By using
an interrupt mask, you can avoid being interrupted at all. You know, like how you can hide
your face behind a mask.

Yeah, wearing a mask can stop all kinds of things!

But you can’t let your guard down. You can still be forcefully interrupted by some things,
even if you’re using a mask. We call these resets!

Resets are the interrupts with the absolute highest priority. They are special inter-
rupts that are not affected by masks.

Resets! The word does have a kind of “don’t argue with me” air about it. Just like when you
press the reset button on your game console, it returns to its initial state, right? It really
gives me this “let’s start over” vibe.

Ding
dong!

Interrupt B:
doorbell

Interrupt
A: phone

callMain task:
cooking

What Are Interrupts?  129

Yeah, that’s right. And whether it’s your computer or your console, both of them start at
their initial state when you turn on the power, right? That’s because when you turn on the
power, the first thing the system does is issue a reset.

Resets return programs to their initial state. Put another way, they return all the cir-
cuits to their initial state. Completely. This is why when we want the computer to wake up
nicely—that is, when we want it to start in a functional state—we have to issue a reset.

It seems interrupts have all sorts of uses.

There are also timer interrupts that issue an interrupt when they reach zero after counting
down using a decrementing counter. (Think 3, 2, 1, interrupt now!) Using these, it’s pos-
sible to execute programs at regularly timed intervals.

Ah! That timer interrupt gave me an idea! There is a program that runs every day at 7 am
that sounds a bell when I’m executing my sleep task. It’s issuing an interrupt right when I’m
snoozing away peacefully!!

Ah. That’s just your alarm clock.

There are also some interrupts of the highest priority that the CPU will not mask even
though these interrupts might not be resets.

We call these interrupt signals that go through masks non-maskable interrupts (NMI).
They can have many uses depending on the system architecture, and they’re really conve-
nient in some cases.

Oooh, it felt a bit scary when you said it was forceful, but I guess a bit of force is necessary.

130 C hapter 3 C PU Architecture

Okay, that’s enough
for today! Thanks!

By the way,
you’re still taking
good care of my

Shooting Star,
right?

It’s really
important

to me.

Shooting
star...?

Oh, that black laptop?
It’s fine.

I put it under
one of my best
shogi boards!

That has to be
one of the worst
places to put it!!

Don’t worry, I’m joking!
I put it in a safe place,
and I’ll give it back as
soon as you’re done
teaching me about

CPUs.

That’s okay then,
but you’re really...

…If you’re that
worried about
it, want to come
by tomorrow?

It’s not

a stand!

Like
this!

...wha-?
I mean, we went to that

fast-food joint the other
day and had cake today, so
we’re really consuming a

lot of calories!

And if we go out
every day, it’ll
get expensive!
Tomorrow is

Sunday, so if you
want to come by...

Very well.
I shall take
you up on

that offer.

But you’ll have to clean every
corner of your room before I
arrive!! Don’t think I shall miss
even a single mote of dust!!!

What do you think
you’ll be doing?!
You’re just coming
over to teach me.

That’s it!!

Are you
a maid??

Bam

132 C hapter 3 C PU Architecture

Memory Classifications

ROM stands for read-only memory and is a type of memory that will not lose its data
even if the power is turned off. As the name implies, you can only read from ROM. You
can’t write to it.

In contrast, with RAM, which stands for random access memory, you can read from
or write to any address in any order. You might think that ROM and RAM are opposites,
but that isn’t necessarily the case.

As you can see in the image above, the opposite of RAM is actually SAM (sequential
access memory), which was an older type of memory commonly found on magnetic tapes
and drums. As the name suggests, it could only read memory addresses in order. In addi-
tion, the opposite of ROM is the now defunct RWM (read-write memory).

Memory that retains its data even when the power is turned off and allows this
data to be accessed again when the power comes back on is called non-volatile memory.
Memory that loses its data when the power is turned off is called volatile memory.

These terms are no longer commonly used, however, and have largely been replaced
by RAM (instead of volatile memory) and ROM (instead of non-volatile memory).

I/O Ports and the GPU

If there were no connection between input/output devices and the CPU’s registers or
ALU, the CPU would be unable to accept external input. External input doesn’t only come
in the form of character input from the keyboard; it can be a mouse click or any electri-
cal signal. If we didn’t have some output, such as LEDs that light up when an operation is
complete or some other signal, it would be very hard for us to interact with any com-
puter. In the same way we need feedback, the internal data bus needs input and output
ports (I/O ports) to communicate with external devices such as memory and so on.

Can only be
accessed

sequentially

Can be accessed
randomly

Can only
read

Can read
and write

Memory

Clock Frequency and Degrees of Accuracy  133

The most commonly used output device is the computer display. This is an example
of a device that is not connected directly to the CPU. The display is instead connected to a
special IC called the GPU (graphics processing unit), which generates and outputs images
on demand. When the CPU needs to use the GPU, it has a special I/O port dedicated to
GPU communication.

Smaller systems sometimes don’t have a GPU but are still attached to a color LCD
(liquid crystal display). In these cases, the CPU communicates by sending any necessary
data through an I/O port to an LCD controller. This LCD controller and its driver then
output the image data to the display.

Clock Frequency and Degrees of Accuracy

Of course, you need electricity for the CPU to work. But you also need a clock frequency.
A clock is a signal that alternates between high and low voltage at regular intervals. The
clock frequency is how many times this signal alternates in one second.

The clock is like the heartbeat of the CPU. It is essential for updating the CPU’s
internal circuits, such as the latching of the data inside the ALU and the block* advancing
the program counter.

Clock frequency is measured in Hz (hertz), which is a measure of how many times
the clock cycles in one second. So, a clock running at 40 MHz would be cycling 40 million
times per second.

This clock speed is also a measure of the performance of the CPU. Everything that
the CPU does, like instruction decoding and ALU operations, it does in synchronization
with the clock. The CPU can execute one action per clock cycle, so the higher the clock
frequency, the higher the clock speed and the faster the execution speed of the CPU.

*  Block is a term used to denote the group of things needed to realize some function.

Display

No direct
connection

Keyboard
Exclusive
I/O port

Directly connected!

I/O port

134 C hapter 3 C PU Architecture

The degree to which the clock speed matches the clock frequency is called the
degree of accuracy. When using computers for communication applications, connecting
two devices with clock frequencies that do not match can cause timing problems.

Clock Generators

We call circuits that generate clock signals clock generators. Most CPUs have internal
clock generators, but it is also possible to connect externally generated clock signals
to a CPU. The different components inside the CPU that make up the clock generator—
including the crystal oscillator, capacitors, and resistors—all contribute to the accuracy
of a clock signal’s frequency. Some situations don’t require high accuracy, but if a CPU
must be synchronized with other devices to exchange data, for example, then the accu-
racy of the clock signal’s frequency is a high priority.

What Are Crystal Oscillators?

Crystal oscillators are made from small artificial crystal shards
that have been cut incredibly thin. If you attach two electrodes to
a shard and apply a voltage, the crystal warps. By fluctuating the
direction of the voltage, it is possible to create vibrations that give
rise to a stable frequency. Consequently, you can generate oscilla-
tions at very precise time intervals.

Crystal oscillators are used in many kinds of devices in which
precise time intervals need to be measured, such as computers,
phones, and watches. The quartz in a quartz watch is actually a
crystal oscillator.

By connecting clock generators to crystal oscillators and
condensers (electronic components that store and release electri-
cal charge), it’s possible to create an alternating signal.

We get a higher number of clock
cycles over the same amount of time!

Fast
clock
speed

Low voltage

High voltage

The flow of time

One clock
cycle

Slow
clock
speed

Timer Interrupts  135

To achieve a high degree of accuracy, you can use an external clock signal instead
of the clock signal from the CPU’s internal clock generator. External oscillators usually
provide higher quality clock signals than internal clock generators.

Timer Interrupts

By using the decrementing counter inside CPUs, we can initiate interrupts whenever the
timer reaches zero. We call this a timer interrupt.

Timer interrupt block

Amount to
count from

Multiplication
factor

Latch signal

Initial value
register

Select
register

Timer
interrupt

Decreasing
timer

A Countdown
3, 2, 1, 0

Timer basis
clockPrescaler

(frequency
divider)

Lowers the
frequency

Master
clock

It is also possible to use the CPU’s base clock (or master clock) with a frequency
divider.* Dividing the CPU’s base clock with a frequency divider allows you to increase
the time required for a countdown timer to count to zero. Indeed, you can change the
amount of time required for the timer to count down to zero from several seconds to
several hundred seconds.

It is then possible to execute some program at given intervals by setting the initial
value of the countdown timer to some value (for example, 100). To change the interrupt
frequency, all you need to do is tell the CPU to rewrite the register where the “value to
count down from” is stored. Changing this value from 100 to 50, for example, would
double the interrupt frequency.

You can set a countdown timer to run even while other programs are running, and
it will issue an interrupt when it has counted down to zero. There are many uses for this.
For example, you can turn a light on and off at fixed intervals. Timer interrupts are more
effective than other methods for doing this because they save valuable CPU time.

*  Frequency dividers change the period by lowering the frequency.

136 C hapter 3 C PU Architecture

How to Use Timer Interrupts

To use a timer interrupt, you must first configure it by writing a value into its
control register. The value written to this register determines the clock source,
whether the clock frequency is to be divided before counting and by how much,
and other timer behavior.

Next, we write the initial value into the counter and set the timer to start on
the reset signal. After it has started, the timer will interrupt the CPU every time it
counts down to zero.

We then rig the timer to start on the reset signal (see the next page) and to
cancel if commanded by the CPU to do so. After it has started, an interrupt signal
will be sent from the timer block to the CPU control circuit every (master clock
cycle) × (multiplication factor) × (value to count from) units of time.

Finally, let’s examine the timer interrupt component present in classic CPU architec-
tures, which can be seen in the image below. INT here is the signal that the CPU uses to
send instructions to the timer interrupt block. RESET (timer reset) is the signal used to
start the timer.

If you were to leave the reset input in an active state, the timer would stop and
never start. If you then were to clear the timer reset, it would start counting down again
and eventually issue an interrupt. After this, it would count down from the set value on
every cycle of the multiplied master clock frequency, issuing an interrupt signal when it
reached zero.

When it reached zero, it would once again latch to the value stored in the “value to
count from” register and start over. By doing this over and over again, the component is
able to produce interrupts at fixed intervals indefinitely.

Reset Signals

To reset means to set programs and internal circuits to their initial state. The program
counter is set to zero, and temporary operational data is cleared. A reset signal is issued
every time you start your computer. This is extremely important as it makes sure that
any programs you run after the start-up process work correctly.

Let’s take a closer look at the reset process. The reset signal is raised by setting an
active state after a low voltage state. After you turn on the power, the voltage will fluctu-
ate a bit before finally settling down at a stable level. If the CPU were active during this
period, all kinds of problems would result. This is why the reset signal is constantly active

Timer
interrupt
control

CPU Performance Is Measured in FLOPS  137

during this period, making the CPU unable to process anything. In other words, we pro-
tect the CPU by maintaining the reset state until the voltage has stabilized. Then, when
the voltage has stabilized, we release the reset signal by raising the voltage.

If, for example, the CPU were to start acting in an unexpected manner, it is possible
to initiate a forced reset by lowering the voltage below the necessary level (and therefore
enabling the reset) and setting all programs and circuits to their initial state. Resets are
an essential function needed to ensure that the computer will work as we expect it to.

CPU Performance Is Measured in FLOPS

CPU performance is determined by the CPU clock speed and its operation execution speed.
The clock speed tells us how often the logic circuits in the ALU can perform calculations.
And the operation execution speed tells us how quickly the CPU can perform calculations
one after another.

Older CPU ALU blocks worked only with integer arithmetic. Back then, the CPU’s
performance was measured by how many instructions it could handle in one second, or
its MIPS (million instructions per second) value, rather than by how quickly it could per-
form calculation operations. As its name suggests, MIPS indicated how many millions of
instructions the CPU could handle in one second.

These older CPUs were, of course, also able to work with floating-point values, but
modern CPUs have specialized integrated hardware for just this purpose. This is why
in more recent years the preferred measure of performance has become how many
floating-point operations the CPU can handle in one second, or MFLOPS (million floating-
point operations per second). Once again, as its name suggests, this value indicates how
many millions of floating-point operations with 15 significant digits the CPU can handle
in one second.

It has stabilized,
so we can release

the reset.

The voltage is
unstable, so we keep

the reset active.

Reset
input

Stable

Power
voltage

Vo
lt

a
g

e

The state of the reset signal and
voltage changes over time

138 C hapter 3 C PU Architecture

We sometimes use units other than MFLOPS, such as GFLOPS (gigaFLOPS) and
TFLOPS (teraFLOPS). One GFLOPS is the processing of a billion floating-point operations
with 15 significant digits in one second. One TFLOPS is the ability to process a whopping
trillion floating-point operations with 15 significant digits in one second.

Kyaa~~~~!

I’m so

embarrassed...

You can see the
performance of a
CPU by looking at
its FLOPS value!

4

Operations

140 C hapter 4 O perations

Thank you.

Welcome!
Please

come in.

Aah... Yuu is in my house...

what am I saying?! Why
am I even nervous?!!

Hmm...

Everything seems
pretty clean. I was
expecting it to be a

lot messier...

I was hoping...

What are you
upset about?!

wham

wham

My
wonderful
cleaning

plan...

Types of Operations

Types of Operations  141

I can’t have you
looking down

on me.

The best shogi players
keep things tidy! A well-

ordered space is essential
for a well-ordered mind.

I’m also really...

Hey mom!
Sis brought a

boy home!

Really? No wonder
she spent all

night cleaning!

There’s a
first time for

everything.

Keeping your presence of
mind in difficult situations
is what makes a strong

shogi player, too!!

Uh, I guess
congratulations
are in order for
a night’s work

well done...

142 

There Are Many
Types of Instructions

Okay, today
we’re going

to talk about
instructions.

