THE MANGA GUIDE" TO | “omic

g INSIDE!

MICHIO SHIBUYA
TAKASHI TONAGI
OFFICE SAWA

MICROPROCESZORE™

PRAISE FOR THE MANGA GUIPE SERIES

“Highly recommended.”
—CHOICE MAGAZINE ON THE MANGA GUIDE TO DATABASES

“The Manga Guides definitely have a place on my bookshelf.”
—SMITHSONIAN MAGAZINE

“The art is charming and the humor engaging. A fun and fairly painless lesson on what
many consider to be a less-than-thrilling subject.”
—SCHOOL LIBRARY JOURNAL ON THE MANGA GUIDE TO STATISTICS

“Stimulus for the next generation of scientists.”
—SCIENTIFIC COMPUTING ON THE MANGA GUIDE TO MOLECULAR BIOLOGY

“The series is consistently good. A great way to introduce kids to the wonder and vastness of
the cosmos.”
—DISCOVERY.COM

“Absolutely amazing for teaching complex ideas and
theories . . . excellent primers for serious study of physics
topics.”

—PHYSICS TODAY ON THE MANGA GUIDE TO PHYSICS

“A great fit of form and subject. Recommended.”
—OTAKU USA MAGAZINE ON THE MANGA GUIDE TO PHYSICS

“| found the cartoon approach of this book so compelling
and its story so endearing that | recommend that every
teacher of introductory physics, in both high school and
college, consider using it.”

—AMERICAN JOURNAL OF PHYSICS ON THE MANGA GUIDE TO PHYSICS

“This is really what a good math text should be like. Unlike
the majority of books on subjects like statistics, it doesn't
just present the material as a dry series of pointless-
seeming formulas. It presents statistics as something fun
and something enlightening.”

—GOOD MATH, BAD MATH ON THE MANGA GUIDE TO STATISTICS

“A single tortured cry will escape the lips of every thirty-
something biochem major who sees The Manga Guide to
Molecular Biology: ‘Why, oh why couldn't this have been

written when | was in college?”

—THE SAN FRANCISCO EXAMINER

“A lot of fun to read. The interactions between the characters are lighthearted, and the
whole setting has a sort of quirkiness about it that makes you keep reading just for the joy
of it.”

—HACKADAY ON THE MANGA GUIDE TO ELECTRICITY

“The Manga Guide to Databases was the most enjoyable tech book I've ever read.”
—RIKKI KITE, LINUX PRO MAGAZINE

“The Manga Guide to Electricity makes accessible a very intimidating subject, letting the
reader have fun while still delivering the goods.”
—GEEKDAD

“If you want to introduce a subject that kids wouldn’t normally be very interested in, give it
an amusing storyline and wrap it in cartoons.”
—MAKE ON THE MANGA GUIDE TO STATISTICS

“A clever blend that makes relativity easier to think about—even if you're no Einstein.”
—STARDATE, UNIVERSITY OF TEXAS, ON THE MANGA GUIDE TO RELATIVITY

“This book does exactly what it is supposed to: offer a fun, interesting way to learn calculus
concepts that would otherwise be extremely bland to memorize.”
—DAILY TECH ON THE MANGA GUIDE TO CALCULUS

“Scientifically solid . . . entertainingly bizarre.”
—CHAD ORZEL, SCIENCEBLOGS, ON THE MANGA GUIDE TO RELATIVITY

“Makes it possible for a 10-year-old to develop a decent working knowledge of a subject
that sends most college students running for the hills.”
—SKEPTICBLOG ON THE MANGA GUIDE TO MOLECULAR BIOLOGY

“The Manga Guide to the Universe does an excellent job of addressing some of the biggest
science questions out there, exploring both the history of cosmology and the main riddles
that still challenge physicists today.”

—ABOUT.COM

“The Manga Guide to Calculus is an entertaining comic with colorful characters and a fun
strategy to teach its readers calculus.”
—DR. DOBB'S

THE MANGA GUIDE™ TO MICROPROCESSORS

THE MANGA GUIDE™ TO

MICROPROCESSORS

MICHIO SHIBUYA,
TAKASHI TONAGI, AND
OFFICE SAWA

h

sha

Qll
=

THE MANGA GUIDE TO MICROPROCESSORS.
Copyright © 2017 by Michio Shibuya, Takashi Tonagi, and Office sawa.