Oh, I remember
we talked about

instructions
before. These
ones, right?

Programming
instructions are really
just strings of 1s and
0s, sometimes called

machine language.

Depending on the
type of instruction,
the length of the

instruction (how many
bytes long it is) and the

number of operands
might change.

CPUs only understand
machine language.

Uh-huh...

So there are lots
of different kinds
of instructions,

right?

I understand
this!

The value
or address

to use

Operand

instruction

Opcode

Jump

Store
Compare

types of opcodes

operand

...to something

Instruction code
(opcode)

Do something...

That’s right! I’ve
categorized

different types of
instructions here

in this table. 1.	 Arithmetic instructions

2.	 Logic instructions

3.	 Bit shift instructions

1.	 Data transfer instructions

2.	 Input and output instructions

3.	 Branching instructions

4.	 Conditionals (comparison
instructions and so on)

I’ll be going
through these in

order today.

Wow, there are
that many...?

Well, you’ve already
learned a lot, so
I wouldn’t be that

worried.

If you understand
these instructions,
then you’ll know
what is happening

inside the CPU.

I see...

Then give me a detailed
explanation of all these

instructions in under
three seconds!!

Don’t give me
impossible

instructions
like that!!!

Instructions that don’t
deal with calculations

Instructions that deal
with calculations

Instruction Types

144 C hapter 4 O perations

Instructions for Arithmetic
and Logic Operations

Let’s start with
these two.

Do you
understand what I mean
by arithmetic operation

and logic operation
instructions?

Things like addition
are arithmetic, and

things like “AND” are
logic, right?

So, it’s basically what
type of instruction

they are!

Yeah, but to get a deep
understanding of these

things, we really need to
look at what’s happening

inside the ALU...

But let’s leave that
piece of fun for later
and continue with the
other instructions.

What Are Bit Shifts?

Logic
operations

AND (logic intersection)

OR (logic union)

NOT (logic negation)

Arithmetic
operations

PLUS (Addition)

MINUS
(Subtraction)

Types of Operations  145

What Are Bit Shifts?

So, next up are bit
shift operations?

Well, I guess it has
something to do with
moving bits, but other

than that...

Yeah, that’s right.
Look at the next

figure.

Logical right shift (Using two bits)

remove the bits
on the right...

and add 0s
to the left.

We move the rest of
the bits two places

to the right!

As you can see, bit shifting
moves the bits left or right

all at once!

Ooh!! Just like you said,
they all moved! They were

shifted together.

This operation is
performed in the accumulator,
the register where operational
results are temporarily stored.

(Bit shift functionality
resides in the accumulator.)

Bit shift
function-

ality

Accumulator

146 C hapter 4 O perations

Hmm, but...
what do you use

shifts for?

Heh, well, there are
several uses.

One that’s fairly easy
to understand is that they’re

used to perform certain
division and multiplication

operations quickly.

Division?
Multiplication?

What do you mean?

That last example
involved a right

shift using
two bits.

The result is
actually equal to 100/4

(100 divided by 22) of
the original value!

Left shifting a binary number
by N bits is equal to multiplying

that number by 2N.

This really is
useful! But this is
only possible in

binary, right?

Right shifting a binary number
by N bits is equal to dividing

that number by 2N.

Right shift by
two bits

Decimal

(100/4)

Decimal

(Binary)

Types of Operations  147

The Sign Bit Lets Us Express
Negative Binary Numbers

Uhh . . . I can see how 011 would make +3 just by thinking in simple binary. But why does
101 equal –3? That doesn’t make any sense.

Remember complements? When expressing negative numbers in binary, we use the two’s
complement.

Oh, now I see it! So to express the negative value of 3 (011), we get 101. With the impor-
tant part being the sign bit to the far left.

Before I explain bit shifts more, I want to talk briefly about sign bits.

Sign bits . . . ? What are those?

In a binary number, the sign bit is the bit to the far left, and it tells us if the number is
positive or negative. If the left digit is 0, the number is positive, and if it’s 1, the number is
negative.

Look at the image below. The most significant bit, which is the leftmost bit, is the sign
bit. The sign bit, along with the rest of the bits, determines what numerical value is being
represented.

represents −3

represents +3

Sign bit

Examples

Number

Sign bit

Add 1.

Flip all
the bits!

(0 means positive,
and 1 means negative)

148 C hapter 4 O perations

Yes. Using three bits without a bit sign, we could express eight different numbers from 0 to
7, but using three bits including one sign bit, the range changes to –4 to 3. We still get eight
numbers though, as shown in the table below.

Doesn’t that mean that if I have some binary number—say 101—I could interpret that
number as -3 if I assumed it was signed or as 5 if I assumed it was not signed?

They look the same, but the expressed values are completely different. . . . That’s just
confusing, don’t you think?! What were they thinking??

Ah, it’s true that humans wouldn’t be able to tell the difference. Computers, however, have
dedicated systems that keep track of this.* So don’t worry about it!

* Programs have a flag that changes depending on the calculation’s result to track changes to the sign. If
the program monitors this flag, it’s possible to tell whether any unforeseen changes occur to the sign of a
number. Not all CPUs support this feature, though, and if the CPU doesn’t, it’s up to the program to keep
track of the sign bit.

Signed three-bit numbers

Sign bit

Two’s
 complement

Number

Types of Operations  149

Logical Shifts and Arithmetic Shifts

Now let’s return to bit shifts. There are two types, logical shifts and arithmetic shifts.
Essentially, the difference is whether we are using the sign bit we talked about before.

Oho! So logical shifts don’t have sign bits, but the arithmetic shifts do. I see where this is
going.

The outcome of a logic operation is always either true or false, right? That means that
concepts like sign bits or negative numbers wouldn’t exist. But since arithmetic operations
deal with adding and subtracting numbers, those concepts would be necessary.

Mm, yes! That is an astute observation—you are correct.

Logical shifts are very simple, and we’ve already talked about them. Arithmetic shifts,
on the other hand, are a bit tricky.

Has sign bit

Arithmetic shift

No sign bit

Logical shift

Shift
operation

Should we fill in the blanks with 1s or 0s?

150 C hapter 4 O perations

Look at the next figure. When performing arithmetic shifts, we fill in the blank spaces with
1s if the sign bit is 1 and with 0s if the sign bit is 0. You have to pay attention to the sign
bit, essentially.

Ohh! With logical shifts, you could just fill the blank spaces with 0s without a second
thought, but with arithmetic shifts, you have to keep the sign bit in mind.

There is another really important thing, though. Please look at the next image. We shift a
positive number (the sign bit is 0) to the left and . . . whoa! A 1 from the number value bits
might end up becoming the most significant bit.

Oh my . . . that can’t be good. It would look like the number turned negative all of a sudden
(since the sign bit is 1).

Yeah. While the operation was only supposed to multiply the value 2N, it ended up flipping
the sign bit instead. We call this overflow, just like how water can overflow from a cup if
you pour too much in. When this happens, it means that the calculation result used more
digits than it was allowed and therefore “overflowed.”

Fill in with 1s

When shifting
two bits to
the right

Negative value

Lost

Sign
bit

Fill in with 0

When shifting
one bit to
the right

Positive value

Lost

Sign
bit

Arithmetic right shift

Types of Operations  151

A serious state of affairs, for sure! I guess this is an error? It’s not like you can pretend it
didn’t happen . . . and you couldn’t continue the calculation like this.

Mhm. When overflow occurs, the overflow flag (overflow bit) of the status register is set.
It makes sure to remember that an overflow occurred as a result of a calculation.

Hah! So another register is in charge of taking notes about any grave errors that might
occur in the accumulator register. This way they won’t be missed!

Take note! Not all CPUs are
guaranteed to have this feature.

Overflow and Underflow

Calculations using floating-point numbers (as opposed to the integer operations we’ve been
talking about) can both overflow and underflow if the algorithm (the method of calculation) used
produces a result that falls outside of the acceptable range of values.

For example, if the result of some calculation is a value that is so close to zero that it cannot
accurately be expressed using the available bits (think 0.00000000000 . . . 1), it would generate
an underflow.

The bit on the far left changed!
(Overflow)

Fill in with 0s

When shifting
three bits to

the left

Sign
bit

Arithmetic left shift

152 C hapter 4 O perations

Circular Shifts (Rotating Shifts)

Before we move on to the next subject, I would like to talk a bit about circular shifts
(rotating shifts), which are important in cryptography.

The easiest way to think about it is as if the edges of the bit sequence in the accumu-
lator were glued together into a wheel that can rotate freely.

Oh. It’s like we stuck the two edges of the tape together. Spinnn!

Applying circular shifts has the following effect. Remember that the left edge (most signifi-
cant bit) and the right edge (least significant bit) are connected.

Data Transfer
Operations

Rotates!

Right edge
(least significant bit)

Left edge
(most significant bit)

When shifting
three bits to

the right

...Appear on
the left!

The bits at the
right edge...

…appear on
the right!

When shifting
four bits to

the left

The bits at
the left
edge...

Circular shift

Types of Operations  153

Data Transfer
Operations

Okay, let’s talk
a bit about some
instructions that

aren’t calculations.

Just what I was
hoping for!

First off, we have
the data transfer

instruction. As you might
guess, it’s an instruction

that deals with the
transfer of data.

I know this!

They’re the
instructions used when
the CPU registers read

and write data from
memory, right?

CPU
(registers)

Read

Write

Memory

Register A Register B

Yeah, but that’s not all.
They’re also used to

transfer data between
registers in the CPU.

154

Input/Output
Instructions

Next up are
input/output
instructions.

These instructions are used
when the CPU exchanges data*

with external devices
(I/O devices and so on).

Umm... I/O ports are
used when working
with input and output

data, right?

Yeah, You
remembered!

Wellll, if you have my
input capabilities, you
don’t forget anything

you’ve learned...

Riiiiight...
let’s move on to the

next instruction!
* There are two types of data transfer methods.

See page 185 for more information.

Branch
Instructions

External
devices

I/O port

Input and
output data

CPU

Ignores

Jump!

Next, we’ll talk
about the jump

branch instruction.*

Aah, I remember us
talking about jumping

before.

Basically, if necessary,
the program can jump to
the address of the next

instruction to be executed.

Yeah, even though we might
be executing address

number 7...

the next instruction to be
executed might well be instruction
number 15 or instruction number 3,

just like in this figure.

I suppose that means we can
control program flow by
using branch instructions.* There are cases in which we discriminate between

branch instructions and jump instructions.

Branch
Instructions

The address
to jump to!

Hop

Jump

Jump

15

9

8

7

3

direction
the program
counter is

moving

The address
location

containing
the currently

executing
instruction

So... I guess it’s one
small step for man,
one giant leap for
computers! Right?

It’s also worth
noting that some jumps

are unconditional,
while others require

that certain conditions
be met.

I see! There are dolphins that
jump whenever they feel like it,
while other dolphins jump only

when there’s food!

It all makes sense!!

Sure...
whatever helps
you remember...

Branch
instructions

Unconditional
jump

Conditional
jump

that’s an
orca, by
the way.

Types of Operations  157

Branch Instructions, Jump Instructions, and Skip Instructions

Ohh! So they’re different in terms of the distance moved. Pretty cool.

There are also other program control instructions, such as STOP and SLEEP instructions.

When it comes to branch instructions, there is unfortunately no standard terminology.
Depending on the CPU maker, the instructions might be known as branches, jumps, or even
skips. But lately, it’s become popular to differentiate among them in the following way.

The differences
among the three

1.	 Branch instructions branch to
addresses not far from the
execution site.

2.	 Jump instructions jump to
addresses farther away from
the execution site than branch
instructions do.

3.	 Skip instructions can either skip
or not skip the next instruction
to be executed.

Different CPUs Use Different Terminology

If you look at the mnemonic tables of CPUs from companies like Intel (the i8080) and Zilog (the
Z80) at the dawn of the 8-bit CPU, you can’t even find the word branch mentioned. If you instead
look at the single-chip 16-bit TMS9900 CPUs made by Texas Instruments (TI) in 1974, jump was
used for short branch operations, while branch was used solely for branch operations concerning
registers. Then, the ATMega series CPUs made by Atmel, which are part of the Arduino micro-
controllers, use jump for changing the current execution address unconditionally, but they also
have skips and branch instructions that relate to the currently executing address.

Jump

Skip

Branch

Branch

Jump

Direction
the program
counter is

moving

address
containing

the currently
executing

instruction

158 C hapter 4 O perations

Condition Evaluation and
Status Flags

Finally, let’s talk a
bit about condition

evaluation (comparison
and other instructions).

A good way to
think about it is to
consider the ATM
example again.

Ah, such cold-hearted
judgement! To have your fate

decided by a comparison
between the values of

your account balance and
the amount you want to

withdraw...

I suppose. In this case,
two instances of data
were evaluated using a
comparison instruction
that has some kind of

condition.

Data A

Data B

Is data A bigger?
What’s it going

to be?

Compares

them and

decides!

Ughhh. And what a
callous decision

it is...

(See page 26.)

 e operation result
was positive.

The operation result
was negative.

Please take
your money.

Insufficient balance

Ack...

CPU

Types of Operations  159

Now, I want
you to pay

attention to...

The status flag*
that is used when

evaluating whether
a condition is met.

Status flag...
Didn’t we talk about

status output before?
Wasn’t that some value that
indicated the state of some

operational result, Like
whether it was positive and

stuff like that?

Yeah. The purpose of the
status flag is to record

information like that.

* Also called a status bit

It signals the result of a
calculation using either a

zero or a one.

Set (1) Reset (0)

Hmm. So a flag is set
whenever a condition

is evaluated to be
negative?

Positive
value

Status output
Command input
substraction

Example:

The result of the
calculation is

positive!

The flag is not up...

The result of the
calculation is

negative!

The flag is up!

160 C hapter 4 O perations

There are actually
many types of flags, each
of them raised (set to 1) if
some particular condition
associated with the flag

evaluates to true.