The Manga Guide to Microprocessors is a translation of the Japanese original, Manga de wakaru CPU, published by Ohmsha, Ltd.
of Tokyo, Japan, © 2014 by Michio Shibuya, Takashi Tonagi, and Office sawa.

This English edition is co-published by No Starch Press, Inc. and Ohmsha, Ltd.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechani-
cal, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of
the copyright owner and the publisher.

ISBN-10: 1-59327-817-9
ISBN-13: 978-1-59327-817-5

Publisher: William Pollock

Production Editor: Serena Yang

Author: Michio Shibuya

[llustrator: Takashi Tonagi

Producer: Office sawa

Developmental Editors: Jan Cash and Tyler Ortman
Translators: Fredrik Lindh and Akino Lindh
Technical Reviewer: Dan Romanchik
Copyeditor: Paula L. Fleming

Compositors: Max Burger and Serena Yang
Proofreader: Shannon Waite

Indexer: BIM Creatives, LLC

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 1.415.863.9900; info@nostarch.com; http://www.nostarch.com/

Library of Congress Cataloging-in-Publication Data
A catalog record of this book is available from the Library of Congress.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and company
names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol with every
occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in
the preparation of this work, neither the authors nor No Starch Press, Inc. shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.

All characters in this publication are fictitious, and any resemblance to real persons, living or dead, is purely coincidental.

CONTENTS

PREFACE. . .. Xi
1
WHAT DOES THE CPU DOZ i 1
Computers Can Process Any Type of Information. 11
The CPU Is the Core of Each Computer. 14
The Five Components of a Modern Computer. 16
ALUs: The CPU's Core. . ..o 22
CPUs Process Operations and Make Decisions. 25
What Is Information Anyway?. 30
The Difference Between Analog and Digital Information............................... 31
2
DIGITAL OPERATIONS . . . i 35
The Computer's World Is Binary. 36
The Reciprocal Statesof 1and 0. 37
Decimal vs. Binary Number Systems 38
Expressing Numbers in Binary. 40
Fixed-Point and Floating-Point Fractions. 42
Addition and Subtraction in Binary 44
What Are Logic Operations? 48
Integrated Circuits Contain Logic Gates 48
The Three Basic Logic Gates: AND, OR, and NOT. 51
Truth Tables and Venn Diagrams 53
A Summary of the AND, OR, and NOT Gates. 55
Other Basic Gates: NAND, NOR, and XOR 57
A Summary of the NAND, NOR, and XOR Gates 58
De Morgan's Laws.ot 60
Circuits That Perform Arithmetic 62
The Addition Circuit. o 62
The Half Adder o 64
The Full Adder and Ripple Carry Adder 66
The Carry Look-Ahead Adder. 68
Circuits That Remember. 70
Circuits with Memory Are a Necessity! 70
Flip-Flop: The Basics of Memory Circuits. 74
The RS Flip-Flop.o 76
The D Flip-Flopand the Clock 78
The T Flip-Flop and Counters. 81

Modern Circuit Design: CAD and FPGA 85

3

CPU ARCHITECTURE 87
All About Memory and the CPU 88
Memory Has Assigned Addresses. 89
Data Passes Throughthe Bus 92
Bus Width and Bits. 94
R/WSignals and I/0 Signals. 98
Instructions Are Made of Operands and Opcodes. 101
Accumulators and Other Registers Are Used in Operations 103
CPU Instruction Processing 106
Classic CPU Architecture. 106
The Instruction Cycle 107
The Instruction We Process Changes Depending on the Program Counter. 112
All Kinds of Memory Deviceso 115
A Comparison Between HDD and Memory 116
RAM Space, ROM Space, and I/0 Space. 119
What Are Interrupts? 122
Interrupts Are Useful. 122
The Stack and the Stack Pointer 126
Interrupt Priority. 128
Memory Classifications. 132
I/0 Ports and the GPU e 132
Clock Frequency and Degrees of ACCUTaCyo oottt 133
Clock GENeTators.o 134
Timer IntermuUpts 135
Reset Signals 136
CPU Performance Is Measured in FLOPS. 137
4
OPERATIONS . . 139
Types of Operations 140
There Are Many Types of Instructions 142
Instructions for Arithmetic and Logic Operations. 144
What Are Bit Shifts? 145
The Sign Bit Lets Us Express Negative Binary Numbers. 147
Logical Shifts and Arithmetic Shifts 149
Circular Shifts (Rotating Shifts). 152
Data Transfer Operations i 153
Input/Output INStructions 154
Branch Instructions. 155
Condition Evaluation and Status Flags 158
Putting Branches and Condition Evaluation Together. 161
Operand TYPES . . oot 162
How Many Operands DoWe Have? 162
Operands Take Many Forms 165
Immediate Value Processing. 166
Address References. 167