Decisions are made in
accordance with either a

single flag state or some
combination of several

flag states.

So we can look
at single flags or

combinations of flags
to decide what to do,
depending on whether

some condition
is met.

In addition to these, we introduce some
other common flags on page 187.

A status register is
simply the 8-bit or

16-bit combination of
a lot of these flags
(each of them one bit).

Ooh, status registers!
They’re like hardworking
detectives, each of them
remembering different
information about an

operator!!

Who are you
supposed

to be?

Set when the
calculation results

in a carried digit

Carry flag

Set when the result
of a calculation is

negative

Sign flag

They are either
1 or 0.

Sign
flag

Carry
flag

Every bit stores
different status flags

Status registers

Types of Operations  161

Putting Branches and Condition Evaluation Together

Okay, we’ve learned about branch instructions and condition evaluation, but we can get
some truly useful instructions by putting the two together.

One example is the jump on minus instruction. It simply states that the program
should jump to some address if the value in the accumulator is negative.

Yeah, we can also make other combinations of instructions like conditional jumps,
conditional skips, and conditional branches. Thanks to these, we can do some really
useful things.

Whoa! This seems absolutely essential not only for computers but also for any electrical
application really!

So basically, jump to this address if these conditions are all met!

Or, put another way, the program is able to change its execution depending on some
condition.

Some things we can do using conditional jumps
and other instructions

1.	 We can run a different program depending on some condition.

2.	 We can decide not to run a program (skipping it) depending on some
condition.

3.	 We can set and reset bits on output ports depending on some condition.

For example, we could control a lamp by setting or resetting some I/O
port value to turn the lamp on and off.

Jump to some
address

Branch (jump)

When
negative...

Condition

162 C hapter 4 O perations

How Many Operands
Do We Have?

It seems you
understand the

different instructions
we’ve talked about.

So let’s move on
to learning about
operands next!!

Operands...
Oper-Operation?
As in surgery?

I’ll just pretend
I didn’t see that
cosplay, okay...?

Says the one who
was cosplaying as
a detective just a

minute ago!!

Let’s see. Operands
are the data and

addresses used as
the target of an
operation, right?

But they can
also be registers,

if I remember
correctly.

The number of
operands also

depends on the type
of instruction we’re
dealing with. Look at

the next figure.

Operand

Type of
instruction

Opcode

Operand Types

The target
data or

address of an
operation

Opcode
Two operands

Add a and b

In this example,
it seems the ADD
operation needs
two operands.

Is that correct?

Yeah. And the ADD here
is actually something
called a mnemonic,*
the human-readable
representation of

the opcode.

All instructions have
either zero, one, or
two operands. This
instruction happens

to have two.

Huh? How could
an instruction have
no operands?! That
seems completely

pointless!

* In English, Mnemonics are mental tools that help with remembering things.

Heh. Well opcodes
that have no

operands do exist.

For example...
The set accumulator to 1 opcode!!

an instruction that sets all the bits
in the accumulator to one

set Accumulator to 1

Whoaaa! You’re
right, that wouldn’t
have any operands!

Accumulator Ta da!!

164 C hapter 4 O perations

A lot of operations with zero
or one operands simply work
on what’s in the accumulator

register at that time.

I see!
The accumulator is

a popular guy!

Also, for two-operand
operations where
both operands are

addresses...

we call the first
operand the source

operand and the second
the destination operand.

So their roles are
decided already.

Source
operand

Destination
operand

Opcode First Second

Operands Take Many Forms

As you can tell from the names,
operations like this use the data in the source

operand to affect data in the destination operand.

Operand Types  165

Operands Take Many Forms

Let’s finally
approach the
core subject

here...

Different kinds of operands

•	 Immediate value processing

•	 Address reference

Addressing mode

(how we point to addresses and operands)

1.	 Absolute
addressing

2.	 Relative addressing

Look at this! There
are lots of different

operands, too!

3.	 Indirect addressing

4.	 Address
modification

Ah... so many! Especially the
addressing modes! Why are

there so many types?!

Don’t worry.
I’ll explain them

one by one.

Come! It’s time to
operate with operands!

I’ve deduced
that...

You’re really
enjoying that

costume.

Smack!

166 C hapter 4 O perations

Immediate Value Processing

Let’s start with immediate values.

The word immediate here means that the value will be used right away, just as it is.
In other words, the operand itself is a value.

You’re right! So I guess this would mean, “Add two to the value in the accumulator.”

And this example shows a two-bit arithmetic left shift. Immediate value operands can be
used with many different operations—for example, arithmetic operations, shift operations,
and logic operations.

In the end, it’s just a concrete value though, right? I learned about immediate values
immediately!

Immediate
operand

Immediate
noodles

Immediate value
operand

Mnemonic
“Add”

Immediate
value

operand
Left

Shift
Arithmetic

Just as it is right now!

Operand Types  167

Yeah, in that case, it would turn out like this.

I guess address references have to be operands that are addresses, like address number 1
or number 2. . . .

Address References

Yeah. Either internal* or external memory addresses, to be exact. The operation will grab
the data on the address in question and use it.

Hmm, so for example, I could instruct the CPU to get the data on address 1 and address 2,
add them, and store the result on address 3—right?

That’s right. The accumulator even has its own mnemonic: A. The mnemonic LDA means
LoaD to Accumulator, while STA means STore Accumulator.

Oh! So is it important that calculations are always done in the accumulator then?

* If you look at the architectural diagram on page 106, you can see that classic CPUs had internal RAM.
These were also referenced using memory addresses.

LDA Address 1	 Read the data on address 1 and store it in the accumulator.
ADD Address 2	 Add the data on address 2 to the accumulator.
STA Address 3	 Store the value in the accumulator to address 3.

Store

Add

Memory

ReadoutAccumulator

168 C hapter 4 O perations

What Are Addressing Modes?

Okay! Let’s talk a bit
about addressing

modes next!

Japanese
plum

dressing is
my favorite...

Yes, yes! On
salad it can’t—

What? No, that’s
completely

wrong!

Addressing modes are
all about different

ways of referencing
addresses!!

Here are the ones we
listed before.

Hmm...

Addressing modes

1.	 Absolute addressing

2.	 Relative addressing

Four different addressing
modes seems a bit excessive.

I mean, how would you
reference an address in any
way other than just saying,

“it’s on number five”?

3.	 Indirect addressing

4.	 Address modification
Why would another way

be necessary?

Operand Types  169

Sure, it certainly would be
easier to say, “it’s on five,”
and have the data always be

in number five.

This is what we
call absolute
addressing.

Number
five

Data

Yeah, yeah! That’s
the only thing that

makes common
sense, right?

Effective
address Data

By the way... we call the
address that actually

contains the data we’re after
the effective address.

In this case, that
would be address

number five.

Yeah,
it would.

Let’s look at
some of the

other methods.

Huh

170 C hapter 4 O perations

Let’s say we pointed
out number two, and
when we opened it...

we found our
data was at
number five!

Number
two

Data

A reference
to number

five (address
number five).

This is what we would call
indirect addressing.

Whaaat? Why
would you ever

do something so
unnecessarily
complicated...

Ha! It’s like finding a long-lost
will or searching for hidden

treasure! Only the ones who are
tenacious enough to make it to

the end can get the prize.

Calm down.

There are some merits to
indirect addressing. If, for
example, you tried to direct

address an address with
a very long number like

“address number 9999...9”...
Opcode operand

The number of bits reserved for the
operand is limited, and we can’t have

arbitrarily long numbers!

The number would
require more bits than
we have available for
the operand, and that
wouldn’t work, right?

Loooo ng...

Nope!

171

Oh, I see!

But if we used indirect
addressing, we could first
go to a closer address

number that would require
fewer bits and fit in the

operand.

Some
opcode

Limited!

Usable
addressing

mode

And depending on
the opcode, some
addressing modes

might not be allowed.

Wow, some opcode
can’t work with

certain addressing
modes.

Amazing!

One reason why CPUs
can execute complex
programs is that they
have so many different

addressing modes.

And a genius programmer
like me, of course, knows

all of them intimately...
I suppose they might be a
bit too hard to grasp for

someone like you.

I-I never said I thought
they were hard! I’ll get

them right away. You
just have to explain

them first!

In that case, let’s tackle
all the addressing modes

in one go.

172 C hapter 4 O perations

Addressing Mode Overview

Modern CPUs can address memory in several different ways, which we call addressing
modes.

Absolute Addressing

Absolute addressing is when the operand’s value is used as the effective address (the
address where the operation’s target data is located). It is also sometimes called direct
addressing.

Depending on the CPU, there are cases where the size of the opcode makes it so
the CPU can’t address the entire address space. It’s possible to lengthen the operand size
if need be, however. In 16-bit CPUs, it’s common practice to store the opcode and the
operand in 16 bits (2 bytes), but if the operand is lengthened, the instruction could end
up being 4 bytes, or even 8.

Addressing modes

1.	 Absolute addressing

2.	 Relative addressing

3.	 Indirect addressing

4.	 Address modification

Data

MemoryAddress

Operand

Instruction

Hmm
m...

Operand Types  173

Relative Addressing

Relative addressing is when the effective address is the result of the sum of the operand
value and the program counter.

Relative addressing is most commonly used for jump instructions. Since the distance
to the address we want to point out is limited by the range expressed by the two’s comple-
ment of the number of bits available in the operand, relative addressing is best used for
conditional branching instructions in the program and is not recommended for any larger
jumps in the address space.

The base value for an operation that uses relative addresses is the current value of
the program counter, or PC. As soon as the PC has read an opcode, it immediately starts
pointing to the next opcode to be processed.

Also, besides using the program counter as the base value for the relative address,
we can use the address in a register instead. We call addresses like these xx-register
relative addresses.

Data

MemoryAddress

Added!

Program
counter

Operand

Instruction

174 C hapter 4 O perations

Indirect Addressing

Indirect addressing is used when the operand contains the address to some register and
that register, in turn, contains the effective address for our target data.

The best way to think about indirect addresses (and the address modification mode
coming up next) is their close relationship with arrays in the programming language C.
When working with arrays, you generally use the effective address as a starting point
and add or subtract some offset values to or from it, ending up with a new address in
the end. This process is what we call address modification.

It was a bit difficult, but I
think I got everything!

I suppose after this, I’m
also an address master!

Or admas for short!

Why would you
shorten that?!

Data

Register

instruction

Operand

Operand Types  175

Address Modification

Address modification is the process of using the value stored in a modification register
to modify a number or address. We get the effective address by adding the value in the
modification register to a base value, which may be stored in another register or in the
program counter or even in an immediate value.

One of the most commonly used modification registers is the index register. We
usually call the register containing the value we want to use as a base the base register.
Most CPUs create the effective address in this case by simply adding the value in the
base register and the value in the modification register (the index register, for example)
together.

By using address modification in this way, you can achieve very practical effects. For
example, you could extract some particular data from a set by specifying the offset in
the index register and the start of the data set in a base register.

instruction

Data

Modifi-
cationBase

Only add the
value in the
modification

register!

Address

Added!

Base register

Modification
register

Indirectly
referenced

address

Comes with
the option to

modify the value
in the operand

Modification
register

Operand

176 

A Look Inside the ALU

We’ve finally arrived
at today’s high point!
It’s the thing you’ve
been waiting for...

Let’s go into
fun-time mode!!

…huh? I wasn’t
waiting for

anything.

So cold!

remember, to
understand arithmetic
operation instructions
and logic operation

instructions, you
have to...

Aah! Right,
we were talking

about the ALU!

Yep! I’m going to use this
4-bit ALU IC as an example.

Its name is 74S181.*

But it’s sometimes
called a bit slice.

A 74S181, made by
Texas Instruments

* The TI microcontroller we talked about on page 157 used four of these 74S181 circuits.
They were used in many high-speed calculation computers—for example, in aircraft

simulators and the like. The 74S181 circuit was eventually simplified into the 74S381 circuit.

Arithmetic
Logic Unit

The Structure of Operations in the ALU

The Structure of Operations in the ALU   177

Hmm...? So even
one of these ICs

is capable of
both arithmetic

operations and logic
operations? That’s
pretty impressive!

Isn’t it, though?
If you look at this

diagram, you can see
the entire pin layout.

You choose arithmetic
or logic operations
using the mode pin,

and you use the select
pins to determine which

operation to do.

I see. So, for example,
if I hooked up the IC to an

air conditioner, the mode pin
would let me choose if I
wanted hot or cold air.

Excellent! Let’s finish
up today’s lesson
by having a look at
the architecture

(circuit diagram) and
the function table

of the 74S181 IC.

Output (4 bits)

(Each 4 bits)

Input B

Input A

Mode pin

Carry
input

Four
select

pins

178 C hapter 4 O perations

Whaa! It’s really complicated, but I can see the four-bit inputs A and B clearly. I also see the
select pins S0 through S3 and the mode pin M.

Yeah, that’s right. The carry is also there, denoted by Cn.

Basic Circuit Architecture of the 74S181
Referenced from a Texas Instruments data sheet (partially revised)

Carry

Mode pin

(Each 4 bits)

Input B

Input A

Select
pins

The Structure of Operations in the ALU   179

The most important parts of the 74S181 function table are marked with gray.

First off, M is the mode pin, H stands for high, and L stands for low. When M = H, we are
using logic operations. If M = L, arithmetic operations are being used instead.

Arithmetic operations then further differ depending on whether we have a carry or
not. If C

n
 = H, that means we do not have a carry, and if C

n
 = L, we do have a carry.

And S is the four select pins, right? Depending on the combination, we have 16 (24) differ-
ent operations to choose from!

74S181 Function Table

For more information on the symbols used in these formulas, please see pages 55–59. PLUS and
MINUS are exactly what they seem. The symbols +, −, and ⊕ are symbols used in Boolean algebra
(logical algebra).

There are also some redundant or unnecessary operations in the diagram, as you might see.