VIl CONTENTS

Addressing Mode OVErVIEW. o 172
The Structure of Operations inthe ALU, 176
AlookInside the ALU. 176
Basic Circuit Architecture of the 745181, 178
Serial Transmission and Parallel Transmission. 185
An Overview of Some Basic Registers 186
An Overview of Some Basic Status Flags. 187
The SLEEP Instruction 188
5
PROGRAMS . 189
Assembly and High-Level Languages 190
What Are Assembly Languages?. 192
The Characteristics of Assembly Languages and High-Level Languages. 194
The Difference Between Programs and Source Code 199
Program BasiCs.o 200
What Can You Make Using Conditions and Jumps? 200
What Should We Make the Computer Do?. 204
Where are Programs Stored?. 208
What Happens Before a Program Is Executed?. 208
6
MICROCONTROLLERS. 211
What Are Microcontrollers?. 212
Microcontrollers Are in All Kinds of Products 213
The Function of a Microcontroller. 214
Architecture of a Microcontroller 219
What Are DSPS? . . 222
DSPs and Multiplier-Accumulate Operations. 224
Microcontrollers in Industrial Machines 224
EPILOGUE 227
AFTERWORD . . 239
IND X 241

CONTENTS IX

PREFACE

Ever since the 1950s, when computers saw their debut in markets all over the world, inter-
est in information technology (IT) has seen a steady rise. The core that supports this tech-
nology is a semiconductor known as the CPU, or central processing unit. Since the start of
the 21st century, advancements in circuit design theory and manufacturing technology have
led to rapid progress in both processing speed and chip size, allowing us to embed them in
most of the electronics we use on a daily basis. In addition to personal computers, smart-
phones, and tablets, you'll even find CPUs in things like air conditioners, refrigerators, wash-
ing machines, and other major appliances, just to name a few.

It's worth noting that the CPUs found in modern PCs are extremely powerful, and
many of their applications are outside the scope of this book. We also will not delve into
computer architecture which has had a research boom in recent years. Instead, | think that
the best way to give insight into what CPUs are—and, by extension, how programs work—is
to go back and analyze how the first CPUs worked and examine the concepts and principles
by which they were designed.

Let me share an allegory with you. It's been quite some time since we first started
taking automobiles for granted in our daily lives, but despite their ubiquity, very few people
today can explain how an engine works or how the energy generated by the engine gets
translated into forward momentum for the car. In the 1950s, you had to answer engine
design questions on your driver’s license examination, but no such guestions remain in
today's tests. Essentially, this means that to learn things about the internals of a car engine
today, you really have to be an incredibly curious person.

In that vein, my wish is that this book will not only act as a platform to teach readers a
range of different topics but also to sate their curiosity on the subject by having them learn
some of the deeper principles of the CPUs that have so nonchalantly permeated our daily
lives.

In regards to the publication of this book, | would like to thank Sawako Sawada of Office
sawa, who thought up the fun story, and Takashi Tonagi for the illustration work.

MICHIO SHIBUYA
NOVEMBER 2014

WHAT DOES THE CPU DO?

S553HD OL 2V1IWIS 3WVD d2vVO0g 353NVAVL V «

STRONG AS
EVER, 1 SEE

HMM, TWENTY WINS
IN A ROW...

AND IT'S ALL THANKS
TO YOU, AYUMI!
// MARRY MEEEE!

I'M A GOOD
SPORT, BUT THAT
MIGHT BE A BIT

MUCH...

1 BET OUR BOOTH WILL
BE THE MOST POPULAR
ONE AT THE FESTIVAL!

i

THAT'S MY GIRL! NOW WEAR
THIS FOR THE NEXT GAME!