Selection
Active-High Data

M = H
Logic operations

M = L; Arithmetic Operations

S3 S2 S1 S0 Cn = H (no carry) Cn = L (with carry)

L L L L F = A F = A F = A plus 1

L L L H F = A + B F = A + B F = (A + B) plus 1

L L H L F = AB F = A + B F = (A + B) plus 1

L L H H F = 0 F = minus 1 (2’s compl) F = ZERO

L H L L F = AB F = A plus AB F = A plus AB plus 1

L H L H F = B F = (A + B) plus AB F = (A + B) plus AB plus 1

L H H L F = A ⊕ B F = A minus B minus 1 F = A minus B

L H H H F = AB F = AB minus 1 F = AB

H L L L F = A + B F = A plus AB F = A plus AB plus 1

H L L H F = A ⊕ B F = A plus B F = A plus B plus 1

H L H L F = B F = (A + B) plus AB F = (A + B) plus AB plus 1

H L H H F = AB F = AB minus 1 F = AB

H H L L F = 1 F = A plus A* F = A plus A plus 1

H H L H F = A + B F = (A + B) plus A F = (A + B) plus A plus 1

H H H L F = A + B F = (A + B) plus A F = (A + B) plus A plus 1

H H H H F = A F = A minus 1 F = A

* Each bit is shifted to the more significant position.

180 C hapter 4 O perations

Now let’s take a closer look at the opcodes in the function table. For convenience, let’s
assign a number to each of the opcodes: 0–15, or 16 in total. Of course these numbers may
not be the same for other CPUs.

I’ll explain the ones with gray backgrounds in detail.

Important Arithmetic Operation Instructions

Opcode 6

No carry: The calculation result F is the difference between A and B minus 1.
With carry: The calculation result F is the difference between A and B.

Opcode 9

No carry: The calculation result F is the sum of A and B.
With carry: The calculation result F is the sum of A and B plus 1.

Arithmetic Operations
Logic Operations

No Carry With Carry

0 F = A F = A plus 1 0 F = A

1 F = A + B F = (A + B) plus 1 1 F = A + B

2 F = A + B F = (A + B) plus 1 2 F = AB

3 F = minus 1 (2’s compl) F = ZERO 3 F = 0

4 F = A plus AB F = A plus AB plus 1 4 F = AB

5 F = (A + B) plus AB F = (A + B) plus AB plus 1 5 F = B

6 F = A minus B minus 1 F = A minus B 6 F = A ⊕ B

7 F = AB minus 1 F = AB 7 F = AB

8 F = A plus AB F = A plus AB plus 1 8 F = A + B

9 F = A plus B F = A plus B plus 1 9 F = A ⊕ B

10 F = (A + B) plus AB F = (A + B) plus AB plus 1 10 F = B

11 F = AB minus 1 F = AB 11 F = AB

12 F = A plus A F = A plus A plus 1 12 F = 1

13 F = (A + B) plus A F = (A + B) plus A plus 1 13 F = A + B

14 F = (A + B) plus A F = (A + B) plus A plus 1 14 F = A + B

15 F = A minus 1 F = A 15 F = A

The Structure of Operations in the ALU   181

Opcode 1: NOR (A,  B)

The operational result F is the negated output of the OR between the A and B bits.
That is, it is the NOR of the bits in A and B.

Opcode 3: ZERO

The operational result F is 0, regardless of the input.

Opcode 4: NAND (A, B)

The operational result F is the negated output of the AND between the A and B bits.
That is, it is the NAND of the bits in A and B.

Opcode 5: NOT (B)

The operational result F is the NOT of input B. That is, every 0 bit in B is flipped to a
1, and every 1 bit in B is flipped to a 0.

Opcode 6: EXOR (A, B)

The operational result F is the EXOR of the bits in A and B.

Opcode 9: EXNOR (A, B)

The operational result F is the negated output of the EXOR of the bits in A and B.

Opcode 10: B

The operational result F is simply B.

Opcode 11: AND (A, B)

The operational result F is the AND of the bits in A and B.

Opcode 12: ONEs

The operational result F is all 1s, regardless of the input.

Opcode 14: OR (A, B)

The operational result F is the OR of the bits in A and B.

Opcode 15: A

The operational result F is simply A.

Important Logic Operation Instructions

182 C hapter 4 O perations

Thanks for today!
By the way, here’s

that thing I’ve been
keeping for you...

Hm, You seem to
be taking good

care of it.

By the way... why do you
call your computer
the “shooting star”?

Like a meteor...

Yeah... it’s a bit
sentimental...

I don’t care
in that case.

Learn to sense
the mood!! You’re

supposed to listen
to this!!!

Uh... where
was I...

It might get a
bit long-winded

but...

Click

Rattle

The Structure of Operations in the ALU   183

I’ve actually been
overseas for quite
some time due to my

father’s work.

And I only came back
to Japan recently...

Aah, delusions
like that can be
fun sometimes.

It’s not a
delusion!!
I’m telling
the truth!

The truth... Then
that must mean...

Unfamiliar
surroundings
and customs, a

deepening loneliness,
homesickness...

The story of a
desolate and lonely
boy making a shogi
game while thinking

of his home.

I can’t stop
my tears!!

What on earth are
you imagining?!
And you call me

delusional?!

Ayumi!
You should
introduce

your guest
to me.

Japan...

Click

Wahh

kn
ock

kn
ock

I get where
you’re coming

from.

184 C hapter 4 O perations

Mom,
don’t get
the wrong
impression
here! He’s
just a...

Oh my! Is it Yuu?
It’s been so long!

. !!!

It’s wonderful
to see you again.

You’ve been
abroad for

quite some time,
haven’t you?

It must be more
than 10 years since
you and Ayumi last
played together.
This is making me

so nostalgic!

Bow

Umm...

Uh...Huh? What’s
going on?
Why? what?

que?

?

Serial Transmission and Parallel Transmission  185

Serial Transmission and Parallel Transmission

There are two types of digital data transmission: serial transmission and parallel
transmission.

Systems that use serial transmission send data one bit at a time; systems that use
parallel transmission send several bits at a time. An interesting thing to note is that USB
(as in USB memory or USB connectors) is short for Universal Serial Bus, which, as you
might have guessed, uses serial transmission.

Serial transmission Parallel transmission

S
e
n
d
e
r

Shift Registers and Parallel–Serial Conversion

One of the components often used in logic circuits is a shift register. This type of register
can perform shift operations and nothing else. An example is the accumulator within
the ALU.

The most common use for shift registers is to parallel shift several bits of data
(for example, 8 bits) to the right in one clock cycle. The rightmost bits are then con-
verted and sent as serial data.

There is some discussion about whether this serial transmission function should
be seen as part of CPU functionality or as part of I/O. Overall, it’s easier to think of it
as the means by which the CPU communicates with devices other than the memory, all
bundled together as “I/O devices,” and as distinct from things not directly operated by
the CPU block.

R
e
c
e
iv

e
r

Simultaneously!

R
e
c
e
iv

e
r

One bit at a time

S
e
n
d
e
r

186 C hapter 4 O perations

An Overview of Some Basic Registers

Registers are useful in many contexts, and they are essential to the CPU. Here are some
basic registers and their functionalities.

Accumulator

This register stores calculation results from the ALU. It’s designed in such a way as to be
ready for the next calculation as soon as the previous one is done. It’s called the accumulator
in part because it’s generally used when incrementing values and counting sequentially, but
also since it’s often used as the input for a follow-up sum right after another calculation has
finished.

Instruction register & instruction decoder

These registers store and decode the program instructions. This decoding process deter-
mines not only which operation to execute but also the operands on which to operate.

Status register

The status register is a collection of flags that take the value 1 or 0 as a result of calculations
and operations. These flags can determine the order of program execution and how the CPU
interacts with I/O devices. Since flags are only 1 bit each, it is very common to lump them
together in 8-bit or even 16-bit registers. There are many different kinds of flags, and you
can read more about them starting on page 187.

Modification registers (Base registers, index registers)

These registers serve as the starting point in certain addressing modes. The base register
serves as a basis for address calculations. In relative addressing, adding an offset to the
base register yields an effective address.

Index registers hold fixed values that modify operand immediate values in special
circumstances to form the effective address. For example, you would add the offset found
in the index register to a data array’s base address to find a specific value in the array.

TEMP register (Temporary register)

Temp registers are used to save temporary data during the many tasks undertaken by the
CPU. Depending on the CPU, some blocks of the circuit might have several temp registers
available. You can see a temp register labeled in the diagram of classic CPU architecture on
page 106.

Looking at a
CPU’s register

configuration can
tell you a lot about

its features and
properties.

Highly evolved
modern CPUs have

even more registers
than this.

An Overview of Some Basic Status Flags  187

Program counter (PC)

The program counter holds the address to the next instruction to be executed. All CPUs have
this register.

Stack pointer

Necessary when working with a stack, this register holds the last used stack address.

An Overview of Some Basic Status Flags

When the CPU calculates a result, status flags (status bits) might be set or reset. The
CPU makes decisions by evaluating the status flags, either just a single flag or a combi-
nation of several flags. As a result of these decisions, the program might take different
branches or end up doing different calculations.

Zero flag (Z-flag)

Indicates whether the accumulator (the result of a calculation) is zero. If the CPU doesn’t
have a dedicated module for doing comparisons, the Z-flag might also double as the flag
that reports the outcome of a comparison test (the EQ-flag).

Sign flag (S-flag) or negative flag (N-flag)

If the accumulator contains a number, this flag tells you whether the number is negative or
positive.

Carry flag (C-flag) or overflow flag (OV-flag)

Indicates whether a carry or an overflow occurred in the latest arithmetic add operation. It
is also set if a shift operation resulted in overflow. In the case of an arithmetic subtraction
operation, it is not set if borrowing (the inverse of carrying) didn’t occur.

Borrow flag

Indicates whether a borrow occurred during a subtraction. More often than not, a borrow is
indicated by the carry flag not being set, but in some cases, the borrow flag might be used
instead.

GT flag

This flag is set if the outcome of a comparison operation was “greater than.” The GT flag’s
associated symbol is >.

LT flag

This flag is set if the outcome of a comparison operation was “less than.” The LT flag’s
associated symbol is <.

ODD flag

Indicates whether the result of a calculation is an odd number.

Interrupt mask

Set beforehand, the interrupt mask determines what types of interrupts will occur. Setting it
to all 1s will disable interrupts.

188 C hapter 4 O perations

The SLEEP Instruction

In addition to other control instructions, such as branches and jumps, there are instruc-
tions like STOP and SLEEP. The SLEEP instruction disables the program completely, put-
ting it into a resting state temporarily until some input (such as an interrupt) occurs. This
function exists on the system level as well.

By using the SLEEP instruction, the CPU is able to slow the period of the clock and
thereby the program, leading to lower power consumption. To return the CPU to its
normal state, some kind of button on the device usually has to be pressed to trigger an
interrupt in the CPU itself, rousing the system and programs back to full speed.

Interrupt flag

Indicates whether an interrupt is in progress or not. This flag will be set even if interrupts
have been disabled.

When the
condition is met,
the bit is set to 1,

and the flag
stands up.

When the
condition is not

met, the bit is
reset to 0, and
the flag is put

back down.

ring
ring

5

Programs

M
o
ney

Hig
h

class?
Processing

Processing

Condition

Processing

190 C hapter 5  Programs

Assembly and High-Level Languages

Hmm...

How could I
have completely
forgotten him...

Really... How could
you not remember
him? Little Yuu from

down the street.

You used to play
shogi together all

the time... You’re
pretty insensitive for
being my daughter...

Maybe...

my memory is
actually really

bad...?

No, that can’t
be it! I know
I’m smart!!

Are you done
talking to

yourself yet?

Ah, Yuu...

U-umm... I mean...
About you...

Heh...
Don’t worry

about it.

I was away for
so long, it’s no

wonder you don’t
remember me.

Enough about that,
let’s talk about
programs today!

Fuhahahahaha!!!!

You’d better listen
respectfully to

genius programmer
Yuu Kano’s every

word very
carefully!

Maybe it’s not that
strange I forgot

about this guy
after all...

What Are Assembly
Languages?

Like I said, today
we’re going

to learn about
programs...

But we should skip
straight to the

conclusion because
you actually already

know about them!!

Whaaa, so my
memory really is
bad after all?!

Do you remember
that we learned about

these instructions
using mnemonics?

LDA Address 1
Read the data at address 1 and

store it in the accumulator

ADD Address 2
Add the content at address 2 to the accumulator

STA Address 3
Store the content in the accumulator to address 3

Any combination of these
instructions is already a
program (or rather, the
source code for one*).

Ah! I remember
these!

* You can learn about the difference between a
program and its source code on page 199.

Now that you
mention it, you did

say programs
are work

instructions...

that are all
like a chain of
instructions.

Program
(Work

instructions)
Instruction

Instruction

Instruction

And we call any
language made to
write programs
a programming

language. High-level
languages

As you can see,
there are many types

of languages. The ones
that use mnemonics

are called assembly
languages.

Assembly
languages

Machine
language

Hmm... High-
level, assembly,

and machine
languages...

I don’t really
get it, but at least
it makes sense that
the high-level ones

are on top!!

Classy cars and
hotels—You can

get a lot by simply
using sophisticated

language.

No, it’s high-level,
not high-class.

High-level simply
means that it’s easy for
people to understand
and can be used with

any type of CPU.

Let’s talk a
bit about the
difference...

between assembly
languages and high-

level languages.

Easy for
the CPU to
understand

Arrays of 0s
and 1s

Uses
mnemonics

Easy for people
to understand

A programming
language like C

Money

194 C hapter 5  Programs

The Characteristics of Assembly Languages
and High-Level Languages

Okay, let’s talk a bit about the assembly languages that are easy for CPUs (machines) to
understand and the high-level languages that are easy for people to understand.

Umm. I don’t think I really understand what you’re saying. Because machine language is
made up of arrays of 1s and 0s, I see how that would only be understandable to CPUs and
not people.