BREAK ALREADY.
YOU'RE RIDICULOUS.

WELL, YOU'RE
UNBEATABLE WHETHER
I'M HERE CHEERING

SEE YOU
AROUND!

UNBEATABLE,
HUH?

SHE'S RIGHT!
I AM STRONG!

OR ACTUALLY,
EVERYONE ELSE
IS SO WEAK IT'S
BORING ME TO
TEARS...

......

ooooo

HAVE TIME RIS
FOR A GAME? .

........
......

cccccc
.....

ooooo

N e e e
Y o °o ° @
+ “ o
L]

® & 0 ¢ & 0 0o 0
(]
[]

® 0 ¢ & & & o o

[]
L N
[]
e o
[]
[]
.’,“',_4

OH, SURE!

I'D LOVE TO!

I SEE...
WELL THEN...

FUHAHAHAHAHARA!
BEHOLD! UNLEASHED FROM
THE CHASM OF DARKNESS!

o ()
00000
® v 0 &

s 0 @
ooooo
® o &

WHAT'S HE SO
EXCITED ABOUT?!
IT'S JUST A BLACK
COMPUTER!!

WHAT? IT'S
JUST A SHOGI

I'D ACTUALLY LIKE YOU
TO PLAY AGAINST MY
COMPUTER, NOT ME.

JUST MY LUCK...
A REAL WEIRDO.

THIS LAPTOP, THE
SHOOTING STAR, 1S
RUNNING A PROGRAM
OF MY OWN DESIGON.

/ ER, YOU WANT ME,
A REAL SHOGI PLAYER,

TO PLAY YOUR
VIDEO GAME?

HEH...
IT'S NOT JUST A
COMPUTER GAME.

IMA
BUSY PERSON,
YOU KNOW...

/TS STRONGER
THAN YOU/

WELLL... 1 DON'T REALLY
GET WHAT YOU'RE SAYING,
BUT IT'S OBVIOUS YOU'RE

. LOOKING DOWN ON ME. {

I JUST HAVE TO WIN, RIGHT?
I HOPE YOU'RE READY TO
BE DESTROYED...

I1LO5T.2

HOW IS THAT POSSIBLET?

STANDS NO CHANCE
AGAINST MY
SHOOTING STAR!

15 THIS SOME KIND = /)

OF PRANK? ‘ - b
EVEN THE (ol
NATIONAL CHAMPION

AYUMI KATSURAG...

BE SWALLOWED IN
ITS PARK PEPTHS AND
TASTE UTTER DEFEAT!

FUHAHAHAHAHAHAHAHAHA!

I..I CANT
BELIEVE IT...

ILOST TO
SOMEONE
LIKE THIS...?

I CAN'T BELIEVE SOMEONE AS INTELLIGENT A
AND WONDERFUL AS ME COULD LOSE TO %\
SOMEONE AS WEIRD AND LAME AS YOU!!

A WONDERFUL
PERSON INDEED...

. / ‘ ;:zf; | . —
O
v
|II||h |||l J‘

OH, BUT WAIT
A SEC.

50 I DIDN'T
REALLY LOSE!

IT'S NOT LIKE 1
LOST TO YOU.
1 JUST PLAYED A

COMPUTER GAME.

YOU COWARD!
HOW ABOUT YOU FIGHT
ME YOURSELF INSTEAD!

8 CHAPTER 1 WHAT DOES THE CPU DO?

AYUMI KATSURAGI!
KNOW WHEN YOU
ARE BEATEN!

IT'S TRUE THAT IT
WASN'T ME WHO
‘ BEAT YOU.

7

BUT THAT ALSO MEANS
YOUR INTELLECT WAS
NO MATCH FOR THE CPU,
THE SHOOTING STAR'S
INTELLECT!

<

AND THATS A FACT/

/T ALSO MEANS
THAT YOURS TRULY,
YUU KANO, THE GENIUS
PROGRAMMER WHO
BROUGHT THAT cPU TO
LIFE, POSSESSES AN

NO! AN EVEN
MORE IMPRESSIVE
INTELLECT!

ISN'T A CPU
SOME KIND OF
COMPUTER CHIP?

i ;

LIKE THIS?

BUT WHY WOULD YOU
SAY THAT THE CPU 1S
YOUR COMPUTER'S
INTELLECT?

WHAT DOES
A CPU DO
ANYWAY?

HEH, THAT WOULD
TAKE SOME TIME
TO EXPLAIN.

BUT IF YOU INSIST,
YOU COULD CONVINCE
ME, THE YUU KANO, BY
ASKING REALLY NICELY.

IF YOU DON'T HURRY UP AND
TELL ME, THIS SHOOTING STAR
MIGHT COME CRASHING DOWN

AT ANY MINUTE!

ONLY METEORITES {
CRASH TO EARTH!

EVEN IF I DID TELL

YOU, IT WOULD TAKE
QUITE SOME TIME...
ARE YOU SURE YOU'RE
UP FOR THIS?

10 CHAPTER 1 WHAT DOES THE CPU DO?

I ALREADY ASKED.
JUST GET ON
WITH IT!

LEAVE THE COMPUTER
ALONE FIRST!

COMPUTERS CAN PROCESS ANY
TYPE OF INFORMATION

' WELL THEN. FIRST OFF, THE
WORD COMPUTER COMES
FROM THE WORD COMPUTE.

LET'S TAKE
OUR TIME AND

START FROM THE
BEGINNING.

"[I]Trmﬂ iy

E-EVEN I CAN DO MATH! |
T'LL HAVE YOU KNOW
I'M REALLY GOOD AT
MENTAL ARITHMETIC!

THE FIRST COMPUTERS
WERE JUST COMPUTING
MACHINES, LIKE MODERN
CALCULATORS.

4'9 TRUE THAT HUMANS

CAN DO MATH TOO...

" CAN ALL AGREE IT'S
MUCH MORE PRACTICAL
TO DO LARGE
CALCULATIONS ON
CALCULATORS, RIGHT?

NGH... YEAH...
YUP, BUT MODERN
SO COMPUTERS... COMPUTERS ARE...

ARE REALLY GOOD AT
DOING CALCULATIONS

REALLY FAST. MUCH MORE

THAN JUST
CALCULATORS!

V1UULUY DA V11101001000 10101
000100 T, AN 1010001000101010
0011798 X e A Pt *00011101011011
013 2. e] 221010101010
LY/ ALL KINDS OF INFORMATION IS X, o e S 1101110
0 BEING DIGITIZED NOW. THINGS \ : LOE110
ey P e

VI , 1001

b USING JUST 15 AND Os, y AAR\ EB°5 ‘?&;}%

- gy TS
a WHEN WE TRANSLATE ANY TYPE 1010100
o OF DATA INTO DIGITAL FORM | H”“" 1101011
N7 CTHAT IS, REPRESENT IT WITH | '|‘ Mg

& (VA 15 AND O2), IT BECOMES A LOT /|| 01
O, N EASIER TO PROCESS USING 10
; A COMPUTER. "

OH, 'VE HEARD OF THAT BEFORE.
LIKE DIGITAL TV AND

DIGITAL CAMERAS,

RIGHT?

I GUESS THAT MEANS
COMPUTERS IN GENERAL
LIVE IN THE DIGITAL WORLD,

WHERE ONLY 15 AND Os
ARE ALLOWED... P

/ WELL, DIGITIZING

INFORMATION MADE A
LOT OF NEW THINGS
POSSIBLE.

BUT WHAT'S
SO GREAT
ABOUT THAT?

DIGITAL TECHNOLOGY
1S REALLY IMPORTANT
TO MANY ASPECTS OF
MODERN LIFE.

12 CHAPTER 1 WHAT DOES THE CPU DO?

oH!

50 YOU MEAN ALL OF
THESE THINGS ARE
THANKS TO DIGITAL

TECHNOLOGY?

SURFING THE WEB,
LOOKING AT NEWS AND

VIDEOS...

EDITING PHOTOS TAKEN
WITH MY DIGITAL CAMERA
ON MY COMPUTER AND
EMAILING THEM...

© PND A\
| ggg\c;%\ﬂez e

<3
\)

£\

\o=V
\G\TAL
ZAMEKP\

G N - 1 T

BUYING DIGITAL MUSIC AND
TRANSFERRING IT TO MY
MP3 PLAYER!