But wouldn’t assembly languages be pretty easy for people to understand because
they use mnemonics . . . ? Instructions like ADD are just plain English. . . .

So how could high-level languages be even easier to understand than that?!

Heh, that’s a valid question. It’s true that assembly languages are rather easy to
understand.

High-level
languages

Assembly
languages

Machine
language

Did you know...
human languages

are called natural
languages?

Easy for
the CPU to
understand

Arrays of 0s
and 1s

Uses
mnemonics

Easy for
people to
understand

A programming
language like C

Assembly and High-Level Languages  195

But that’s because you already know how a CPU works and you’ve learned about registers
(like the accumulator), addresses, and different kinds of instructions!

With a high-level language, you don’t have to care about things like registers,
addresses, and instructions if you don’t want to. Some high-level languages don’t even
let you work with low-level concepts like that. For example, if you want to add two and
three together in a high-level language, you can just write, “a = 2+3”!

Whaaa??! But that’s completely different from everything we’ve learned so far!

So high-level languages are easy for people to understand. You’re saying they let us
write more intuitive instructions without having to care about how the CPU works! Is that
right? If it is, that would be groundbreakingly useful, and it makes a lot of sense why it
would appeal to people. It’s really close to how we think.

Heh heh heh. It seems you understand the appeal of high-level languages then. High-level
languages are used for all large-scale program development, essentially.

There are other advantages of high-level languages, as well. Let’s look at those.

This is a variable. It’s the result of the
addition and is stored to an arbitrary

location. You don’t have to specify where
it’s going (whether to a register or a
memory location) if you don’t want to.

Addition in a

high-level

language

196 C hapter 5  Programs

Programs written in high-level languages can be used on a variety of CPUs. In contrast,
assembly language instructions (represented by mnemonics) that run on one CPU probably
will not run on other CPUs. They are CPU type dependent. Mnemonics relate directly to the
instructions offered by a specific CPU instruction set, and they can’t be run on CPUs that
don’t support that set of instructions.

Hmm. I see how high-level languages are super useful. . . . But what are the advantages of
using the assembly languages you’ve been teaching me, then?

I mean, if high-level languages are this useful, why did you bother teaching me about
the CPU structure and assembly in the first place? I kind of get the feeling that using high-
level languages is the new way to do things and assembly languages were the old way. . . .

No, that’s not true! Especially in scenarios where execution speed is paramount, assembly
languages are very useful since they can push the CPU closer to its potential limit.

The difference between high-level languages
and assembly languages

Huh?

A different
type of CPU

One CPU

Mnemonics

Assembly
language
program

A different
type of CPU

One CPU

High-level
language
program

Assembly and High-Level Languages  197

Some human-readable programming languages, like C, need to be compiled to convert
them into machine language that the CPU can understand.

Even though the code might be easy for us to understand, it comes with a price.
Because the code is being translated from a high-level language into a form the CPU can
understand, it might end up executing slower* than if you had crafted it yourself in assem-
bly code. The calculations will turn out correct, but the way that the translation system
ends up performing the calculation might not be the most efficient. In the end, this means
you might not be able to use all of the CPU’s potential if you use a high-level language!

Ohh, I see. Using assembly languages, you can write more efficient code that uses the CPU
to its full potential! Assembly languages are so incredible, they are still in use today.

Assembly languages are essentially using mnemonics for a specific CPU instruction set,
right? This means that assembly languages are easy to convert to machine language and
don’t waste much CPU time.

* But it’s worth mentioning that modern CPUs are so fast that the delay doesn’t really affect us much in
most cases, even if some operations do take slightly longer.

Easy to convert to machine language!

Okay!
Assembly
language
program

When a high-level language is translated
into machine language, unnecessary parts or
inefficiency are introduced into the program.

Oh my~

A bit inefficient...

High-level
language
program

198 C hapter 5  Programs

Large-Scale Software Development

The computer programs that we use every day include word processors, chat programs,
and spreadsheets. We call these application programs, or just applications. Creating
applications requires an incredible amount of work from many programmers over an
extended amount of time. We call programs like this large scale, and the languages used
to create them are generally high-level languages. Some examples include C, the slightly
newer C++, and other languages such as Java and Python.

When developing with a high-level language, you don’t have to be aware of the
CPU’s machine language instructions in the same way that you would if you were devel-
oping with an assembly language. You also don’t have to pay attention to the different
addressing modes we talked about before.

Program source code that’s written in a high-level language has to be compiled so
it can be converted into the machine language that the CPU can execute. Since this pro-
cess is automatic and tries to optimize the use of addressing modes, among other things,
the developer doesn’t need to rack their brains paying attention to the CPU’s instruction
set or the different registers or even the addressing modes, themselves.

But when writing smaller-scale device software, it is still not uncommon to use
assembly languages. In these situations, if you don’t know everything there is to know
about the CPU’s peculiarities, its addressing modes, and more, writing correct software
will be more or less impossible.

The mnemonics you use when writing assembly code in a particular CPU’s instruc-
tion set are automatically converted into binary opcodes through a process called assembly.
In effect, you are assembling the assembly language source code into a CPU’s machine
language.

Today, even basic software like your operating system (Windows, for example) is
mostly developed using high-level languages like C. But parts that are critical for perfor-
mance may still be developed using assembly languages. This is also true for software
such as simulation applications, where assembly code might be used to optimize certain
parts of the program that need to be blazing fast.

Assembly and High-Level Languages  199

Source code includes all of the instructions and text produced by humans, while the object
code is the machine code that is produced when the source code is compiled, which is then
executed by the CPU. Some recent AI (artificial intelligence) can even automatically produce
source code.

Huh. I think I get it. Programs are the work instructions and their resources. Source code,
on the other hand, is the instructions and text produced by humans to generate the work
instructions.

The Difference Between
Programs and Source Code

Let’s see. We talked a bit about programs and source code before. The two words might
seem to mean the same thing, but they are different, strictly speaking.

Hmm, it might be cool to know the difference. I’m all ears!

Sure. A program usually refers to the chain of instructions fed to a computer to make it do
something. A program combined with all the other resources it needs to perform its task
is referred to as object code, while the word source code is usually reserved for the code
(machine or high-level) used to create the program.

You might also run into the term source program, but for simplicity’s sake, you can just
think of this as being the same thing as source code.

Program

Everything
togetherSource code

Produced
by humans

200 C hapter 5  Programs

Program Basics

What Can You Make Using Conditions and Jumps?

Okay, let’s
summarize what
makes the basis
of a program.

It’ll also serve
as a review of

the things we’ve
learned so far.

Come at me!
I’ll serve back
anything you
throw at me!

This is not
a game!!

First off, if we’re only
using operational

instructions (arithmetic,
logic, and shifts) and

data access...

then there is only a
single path through

the program.

Uh-huh. It
just keeps
processing

one instruction
after another,

right?

But if we also use conditions
and branches (jumps)...

We can write
complex programs

that can change
execution flow
depending on

decisions made
by the CPU!

Processing

Processing

Processing

Processing

Branched!

Processing

Condition

Processing

Program Basics  201

Yeah! I haven’t
forgotten.

Set (1) Reset (0)

The flags in the status
register are set according
to different conditions, and
these are considered when

making decisions.

That’s correct! You
can think of each flag
as representing two

different branches, since
each of them can either

be a 1 or a 0.

for example,
a branch could

be “negative
or positive” or

“YES or NO.”

And if we start
considering conditions
involving combinations

of several flags...

You can see how
this would lead to
a lot of potential

branches.

Like this!
This would be really
useful if we wanted
to create a more

complex program!

The flag isn’t
standing...

The flag is
standing up!

ProcessingProcessingProcessing Processing

Condition (If we consider a combination of two flags,
we end up with four branches)

Processing

202 C hapter 5  Programs

And if we also apply
conditional jumps...

you can keep
repeating the same
process in a loop
as long as some
condition is met.

In this neat
little diagram,
we repeat the

same instructions
over and over.

The
condition

is no
longer

met.
Onward!

We call this
a repeating
process.

Oooh! This seems
really useful.

You can
repeat a series of

instructions without
having to write them

multiple times.

…well, yes,
but let’s stop
talking about

the basic
concepts here.

Eh?!
That’s it??

Well, no. To be
able to create

programs,
you would, of

course...

Need to have
a lot more

in-depth
knowledge.

However!

?

Condition

Processing

No matter how complex
the program and

regardless of the
language used...

There’s no
denying the extreme

importance of
concepts like
conditional

decisions and
branching!!

I see. So conditional
decisions and branches

(jumps) are the
foundational secrets
to understanding any

program flow!

Yes. You only need
to know this...

And if you want to learn
more about programs,

then read as many books as
you can and wade through
as much source code as

possible...!

Yes!!

The road to
becoming a genius

programmer!!

Oooh! The
enthusiasm!!

Every...single...day...

He used up all
his strength
with too much
enthusiasm!!

Hahh
wheeze—

204 C hapter 5  Programs

What Should We Make the Computer Do?

Yeah. It’s just as you say. Things that weren’t even conceivable in the past are gradually
becoming reality today.

One good example is the facial-recognition software used in some modern security
applications. These programs convert human facial features (such as the distance between
the eyes, the position and size of the mouth and nose, and so on) into numerical values and
use them for calculations. Some programs can then differentiate among human faces by
using this information.

I see. It feels a bit like science fiction that computers are actually able to tell people’s faces
apart. It might even be a bit scary. But on the other hand, it could be used for fighting
crime.

It seems like it might be a lot of fun to create a really cool program. I wonder what I
would have it do. Maybe stock market or horse race predictions . . . ? Some program that
would automatically make me a lot of money. . . .

Ah! Let’s put your personal desires aside for now. But thinking about what you want to
make your computer do and what people would find useful are two very important aspects
of creating a program.

By the way, we’ve been learning about programs today, but try to remember when we
talked about digitization of information. In modern society, by digitizing things like music,
images, video, and any other type of information, it becomes a lot easier to process infor-
mation using a computer.

Ah, I remember us talking about something like that. Now that I think about it, it’s actually
kind of amazing!

I mean, if computers can handle any type of information, then you could do all kinds of
things if you just created an amazing enough program!

Program Basics  205

Thanks for today.
I learned a lot.

Sure, don’t
worry

about it.

Um... By the way...
I asked mom about when

we were kids...

Well you always
beat Yuu in shogi...

and then you’d
say something

like...

You’re weak.
I’m bored.

Even if he
started crying...

You were pretty
ruthless.

Even though it’s
in the past now,
I do feel kind

of bad about it...

Wah

That
bad...?

W-well, I
suppose it was
like that, b-but
it’s all in the

past now.

Your mom sure
re- re- remembers

a lot of small
details though,

hahahaha!

I... I never stopped
to consider the
feelings of the
people who lost

to me.

But losing to
the CPU made

me understand.

What it
feels like
to lose...

It’s rough,
huh?

Ayumi...
you–

Yuu...

Could it be...

That your twisted
personality stems
from losing so
badly to me all
those times?!

And to then grow up
into the gloomy and
twisted kid you are
today, creating that
shogi game only to
try to rid yourself
of your humiliation...

It’s a tragedy
born all because
I was too smart!!

I’m so sorry!!!

I can’t tell if
you’re apologizing,
sympathizing with me,

or insulting me...

at least choose one!!

Ahem.
In any case... It’s annoying,

but it’s a fact
that I lost.

So did you
actually rid

yourself of that
humiliation we
talked about?

Heh...

So now
we’re even!

It’s all water under
the bridge! My old
reckless remarks,
everything—gone!

You gloomy, twisted
little boy, you!!

Even though what you’re
saying now is worse than
anything you could have
possibly said before?!

Hm, no matter.
The next lesson
will be the last.

Please bring
the Shooting
Star with you.

Huh? The
Shooting Star...?

What’s that?

You’re not
actually planning
on forgetting it,

are you??!

208 C hapter 5  Programs

Where are Programs Stored?

Programs for small devices that use microcomputers are usually stored in ROM. In per-
sonal computers, only the BIOS (the Basic Input/Output System) is stored in ROM, which
in turn is used to load the operating system (OS) from an external device (such as a hard
drive) into RAM. Programs are also loaded into RAM before execution.

At the dawn of the CPU era some decades ago, miniature OS-like systems called
machine code monitors were used when developing assembly code line by line.

Nowadays, even assembly programming is done on personal computers. Each CPU
maker provides development tools to allow programmers to more easily develop assem-
bly language programs for their CPUs. You can create your program using these tools on
your computer, attach a ROM writer to the system to embed your program into ROM, and
finally integrate the ROM into your target system.

A more recently developed method allows programmers to transfer the program
from a computer to the device’s non-volatile memory. This saves a lot of time because
you can check how the device performs without having to rewrite the ROM every time.

It’s also worth mentioning that the method of rewriting a program on CPU ROM
without detaching it from the system is called on-board programming.

What Happens Before a Program Is Executed?

Let’s talk a bit about what happens when you load a program you’ve written into ROM.
What does the CPU do as soon as you turn on the power?

Simply turning on the power doesn’t actually do anything, as there is a significant risk
that the system will not perform as expected before the voltage has climbed to a certain
level. To ensure that the CPU will operate properly, the circuitry on the CPU board must
keep the reset pin low until the power supply voltage stabilizes and the CPU’s clock gen-
erator starts functioning normally.

The clock generator normally starts operating before the power supply voltage
stabilizes, so when the power supply voltage reaches the correct level, the CPU board’s
reset circuit sets the reset pin to high, and the CPU can begin executing instructions. The
voltage needed for this is generally specified in the CPU’s documentation.

At this point, all the preparations are done for loading the first line of the program.
After releasing the reset state, the first thing the CPU does is load a reset vector.

The reset vector is usually written to the first or last part of the memory the CPU
manages, and it tells the CPU where to find the first instruction of the program to run
after a reset. For a PC, this would be the BIOS.

Programs are stored in ROM
(non-volatile memory)!