THAT'S RIGHT! ALL
THESE THINGS USE
DIGITAL TECHNOLOGY.

AND, AT THE CORE OF ALL
THIS TECHNOLOGY, THE CPU
IS ACTING AS THE BRAIN.

THERE'S THAT WORD
AGAIN! 5O WHAT DOES
. THE CPU ACTUALLY DO?

COMPUTERS CAN PROCESS ANY TYPE OF INFORMATION 13

WHICH MEANS THAT
THE CPU...

CPU 1S5 SHORT FOR CENTRAL
PROCESSING UNIT.

IS IN CHARGE OF THE
COMPUTER'S OPERATIONS!

WHAT ARE
OPERATIONS?

OPERATIONS IT'S ALSO WORTH MENTIONING
ARE COMPUTER . THAT CPUs PERFORM TWO KINDS
CALCULATIONS, OF OPERATIONS.

CALCULATIONS USING
ONLY 15 AND Os,

14 CHAPTER 1 WHAT DOES THE CPU DO?

THE OPERATIONS OF THE CPU*

ARITHMETIC OPERATIONS LOGIC OPERATIONS
THE ONLY ARITHMETIC LOGIC OPERATIONS DEAL WITH
OPERATIONS THAT COMPUTERS O Ve oTh
CAN PERFORM ARE ADDITION s °
FEW SIMPLE WAYS,

AND SUBTRACTION.

e L Dy Ve
& [T - on NO

WAIT A SECOND...
DON'T JUMP TO
CONCLUSIONS.

HAR! ALL IT CAN
DO 1S SIMPLE
CALCULATIONS?

I DON'T KNOW
WHY I WAS
EVER WORRIED!

* IN ADDITION TO THESE OPERATIONAL UNITS, MODERN CPUs ALSO CONTAIN FPUs (FLOATING POINT UNITS)
THAT CAN HANDLE MULTIPLICATION AND DIVISION. BUT THIS BOOK JUST STICKS TO THE BASICS.

COMES THE YOU NEED MORE
IMPORTANT COMPONENTS THAN
PART! JUST THE CPU!

FOR A COMPUTER / WHAT?!
TO WORK... THERE'S MORE??

THE CPU IS THE CORE OF EACH COMPUTER 15

WITH A SANTA THAT
WORTHLESS, I'D PUT SHOGI
PIECES IN HIS MOUTH AND
PUNCH BOTH CHEEKS.

/

OF COURSE! IF SANTA

CLAUS GAVE YOU A cPU
FOR CHRISTMAS AFTER
PROMISING YOU A
COMPUTER...

TWISTED MIND, DO
YOU KNOW THAT?

" WOULDN'T YOU BE A |
LITTLE CONFUSED?

YOU HAVE A PRETTY

THE FIVE COMPONENTS

OF A MODERN COMPUTER | [commor _
e 1 u UNIT 1
| | = L}
HERE'S A QUICK ' . H !
OVERVIEW OF THE MOST : L h 4 :
'Mpozggﬂl,ﬁg? OF A : i | ARITHMETIC :
’ ' - UNIT !
] 1 1
| 1 1
v Ct v
) T MEMORY > OUTPUT
INPUT
DEVICE SYSTEM DEVICE
DATA FLOW el SECONDARY MEMORY

LET'S CALL THESE THE
COMPUTER'S FIVE PRIMARY
SYSTEMS. AS YOU CAN SEE, THE
CPU CONTAINS BOTH THE CONTROL

UNIT AND THE ARITHMETIC UNIT.

THE COMPUTER'S FIVE PRIMARY SYSTEMS

DATA IS EXCHANGED THROUGH
THE INPUT/OUTPUT SYSTEM.

UH, THAT'S A LOT OF A - “
STUFF... SEEMS KIND _
OF DIFFICULT... '

I'LL GO THROUGH

THE FIVE SYSTEMS

ONE BY ONE, 5O
DON'T WORRY.

Q

16 CHAPTER 1 WHAT DOES THE CPU DO?

OUTPUT DEVICES, ON THE
OTHER HAND, ARE SYSTEMS
THAT TRANSLATE INTERNAL

DATA INTO AN EXTERNAL
REPRESENTATION.

MONITORS AND PRINTERS
ARE GOO0D EXAMPLES OF
HOME COMPUTER OUTPUT
DEVICES.

FIRST OFF, INPUT PEVICES
ARE SYSTEMS FOR
SUPPLYING THE COMPUTER

WITH INSTRUCTIONS AND
INPUT DATA.

THE KEYBOARD
AND MOUSE FOR
YOUR HOME
COMPUTER ARE
GREAT EXAMPLES.

I 1 GUESS IT'S TRUE THAT 1

INPUT INFORMATION USING
MY KEYBOARD AND ACCESS
INFORMATION BY LOOKING AT
MY MONITOR.

FURTHERMORE, WE TALKED
ABOUT THE ARITHMETIC UNIT
BEFORE, WHICH IS THE SYSTEM
THAT PERFORMS OPERATIONS
(OR CALCULATIONS).

THE NAME 1S
KIND OF SELF-
EXPLANATORY.

THE MEMORY
SYSTEM?
THE CONTROL

BUT HERE COMES AN
EXTREMELY IMPORTANT

FOR THE ARITHMETIC UNIT
TO WORK, IT NEEDS TO
COOPERATE WITH BOTH

THE MEMORY SYSTEM AND

THE CONTROL UNIT.

WHAT DO THEY DO?

THE FIVE COMPONENTS OF A MODERN COMPUTER 17

FIRST OFF, THE MEMORY
SYSTEM 1S RESPONSIBLE
FOR STORING AND

RETRIEVING DATA.

MEMORY COMES
IN TWO FLAVORS:
PRIMARY MEMORY AND
SECONPARY MEMORY.

" WHEN LEARNING ABOUT
THE CPU, WE'RE MAINLY
CONCERNED WITH
PRIMARY MEMORY.

PRIMARY MEMORY %
54y "MEMORY,” IT LOOKS 50X
W/fév gEENEEALLY MEAN LIKE THIS. o

. PRIMARY MEMORY.

°

* e 0 000
DOOOOOOOOOOOO0
® O 0 6 00 060000 00
* e 0 00

IT'S BECAUSE WHEN THE CPU
PERFORMS OPERATIONS, IT
ALWAYS NEEDS TO OPERATE ON
SOME TYPE OF INFORMATION
STORED IN MEMORY.

MEMORY... WHY IS THAT
SO IMPORTANT?

OPERATE ON
MEMORY?

18 CHAPTER 1 WHAT DOES THE CPU DO?

YES, BOTH THE DATA
THAT'S OPERATED ON AND

THE COMPUTER PROGRAM I '
ARE STORED IN MEMORY.
OPERATIONS USE THESE 4 COMNROL T
\TI T :
! N CPU
i ARITHMETIC
UNIT
INPUT DATA
OUTPUT DATA
DEPENDING ON PROGRAM
THE OPERATION, DATA MAY (INSTRUCTIONS)
BE RETRIEVED FROM MEMORY \ *
FOR INPUT, OR THE RESULT PRIMARY
OF THE OPERATION MAY BE MEMORY
RETURNED BACK INTO MEMORY

FOR STORAGE *
* THE CPU MAY USE EITHER REGISTERS OR CACHE MEMORY.

RETRIEVING AND RETURNING...
THE CPU REALLY EXCHANGES
INFORMATION!

el

PROGRAMS ARE
INSTRUCTIONS THAT
PEOPLE GIVE THE

COMPUTER. 1

BY THE WAY,
I'VE HEARD THAT WORD
PROGRAM BEFORE,
BUT WHAT IS IT?

INSTRUCTIONS ABOUT X
WHAT DATA TO USE, AND
WHICH OPERATIONS
TO RUN AND IN WHAT

1 SEE. PROGRAMS
ARE DIRECTIONS THAT
\ TELL THE COMPUTER
WHAT TO DO.

PLEASE DO
IT LIKE THIS.

PROGRAM
(NSTRUCTIONS)

ALL THOSE

INSTRUCTIONS \

ARE WRITTEN IN)
PROGRAMS.