Program

What Happens Before a Program Is Executed?  209

The CPU will then run the instruction at the address specified by the reset vec-
tor and proceed normally from that point. It would execute the program the instruction
belongs to, perform calculations, and process data in accordance with the program flow.
If the reset pin were to become active for any reason, the CPU would instantly cease all
activity, no matter what it was currently working on, and return to its initial state.

A reset is actually a type of interrupt, like the ones we learned about in earlier
chapters. Although we learned previously that interrupts can stop a CPU from running
its current set of instructions and make it run instructions at another address, we haven’t
learned how the CPU knows which address to jump to. Each type of interrupt has an
address associated with it, and the data structure that stores the addresses to execute
depending on which type of interrupt occurs is called the interrupt vector table (IVT). The
reset vector is at a set location in memory, and it is the first value in the interrupt vector
table. That’s how it works at a very high level, but IVTs vary from CPU to CPU, so the
location of the reset vector will depend on the CPU’s specifications.

Address space

X

Reset
vector

The address in
there (X) is the

first instruction
of the program.

First check
the reset
vector!

Y

X

Interrupt vector
table

Interrupt B

Interrupt A

Execute Y if we get
a B interrupt!

Execute X if we get
an A interrupt!

If we take a look at
the interrupt vector

table, we can see
that we should...

6

Microcontrollers

What Are Microcontrollers?

212 C hapter 6  Microcontrollers

Ahh~
What wonderful

weather!

Learning
beneath an

open sky isn’t
bad at all.

But to think
a shut-in like
you studies at

the park.

Well,
I suppose

it’s not far
from home.

...Heh, in any
case, this will
be our last

class.

Today’s theme is
microcontrollers!

Microcontrollers?
Are those like some

kind of mini mind
control robots?!

Why would you
jump to that
conclusion?!

Mind

control

Nnngh!

Microcontrollers Are in
All Kinds of Products

Ahem.

As their name suggests,
Microcontrollers are

small controller chips.

(There are also
microcomputers!)

I’m not sure I
understand from

just the name.

What do they
control
exactly?

Are they
different from

the CPUs in
computers?

Here, take a
look at this.

There are also longer
microcontrollers, such as
the one seen on page 49.

Micro-
controllers are
single integrated
circuits (ICs), like

this one.

Microcontroller

“Micro”

+

“Controller”

214 C hapter 6  Microcontrollers

Microcontrollers
can be found in all

sorts of household
electronics!

It’s not uncommon
for one device
to contain more

than one.

Oho! So
microcontrollers

are in all sorts
of things, then.

The Function of a
Microcontroller

And the
components of these
microcontrollers...

Look like this!

Swat!

Wouldn’t you know!
Microcontrollers contain

memory (ROM or RAM),
a CPU, and I/O circuits, all
integrated into one chip! When embedded

in products, they’re
sometimes referred

to as embedded
controllers.

Whoa! It’s a lot of
different systems

all in one!

Heh heh heh,
isn’t it great?

A single
microcontroller can get
programs from memory,
execute them, and deal
with input, just like any

other computer.

All inside one IC!

I/O control function

CPU function

Memory function
(ROM or RAM)

Microcontroller

216 C hapter 6  Microcontrollers

Hmm, so
microcontrollers
are the integrated

circuits that control
machines, then.

but wait...

Does that mean
they’re even

more useful than
a computer’s

CPU?!

Well, that
might be so.

But microcontroller
CPUs and computer

CPUs are completely
different!

Temperature
control Timer control

A rice cooker might have
a microcontroller that
takes care of functions

like temperature control
or timer control...

But it can’t do all the
complex operations a

computer’s CPU can.

Ah, I suppose
that’s true...

To activate
at 6 pm, for
example...

Micro-
controller

To maintain
70°C, for
example...

Example function of a
microcontroller CPU

What Are Microcontrollers?  217

So a
microcontroller
is what helps me

keep the time when
cooking rice...

And rice
porridge, eggs,

and other
things I make in
a rice cooker,

as well.

But I suppose
it can’t help me
when I want to
send emails or
play a movie,

though.

But what if...?

There are no
buts here!

It’s impossible
no matter how
you look at it!!

Microcontrollers
are limited in

their possible
applications...

but that means
they’re also much

cheaper than
computer CPUs.

High-powered microcontrollers
and expensive microcontrollers

also exist.

Again?!

Microcontroller

Relatively cheap!
Lim

ited

capabilit
ies!

218 C hapter 6  Microcontrollers

And because all
this functionality is
localized on one

integrated circuit...

We also call
them one-chip

microcontrollers.

Uh-huh, I think I get
the main features of
microcontrollers

now.

Even though they’re
just one small IC,
they still control

many types of
devices.

And have nothing to do
with mind control!

They couldn’t have
in the first place!

Did you seriously
think that was

possible?!

Architecture of a
Microcontroller

Crack

phew

Hurray!

Architecture of a
Microcontroller

Finally, let’s take
a look at the

architecture of a
microcontroller.

I recommend
comparing this to
the architecture

of a CPU.

Ooh~! The memory
controller (RAM and ROM),

CPU, and I/O controller are
all there...

Integrated into the
microcontroller!

It’s really
important to note that

a microcontroller can be
connected to all sorts

of external devices,
depending on what it’s

used for!

External
devices such
as switches,

LEDs,
motors,

and other
things

connected
to the

controller

A
dd

r
e
ss

r
e
g

is
t
e
r

D
a
ta

 r
e
g

is
t
e
r
s
 (I/O

)

I/O
controller

C
o

n
t
r
o

l

c
ir

c
u
it

Overview of a
Microcontroller

220 C hapter 6  Microcontrollers

History of the Microcontroller

Microcontrollers have a very interesting history. The very first electronic calculator used
an ALU made with electron vacuum tubes. It was very large by today’s standards, taking
up an entire room the size of a volleyball court. This was around the time of World War II,
in the 1940s. England and other countries were in the middle of developing electronic
calculating machines to decipher the codes that the German army was using. Unlike
modern computers, these were not developed in an open international marketplace
but instead in top-secret military research laboratories. Because of this, it’s not clear
whether the American ENIAC computer, presented to the world in 1946, was truly the
first computer or not.

The first transistor was invented in 1947, displacing electron vacuum tube calcula-
tors with semiconductor-based technology. And with the invention of the integrated
circuit in 1958, the miniaturization of electronic calculators progressed significantly.

Even so, the 16-bit minicomputer seen in Chapter 4, which used four 74S181 chips,
was not developed until 1972. Removing all external devices, it had a width of 60 cm, a
height of 30 cm, and a depth of 45 cm. It could handle an address space of 16KW (kilo-
words, where 16 bits of data is equal to 1 word), which is what we would call 32KB today.
(Compare this to modern SD cards, which are able to store 32GB of data or, in terms of
memory size, about a million times more data.)

In the second half of the 1970s, Intel introduced its one-chip CPU as a mass-
produced commodity. This product instantly dominated the market, lowering costs
across the board.

The one-chip CPU also heralded a new age from 1976 onward in which amateur
electronics enthusiasts could afford learning kits (for example, the Altair 8800 micro-
computer). With these, they could learn how to program in machine language with the
one-chip CPU as a base.

This is also around the time when the term personal computer, or PC, came into
popular use, since you could finally have one of these technical marvels for yourself.

What Are Microcontrollers?  221

But progress did not stop there! One-board controllers that fit the CPU, memory,
and I/O controllers onto a board about the size of an A4 sheet of paper were developed.
Eventually, these components fit onto a single IC chip that could be used to control all
sorts of devices.

Because these ICs had CPUs that were inseparable from their ROM or RAM memory
and integrated I/O ports, they could store programs, perform calculations, and handle
input and output. These ICs were called microcontrollers since they were comparatively
small and controlled other devices

After this, there was a desire for larger memory, which stimulated a demand for
larger computers, as well. But the small-scale devices that use integrated one-chip
microcontrollers are still in very high demand today and are used in everything from
household electronics to toys.

And so microcontrollers contain everything from a CPU to memory to I/O controllers.

Now, computers
in the form of

microcontrollers
are in everything

from rice cookers
to automobiles!

And then
transistors
made from

semi-
conductors.

So we first had

computers using

electron vacuum

tubes...

222 C hapter 6  Microcontrollers

What Are DSPs?

We should take this opportunity to talk a bit about DSPs, as well.

DSP? Yet another strange acronym. So, what are they?

DSPs, much like CPUs, are ICs that perform operations. But compared to CPUs, they’re
extremely fast.

Their “brain” is made up of what is called a multiplier-accumulate operation circuit.
This essentially means DSPs are really good at doing multiplication and addition at
the same time!

Multiplier-
accumulate
operation

circuit

Ahem!

What are DSPs?  223

Whoa! So what’s that good for? I suppose it has to be good for something.

Yeah. It turns out you have to do a lot of multiplication and addition when processing digital
signals, especially for audio recordings. In fact, that’s what DSP is short for—digital signal
processor.

Audio . . . so . . . when I’m talking on my cell phone, for example? I suppose my analog voice
has to be converted to digital form somehow for it to be transmitted to my friend on the
other end of the line.

I see. So they’re good at doing multiplication and addition at the same time, which is useful
for digital signal processing.

While CPUs are really important, I get the sense that DSPs are, too. I’ll make sure to
remember them!

That’s correct! Most modern mobile phones have DSPs. They’re also being used more
often for digital filtering in audio devices and for the operations required to improve acous-
tic effects.

Wow, so they’re all around us, these DSPs!

Currently, development for a one-chip DSP with large RAM at the level of a microcontroller
is underway.

224 C hapter 6  Microcontrollers

DSPs and Multiplier-Accumulate Operations

During the development of the CPU, there was a growing need for increasing the pro-
cessing speed of calculations—in particular, division and multiplication were a lot slower
than desired.

As we’ve seen, the CPU’s ALU was mostly geared toward performing addition and
subtraction at this time. Using these older ALUs, you had to repeatedly perform addition
to multiply two numbers and repeatedly perform subtraction to divide two numbers. At
the time, computers were becoming more popular in scientific applications, which meant
that demand for high-performance multiplication was very high. This is when develop-
ment of the circuits that were capable of floating-point multiplication really took off, and
the result was the digital signal processor, or DSP.

To process digital signals, DSPs perform fast Fourier transforms (FFTs) on them.
This requires a lot of simultaneous additions and multiplications. To perform these multi-
plications and additions efficiently, DSP ICs have a multiplier-accumulator circuit.

Shortly after DSPs were developed, mobile phones started to use digital trans-
missions, and digital voice signal processing and filtering became more common. The
transmission stream could also be compressed, and the receivers started using systems
with DSPs at their core to convert the raw voice data using vocoders (a voice encoder/
decoder).

Later, microcontroller-like DSPs with larger RAM molded into the chip started to
show up, making voice data processing even faster.

Microcontrollers in Industrial Machines

CPUs, microcontrollers, and DSPs are in many of the devices we use in our daily lives.
Some examples include today’s wall clocks, alarm clocks, and even wristwatches, all
of which are likely to contain a one-chip microcontroller. Other household devices like
refrigerators, air conditioners, and washing machines are likely to contain more than
one. And the remote controls used to send commands to these devices also contain a
microcontroller IC.

Automated robots and conveyor belts in large-scale industry also have to be con-
trolled in some fashion and therefore require either a CPU or DSP.

Many devices in our homes have microcontrollers,
and they even have industrial uses...

Microcontrollers in Industrial Machines  225

Up until now, we’ve had single-chip CPUs as well as microcontrollers that contain a
CPU, memory, and I/O controllers all in one. The amount we can pack into a single chip is
determined by tradeoffs among our capacity to produce semiconductors, their production
cost, and the market’s demand and margins.

Advancements in IC production technology have led to the development of FPGAs
(field-programmable gate arrays). Using an FPGA, you can create any logical circuit you
desire and bring it into reality with hardware. The basic structure can contain lookup tables
of anywhere from several thousand to several million units in a single IC. These tables can
be prepared beforehand by the IC maker and provided as is.

The initial state of the IC consists of a lookup table memory section and logic blocks
that can be wired together in different ways, resulting in many possible applications. The
raw IC is then configured by the user with specialized tools to write the modeled design
into the circuit, creating the desired IC. Development is normally done on a computer, but
the specialized tools needed can also be stored on a USB, making the creation of even
large-scale logic circuits an easy task.

In the past, CPUs were different from FPGAs, but in recent years, FPGAs contain-
ing CPU functionality have started to appear. There are two ways to make an FPGA into a
CPU. The first is to simply create an existing CPU design in the wiring of your logic circuit
using the development tools provided, and the other is to embed a CPU in one part of the
gate array as a separate IC.

In either case, the CPU as a single IC is becoming gradually less common over time.
But even though we have DSPs, there is still a need to control tasks other than multiply-
accumulate operations, and as such, the principles underlying the CPU will remain impor-
tant concepts no matter how ICs continue to develop.

of how a CPU works is the most important thing!There are many types of useful ICs... but knowing the basics

Epilogue

I guess this marks
the end of our

lessons.

I feel
congratulations

are in order
since you made
it all this way.

Oh, that reminds
me... I promised to
return this after
we were done,

didn’t I?

Here you go,
one hostage

laptop.

The entire reason
I started learning

about CPUs was
because I lost
to this thing.

I hate to
admit it, but this

little guy is
really strong!

It is.

But the
Shooting

Star isn’t just
strong.

It’s especially
strong

against you.

228 E pilogue

Uh, what do
you mean?

Well, you see...
you know how one of

the upperclassmen
in your club likes to
post your play data

on the Web?

They even
included personal
information in the
play records on

your blog...

In the interest of
protecting the student’s

privacy, I have run
her face through a

mosaic filter.

I’m almost
certain I know
who that is!!!

When I knew I was
going home, I got

nostalgic and looked
up your name...

And found
all kinds of
information
right away.

Including pictures
of your victory in
the nationals and
records of your

play style.

Epilogue  229

Like a stalker biding his
time, watching his prey...
The abuse of personal
privacy in this digital
society even crosses

international borders...!

Who are you calling
a stalker?!

And then I saw
your bored face
in more than one
victory photo...

Seeing that, I could
no longer—

Your trauma of repeatedly
losing to me was revived,
and before you knew it,
you were developing a

program designed to beat
me, and only me, is that it?!

Give me a break
already!

Fear

Victor

Victor

230 E pilogue

Well, anyway,
let me

return this.

I still feel bad about
losing to it, but it’s
been educational in
more than one way.

You don’t
have to give

it back.

Eh?

The Shooting
Star is especially
strong against

you.

That means it will
be doing the most

good in your hands.

Use it to keep
boredom at bay while
you aim to reach the

company of stronger
players.

I planned to give it
to you from the very
start, to be honest.

Wha-?

so that
means...

This is the lethal
instrument you designed

to rid yourself of
your grudge and

resentment...

But it’s also a
present for me...?

Well, I suppose
you could interpret

it that way.

But don’t bother
thanking me for it.

After all, I have loads
of laptops like that.

And developing
the program was
an excellent way
to kill some time,

fuhahahah!
Yuu...

Hm? What is
it now?

If you’re
going to
complain...

232 E pilogue

I’m really happy...

Thank you!

I’ll treasure it!!

...! Ah, no, I mean
I’ll take anything

I can get!

aHEm, let me just
boot it up, okay!

Clic
k

Ah!

thum
p!

Epilogue  233

Huh...

A Shooting star
wallpaper...?

I feel like I’m
remembering
something...

I had snuck off to
watch shooting stars
in this park with some
boy who was moving

far away...

...so you finally
remember.

And I wished
upon those
stars that...

I would inherit
a truckload
of money
someday.

What’s with that
greed of yours?!

And why would
you even bring

that up?!

Mone
y

234 E pilogue

Well you know,
there was a

meteor shower
that night and...

I wished for a
lot of other
stuff as well!

Like what?

Umm,
let’s see...

My favorite friend
Yuu is moving

tomorrow, and
I’m so sad.

Instead of
having to endure

missing him...

I wish I could
forget him for

a while...

Epilogue  235

I remember...

Everything!!!

I-i-it doesn’t
matter one bit!!

...!!

A-anyway
what did you
wish for?!

Well,
you see...

I wished that I
would return

here someday...

To talk a lot
more with

Ayumi.

That I’d get a lot
better at shogi,
of course... yeah!

If you keep
praying to THE
stars for that,

you’re only going
to get worse,

you know.

And besides,
it’s not like I
lost to you—

I lost to
the CPU!!

We’re back to
where we started!!

gahh
h!

236 E pilogue

Well, if you’re not
satisfied with that, then
you’ll just have to beat

me one on one.

If you can...
idiot !

There you go again!

You just don’t know
when to give up,
do you, Ayumi?!!

The end

I got a protective
case for the

Shooting Star!
I can’t decide if

you’re taking good
or bad care of it!!

Now it won’t break
if I flip out and

hit it when I lose!

Afterword

Up to this point, we have only talked about very old and primitive CPUs. The ones we have
shown could only really be used for things like toys or simple AC remote controls. They are
too simple to be used in most modern microcomputers or CPUs today. Currently, the speed
of progress is so fast that everything I say here will quickly become obsolete. But even so, I
wrote this book in an attempt to help anyone who might want to learn some lasting basics—
even in these fast-changing times.

In other words, I would like to emphasize that this book has concentrated on the very
basic principles governing CPUs, forgoing any information relating to general computer
architecture. But even so, I would like to leave you with a small impression of the current
state of progress.

It is unfortunately quite hard to illustrate modern complex circuits in the type of dia-
grams we used at the start of the book to show the different parts of the CPU, so I’m going
to have to talk in very superficial terms here.

There are many techniques used to make modern CPUs execute programs more
quickly. An older one of these techniques is the prefetch instruction. Instead of trying to
get the next instruction after the current one has finished processing, prefetching tries to
extract the next instruction from memory before the current one has completed to shorten
any wait times that might otherwise occur.

Since the CPU is a lot faster than main memory, it makes a lot of sense to let prefetch
decode the next instructions and store them in a cache in preparation for the next calcula-
tion. Repeating this prefetching process of reading and decoding instructions ahead of time
can lead to continuous execution speed increases across the board.

There is another instruction called pipelining in which the instruction cycle is broken
into several dependent steps. These steps are usually fetch, decode, execute, access mem-
ory, and finally write back to register/memory. The goal here is to keep all parts of the CPU
busy at all times by executing these steps in parallel. So while one instruction might be run-
ning its execute step, another instruction would be running its decode step, and yet another
instruction would be fetching.

CPU researchers found some tendencies toward inefficiencies when using certain
instruction and operand combinations. Attempts to remove these inefficiencies by simplify-
ing the instruction set led to the development of the RISC (reduced instruction set computer)
architecture. Processors that use this instruction set are called RISC processors.

240  Afterword

Many worried that reducing the instruction set would make complex calculations
require more instructions and therefore slow down execution. In reality, however, many
applications saw a performance boost on the RISC architecture. It turns out that reducing
the instruction set’s complexity leads to simplifications in the hardware design that allow for
higher single instruction execution clock speeds.

Because of this, RISC processors have started to be used in many different areas.
Processors that don’t use RISC principles have been dubbed CISC (complex instruction set
computer), riffing off the RISC name. This acronym was created purely as an antonym of
RISCs, and there is no particular architecture associated with the CISC name.

Recent Intel and other CPU chips contain not just one but many cores, which are
distributed between different processes on the system. This is something that falls in the
domain of computer architecture, so as I mentioned at the start of the book, this is not
something I will explain in much detail.

However, there is no requirement that all complex calculations must be performed in
order. It is fine for the CPU to split up different parts of a task and run the individual parts
on separate cores simultaneously, exchanging data between cores only when absolutely
necessary. Letting the CPU multitask like this can improve execution speed a great deal.
Using the CPU in such a way, however, poses problems not only for the hardware but also
for the OS, memory access, and code execution scheduling.

A

absolute (direct) addressing,
169, 172

accumulators, 104–105, 110
bit shifts, 143
defined, 186

addition circuits, 62
carry look-ahead adder

circuits, 68–69
full adder circuits, 66–67
half adder circuits, 63–65
ripple carry adder circuits,

67–68
ADD mnemonic, 163, 166, 192
address assignment, 89–91
address bus, 92, 96–97, 99
addressing modes, 165, 168

absolute addressing, 169, 172
effective addressing, 169
indirect addressing,

170–171, 174
relative addressing, 173

address modification, 174–175
address pointers, 91, 92
address references, 167
address registers, 108
address space (memory space)

control of, 90, 119–120
external devices, 121
size of, 96–97

ALUs (arithmetic logic units),
22–24

74S181 example, 177
and binary arithmetic, 47
and bus width, 95

AND gate (logic intersection gate),
51–55

applications, 198
arithmetic operations, 15,

in binary, 44–47
as instructions, 142–144,

179–180

arithmetic shifts, 149–151
arithmetic unit, 16–19, 22–24
assembly languages, 193, 198

characteristics of, 194,
196–197

smaller-scale software
development, 198

asynchronous counters, 82
ATMs, 25–26, 113–114

B

base 2 system. See binary
number (base 2) system

base 10 (decimal number)
system, 38–41

base registers, 175, 186
Basic Input/Output System

(BIOS), 120, 208
billion floating-point operations

per second (GFLOPS), 138
binary number (base 2) system

addition and subtraction in,
44–47

vs. decimal, 38–41
sign bits, 147–148

BIOS (Basic Input/Output
System), 120, 208

bits, 39, 97
bit shifts, 143

arithmetic shifts, 149–151
circular shifts, 152
left shifting, 146
logical shifts, 145–146, 149
overflow, 150–151
right shifting, 145–146

block, 133
borrow flag, 187
branches, 113
branch instructions, 155–157

conditional jumps, 161
in programs, 200–203

bundled signal pathways, 94–95

buses
address bus, 92, 96–97, 99
bundled signal pathways,

94–95
bus width, 95–97
control bus, 99
data bus, 92, 95, 99
external bus, 92–93, 96
internal data bus, 92–93

bytes, 97

C

CAD (computer-aided design)
programs, 85

carry flag (C-flag), 160, 187
carry input and output, 67
carry look-ahead adder circuits,

68–69
central processing units. See

CPUs (central processing
units)

C-flag (carry flag), 160, 187
circular shifts (rotating shifts), 152
CISC (complex instruction set

computer) architecture, 239
clock frequency, 133–134
clock generators, 134–135, 208
clocks, 78–80, 133

degree of accuracy, 134
frequency of, 133–134

clock speed, 133–134
command input, 24
compiling, 197, 198
complements

in binary arithmetic, 44–47,
147–148

in logic operations, 60–61
and relative addressing, 173

complex instruction set computer
(CISC) architecture, 239

compression, 32–33

Index

242 I ndex

computer-aided design (CAD)
programs, 85

computers
components of, 16
information processing,

11–13
operations of, 14–15

condensers, 134
conditional branches, 161
conditional jumps, 161, 202
conditional skips, 161
condition evaluation, 113

branch instructions and, 161,
200–203

status flags, 158–160,
187–188

continuous output, 31
control (instruction) flow, 16, 21
control bus, 99
control signals

I/O signals, 100
R/W signals, 98–99

control unit, 16, 19–21
counters

asynchronous counters, 82
program counter, 107–108,

112–114, 187
synchronous counters, 82

C++ programming language, 198
C programming language,

197, 198
CPUs (central processing units)

accumulators, 104–105
addresses, 89–91
address space, 90, 96–97,

119–121
ALUs, 22–24
architecture, 106–107
arithmetic unit, 16–19
buses, 92–97
clock, 133–135
compression, 33
control signals, 98–100
control unit, 16, 20–21
current technologies, 238–239
decision making, 25–27
information processing, 11–13

instruction processing cycle,
107–114

interaction with other
components, 16

interrupts, 122–129, 135–137
I/O ports, 132–133
memory classifications, 132
memory devices, 115–118
memory system. See memory

system
vs. microcontrollers, 216–217
operands and opcodes,

102–103
operation processing, 14–15,

18–19, 25–27
performance of, 138
pre-execution process,

208–209
program counter, 107–108,

112–114
registers, 103–105
reset signals, 136–137
stack and stack pointer,

126–127
crystal oscillators, 134

D

data bus, 92, 95, 99
data flow, 16, 21
data transfer operations, 153
decimal number (base 10)

system, 38–41
De Morgan’s laws, 60–61
destination operand, 164
D flip-flops, 78–80
digital information and

operations, 12–13, 204.
See also addition circuits;
logic operations; memory
circuits

addition and subtraction in
binary, 44–47

vs. analog, 31–33
binary vs. decimal system,

38–41
fixed- and floating-point

numbers, 42–43

mobile phones, 224
reciprocal states, 37–38

direct (absolute) addressing,
169, 172

discrete output, 31
DSPs (digital signal processors),

222–224

E

effective addressing, 169
electron vacuum tubes, 220
embedded controllers, 215.

See also microcontrollers
ENIAC computer, 220
exclusive logic union gate

(XOR gate), 57, 59
exponents, 42
external bus, 92–93, 96
external devices

address space, 121
external bus, 93
I/O ports and signals, 100,

121, 132–133, 154
microcontrollers and, 219
synchronization, 124

F

facial-recognition software, 204
falling edge, 79
fast Fourier transforms (FFTs), 224
fetching, 111
field-programmable gate arrays

(FPGAs), 85, 225
fixed-point numbers, 42–43
flip-flop circuits, 74–75

D flip-flops, 78–80
RS flip-flops, 76–77
T flip-flops, 81–83

floating-point numbers, 42–43,
137–138, 151, 224

FLOPS (floating-point operations
per second), 137–138

FPGAs (field-programmable gate
arrays), 85, 225

FPUs (floating point units), 15
frequency dividers, 135
full adder circuits, 66–67

Index  243

G

GFLOPS (billion floating-point
operations per second), 138

GPUs (graphics processing
units), 133

ground, 37
GT flag, 187

H

half adder circuits, 63–65
hard disk drives (HDDs), 115–118
hardware description language

(HDL), 85
high-level languages, 193

characteristics of, 194–197
large-scale software

development, 198

I

ICs (integrated circuits), 48–50.
See also microcontrollers

addition circuits, 62–69
architecture, 178
De Morgan’s laws, 60–61
DSPs, 222–224
function table, 179
logic gates, 50–59
memory circuits, 70–83
modern circuit design, 85
pins, 49–50, 177

immediate value processing, 166
index registers, 175, 186
indirect addressing, 170–171, 174
information, 30–31. See also

digital information and
operations

analog, 31–33
compression of, 32–33
processing of, 11–13
signal-to-noise ratio, 30
transmission of, 31, 185

information technology (IT), 30
input devices, 16–17
input/output (I/O) instructions, 154
input/output (I/O) ports, 100,

121, 132–133
input/output (I/O) signals, 100

input/output (I/O) space, 117, 121
instruction (control) flow, 16, 21
instruction decoders, 109, 186
instruction registers, 105,

109, 186
instructions. See operations and

instructions
integrated circuits. See ICs

(integrated circuits);
microcontrollers

internal data bus, 92–93
interrupt flag, 188
interrupt masks, 128, 187
interrupts, 122–125

non-maskable, 129
priority of, 128–129
resets, 209
stack and stack pointer,

126–127
timer, 129, 135–136

interrupt signals, 136
interrupt vector table (IVT), 209
I/O (input/output) instructions, 154
I/O (input/output) ports, 100,

121, 132–133
I/O (input/output) signals, 100
I/O (input/output) space, 117, 121
IT (information technology), 30
IVT (interrupt vector table), 209

J

Java, 198
jump instructions, 155–157, 161

L

large-scale software
development, 198

latching, 74, 77
LDA mnemonic, 167, 192
left shifting, 146
load/store (L/S) signals, 98–99
logical shifts, 145–146, 149
logic gates, 50–51

addition circuits, 62–69
AND, 51–55
De Morgan’s laws, 60–61
NAND, 57–58

NOR, 57–59
NOT, 51, 53, 56
OR, 51–52, 55
XOR, 57, 59

logic intersection complement
gate (NAND gate), 57–58

logic intersection gate (AND gate),
51–55

logic negation gate (NOT gate),
51, 53, 56

logic operations, 15, 33, 179,
181. See also logic gates

De Morgan’s laws, 60–61
instructions for, 143
integrated circuits, 48–50

logic union complement gate
(NOR gate), 57–59

logic union gate (OR gate),
51–52, 55

loops, 113
lossless compression, 33
lossy compression, 33
L/S (load/store) signals, 98–99
LT flag, 187

M

machine code monitors, 208
machine language, 142, 194
memory circuits

flip-flop circuits, 74–83
importance of, 71–73
registers, 70–71, 103–105

memory management units
(MMUs), 114

memory space. See address
space

memory system
addresses, 89–91
classifications of memory, 132
hard disk drives, 115–118
I/O space, 121
primary memory, 16, 18–19,

70, 115, 116–118
RAM space, 119–121
ROM space, 119–121
secondary memory, 16,

18, 115
solid state drives, 118

244 I ndex

MFLOPS (million floating-point
operations per second), 138

microcontrollers, 213
architecture of, 220
vs. CPUs, 216–217
DSPs, 222–224
function of, 214–215
history of, 220–221
in industrial machines,

224–225
million floating-point operations

per second (MFLOPS), 138
MIPS (million instructions per

second), 137
MMUs (memory management

units), 114
mnemonics, 163, 192, 196–198
mode pin, 177, 179
modification registers, 175, 186
motherboards, 120
multiplexers (MUX), 93
multiplier-accumulate operation

circuits, 222, 224

N

NAND gate (logic intersection
complement gate), 57–58

negative flag (N-flag), 187
noise (information), 30, 33
non-maskable interrupts

(NMI), 129
non-volatile memory, 132, 208
NOR gate (logic union comple-

ment gate), 57–59
NOT gate (logic negation gate),

51, 53, 56
number systems, 38–41

O

object code, 199
ODD flag, 187
on-board programming, 208
opcodes, 102–103, 110, 142,

162–163, 180
operands, 102–103, 110, 142

addressing modes, 165,
168–174

address modification, 174–175

address references, 167
immediate value

processing, 166
number of, 163–164
types of, 162–165

operation execution speed, 137
operations and instructions,

14. See also arithmetic
operations; bit shifts; digital
information and operations;
logic operations

ALUs and, 22–24
branch instructions, 155–157,

161, 200–203
data transfer operations, 153
I/O instructions, 154
jump instructions,

155–157, 161
memory and, 18–19, 70–71,

89–90, 103–105
processing and decision

making, 25–27
programs and, 19
skip instructions, 157
SLEEP instruction, 188
types of, 15

OR gate (logic union gate),
51–52, 55

output devices, 16–17
overflow, 45, 150–151
overflow flag (overflow bit;

OV-flag), 151, 187

P

parallel transmission, 185
PC (program counter), 107–108,

112–114, 187
personal computers (PCs), 220
pins, 49–50
pipelining, 238
prefetch instructions, 238
primary memory, 16, 18–19, 70,

115, 116–118
primitives, 32
processing speed, 118
program counter (PC), 107–108,

112–114, 187

programs, 19, 101, 192, 199
assembly languages, 192–194,

196–197
with conditions and jumps,

200–203
control unit and, 20–21
high-level languages,

194–197
large-scale software

development, 198
machine language, 194
pre-execution process,

208–209
vs. source code, 199
storage of, 208

propagation delay, 68
Python, 198

R

RAM (random access memory),
119–121, 132, 208

read-only memory (ROM),
119–121, 132, 208

read/write (R/W) signals, 98–99
read-write memory (RWM), 132
reduced instruction set com-

puter (RISC) architecture,
238–239

registers, 70–71, 83, 103–104
accumulators, 104–105, 110,

143, 186
address registers, 108
base registers, 175, 186
index registers, 175, 186
instruction decoders, 109, 186
instruction registers, 105,

109, 186
program counter, 107–108,

112–114, 187
shift registers, 185
stack pointer, 126–127, 187
status registers, 160, 186
temp registers, 186

relative addressing, 173
repeating processes, 202
resets, 128–129
reset signals, 136–137

Index  245

reset vector, 208–209
right shifting, 145–146
ripple carry adder circuits, 67–68
RISC (reduced instruction set

computer) architecture,
238–239

rising edge, 79
ROM (read-only memory),

119–121, 132, 208
rotating shifts (circular shifts), 152
RS flip-flops, 76–77
R/W (read/write) signals, 98–99
RWM (read-write memory), 132

S

SAM (sequential access
memory), 132

scientific notation (standard
form), 42

SD cards, 220
secondary memory, 16, 18, 115
select pins, 177, 179
semiconductors, 220
sequential access memory

(SAM), 132
serial transmission, 185
S-flag (sign flag), 160, 187
shift registers, 185
signal (information), 30
signals (I/O), 56
signal-to-noise ratio, 30
sign bits, 147–148
sign flag (S-flag), 160, 187
skip instructions, 157
SLEEP instruction, 188
solid state drives (SSDs), 118
source code, 198–199
source operand, 164
stack, 126–127
stack pointer (SP), 126–127, 187
STA mnemonic, 167, 192
standard form (scientific

notation), 42
state, 71, 74
status flags, 159–160,

187–188, 201

status output, 24–26
status registers, 160, 186
synchronization, 124
synchronous counters, 82

T

temp registers, 186
T flip-flops, 81–83
TFLOPS (trillion floating-point

operations per second), 138
thermometers, 31–32
timer interrupts, 129, 135–136
transistors, 220
trigger conditions, 74
trillion floating-point operations

per second (TFLOPS), 138
truth tables, 53–56, 58–59
two’s complement

in binary arithmetic, 44–47
expressing negative numbers

in binary, 147–148
and relative addressing, 173

U

underflow, 151

V

variables, 195
Venn diagrams, 54–56, 58–59
virtual memory, 114
vocoders, 224
volatile memory, 132
voltage, 31

as binary states, 37–38
and reset process, 136–137
and turning on CPU, 208

X

XOR gate (exclusive logic union
gate), 57, 59

xx-register relative addresses, 173

Z

zero flag (Z-flag), 187

About the Author

Michio Shibuya graduated from the electrical engineering department of Toukai University
in 1971. Among other occupations, he has worked as an NMR researcher in a private
medical institution, has spent 12 years working as a MOS product designer and developer
for a foreign company, and has since pursued a career in IC design at technical depart-
ments of both domestic and foreign trading companies. Since May of 2007, Shibuya
has worked for the semiconductor trading company Sankyosha, first as a field applica-
tion engineer and currently as a special advisor. He is also the author of Learning Signal
Analysis and Number Analysis Using Excel, Learning Fourier Transforms Using Excel, The
Manga Guide to Fourier Transforms, The Manga Guide to Semiconductors, and Learning
Electrical Circuits Using the Circuit Simulator LTspice (all published by Ohmsha).

Production Team for
the Japanese Edition

Production: Office sawa

Office sawa was established in 2006 and specializes in advertisement and
educational practical guides in medicine and computers. They also take pride in
their sales promotion materials, reference books, illustrations, and manga-themed
manuals.

Email: office-sawa@sn.main.jp

Scenario: Sawako Sawada

Illustrations: Takashi Tonagi

How This Book Was Made

The Manga Guide series is a co-publication of No Starch Press and Ohmsha, Ltd. of Tokyo,
Japan, one of Japan’s oldest and most respected scientific and technical book publishers.
Each title in the best-selling Manga Guide series is the product of the combined work of a
manga illustrator, scenario writer, and expert scientist or mathematician. Once each title
is translated into English, we rewrite and edit the translation as necessary and have an
expert review each volume. The result is the English version you hold in your hands.

MOre Manga Guides

Find more Manga Guides at your favorite bookstore, and learn more about the series at
https://www.nostarch.com/manga/.

Updates

Visit https://www.nostarch.com/microprocessors/ for updates, errata, and other information.

Colophon

The Manga Guide to Microprocessors is set in CCMeanwhile and Chevin.

Hah! All the cpu
can do is simple
calculations?

Wait a second...
Don’t jump to
conclusions.

I don’t know
why I was

ever worried!

Ayumi is a world-class shogi (Japanese

chess) player who can’t be beaten—that is,

until she loses to a powerful computer

called the Shooting Star. Ayumi vows to

find out everything she can about her new

nemesis. Lucky for her, Yuu Kano, the genius

programmer behind the Shooting Star, is

willing to teach her all about the inner

workings of the microprocessor—the

“brain” inside all computers, phones, and

gadgets.

Follow along with Ayumi in the Manga
Guide to Microprocessors and

you’ll learn about:

⭑	How the CPU processes information

and makes decisions

t
h
e
 m

a
n
g

a
 g

uid

e

™ t
o

 Mic

r
o

p
r
o

c
e
ss

o

r
s

S
h
ib

uy
a

To
n
a
g
i

O
ff

ic
e
 S

a
w

a

MicroprocessorsMicroprocessors
Michio Shibuya
Takashi Tonagi
Office SAWA

The Manga Guide™ to Comics

 inside!

Find more Manga Guides at www.nostarch.com/manga shelve in: computers/hardware

Price: $24.95 ($33.95 CDN)TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

A Cartoon Guide to Microprocessors

⭑	How computers perform arithmetic

operations and store information

⭑	logic gates and how they’re used in

integrated circuits

⭑	the Key components of modern

computers, including registers,

GPUs, and RAM

⭑	Assembly language and how it differs

from high-level programming languages

Whether you’re a computer science student

or just want to understand the power of

microprocessors, you’ll find what you

need to know in The Manga Guide to
Microprocessors.

	Contents

	Preface
	Chapter 1: What Does the CPU Do?
	Computers Can Process Any Type of Information
	The CPU Is the Core of Each Computer
	The Five Components of a Modern Computer
	ALUs: The CPU’s Core
	CPUs Process Operations and Make Decisions
	What Is Information Anyway?
	The Difference Between Analog and Digital Information

	Chapter 2: Digital Operations
	The Computer's World Is Binary
	The Reciprocal States of 1 and 0
	Decimal vs. Binary Number systems
	Expressing Numbers in Binary
	Fixed-Point and Floating-Point Fractions
	Addition and Subtraction in Binary

	What Are Logical Operations?
	Integrated Circuits Contain Logic Gates
	The Three Basic Logic Gates: AND, OR, and NOT
	Truth Tables and Venn Diagrams
	A Summary of the AND, OR, and NOT Gates
	Other Basic Gates: NAND, NOR, and XOR
	A Summary of the NAND, NOR, and XOR Gates
	De Morgan’s laws

	Circuits That Perform Arithmetic
	The Addition Circuit
	The Half Adder
	The Full Adder and Ripple Carry Adder
	The Carry Look-ahead Adder

	Circuits That Remember
	Circuits with Memory Are a Necessity!
	Flip-flop: the Basics of Memory Circuits
	The RS Flip-flop
	The D Flip-flop and the Clock
	The T Flip-flop and Counters

	Modern Circuit Design: CAD and FPGA

	Chapter 3: CPU Architecture
	All About Memory and the CPU
	Memory Has Assigned Addresses
	Data Passes Through the Bus
	Bus Width and Bits
	R/W Signals and I/O Signals
	Instructions Are Made of Operands and Opcodes

	Accumulators and Other Registers Are Used in Operations
	CPU Instruction Processing
	Classic CPU Architecture
	The Instruction Cycle
	The Instruction We Process Changes Depending on the Program Counter

	All Kinds of Memory Devices
	A Comparison Between HDD and Memory
	RAM Space, ROM Space, and I/O Space

	What Are Interrupts?
	Interrupts Are Useful
	The Stack and the Stack Pointer
	Interrupt Priority

	Memory Classifications
	I/O Ports and the GPU
	Clock Frequency and Degrees of Accuracy
	Clock Generators
	Timer Interrupts
	Reset Signals
	CPU Performance Is Measured in FLOPS

	Chapter 4: Operations
	Types of Operations
	There Are Many
Types of Instructions
	Instructions for Arithmetic and Logic Operations
	What Are Bit Shifts?
	The Sign Bit Lets Us Express Negative Binary Numbers
	Logical Shifts and Arithmetic Shifts
	Circular Shifts (Rotating Shifts)
	Data Transfer Operations
	Input/Output Instructions
	Branch Instructions
	Condition Evaluation and Status Flags
	Putting Branches and Condition Evaluation Together

	Operand Types
	How Many Operands Do We Have?
	Operands Take Many Forms
	Immediate Value Processing
	Address References
	What Are Addressing Modes?
	Addressing Mode Overview

	The Structure of Operations in the ALU
	A Look Inside the ALU

	Serial Transmission and Parallel Transmission
	An Overview of Some Basic Registers
	An Overview of Some Basic Status Flags
	The Sleep Instruction

	Chapter 5: Programs
	Assembly and High-Level Languages
	What are Assembly Languages?
	The Characteristics of Assembly Languages and High-level Languages
	The Difference Between Programs and Source Code

	Program Basics
	What Can You Make Using Conditions and Jumps?
	What Should We Make the Computer Do?

	Where are Programs Stored?
	What Happens Before a Program Is Executed?

	Chapter 6: Microcontrollers
	What Are Microcontrollers?
	Microcontrollers Are in All Kinds of Products
	The Function of a Microcontroller
	Architecture of a Microcontroller

	What Are DSPs?
	DSPs and Multiplier-Accumulate Operations
	Microcontrollers in Industrial Machines

	Epilogue
	Afterword
	Index