THE FIVE COMPONENTS OF A MODERN COMPUTER 19

THERE'S ONE SYSTEM R
WE HAVEN'T TALKED heachenct
(ONTROS EVERYTy, ABOUT YET! o
§ TT T CONTROL UNIT [====7
| |
1] []]
I 1 [I IN
i] 1 1
v ! ! v
"x INPUT v v OUTPUT
e Memory | | ARITHMETIC
s UNIT '
el THE CONTROL UNIT
e aa N TELLS THE OTHER FOUR
:«f) ;;*:«:*:«' . N o ,;;:;:;¥ N SYSTEMS WHAT TO DO! IT
T M Xy <M ok Ay MM GIVES OUT INSTRUCTIONS
RN KN (00 XK, (K K AND CONTROLS THE
[T T TR COMPUTER,

THAT SEEMS PRETTY ARROGANT!
50 IT'S LIKE SOME KIND OF
OVERSEER THAT GIVES OUT

ORDERS LEFT AND RIGHT?

YEAH, THAT'S RIGHT. ALSO, LIKE
1 SAID BEFORE, PROGRAMS
ARE STORED IN MEMORY.

GET DATA FROM
OVER THERE!

THE CONTROL UNIT
READS THE PROGRAM
INSTRUCTIONS FROM
MEMORY AND INTERPRETS

THEN ADD THESE TWO!

AND THEN SAVE THAT SUM
OVER THERE!

IT GIVES ORDERS TO ALL
THE OTHER SYSTEMS, TELLING
THEM HOW TO PROCESS THE
PROGRAM'S INSTRUCTIONS.

20 CHAPTER 1 WHAT DOES THE CPU DO?

;/

OH, I SEE! 5O THE
CONTROL UNIT 1S5 B

NECESSARY BECAUSE IT)

MAKES SURE THAT... /

PROCESSED!

" THE PROGRAM'S
INSTRUCTIONS ARE

pd

EXACTLY. NOW WE'VE
GONE OVER ALL
FIVE SYSTEMS, BUT...

/

YEAH! NOW I KNOW WHAT
ALL THE THINGS IN THE
DIAGRAM ARE!

CPU

H
i

H i

: H ARITHMETIC

H : UNIT

' :
i
H

CONTROL [...
UNIT
o
H

TO UNDERSTAND
HOW THE cPU

; WORKS, DATA AND

: INSTRUCTION FLOW

SEEM REALLY

IMPORTANT...

A 4

Device

MEMORY
SYSTEM

INPUT

i

OUTPUT
PEVICE

RIGHT?

AND THE ARROWS
BETWEEN THEM ILLUSTRATE
DATA EXCHANGE AND
INSTRUCTION FLOW,

FUHAHARARA!
IT PLEASES ME
THAT YOU ARE
GRASPING THE
BASICS!!

=

///

WELL THEN!
LET US MOVE
ON TO THE
NEXT TOPIC!!

WOW, HE'S ALL KINDS
OF ENERGETIC...

HE MUST REALLY
LIKE CPUs.

THE FIVE COMPONENTS OF A MODERN COMPUTER 21

ALUs: THE CPU'S CORE

ALUs? NOT CPUs?

YOU'RE CATCHING WHAT'S THE DIFFERENCE?

ON PRETTY QUICKLY,
IT SEEMS.

50 LET'S TALK A BIT
ABOUT AlUs.

WELL, ALUs ARE WHAT N\ *.*.%,
PERFORM OPERATIONS |*, °
INSIDE THE CPU. o CONTROL UNIT CPU
x
4‘*:
X \ /
|
ARITHMETIC UNIT Q\
AL
ALUS ARE THE B ¥¥ . Y\ x 4‘.*
ARITHMETIC UNIT'S
PRINCIPAL COMPONENTS, /J.*.x.x - %.xox xox . oxoax
X X x . x ¥ X 2 X X ¥ ¥ x ¥ ¥
* ‘4‘4‘# -r* N ¥4'¥¥-¥{¥"¥{¥¥4 t-x 4(:*

YES, ALU 1S SHORT FOR
ARITHMETIC LOGIC UNIT.

OH! THAT SEEMS LIKE
IT'S SUPER IMPORTANT!

IT PERFORMS THE
ARITHMETIC AND LOGIC
OPERATIONS WE TALKED

ABOUT BEFORE.

2Z CHAPTER 1 WHAT DOES THE CPU DO?

AND THIS 1S WHAT ALUs

OR WHATEVER?

LOOK LIKE.
INPUT A INPUT B
5
COMMAND STATUS
INPUT/ OUTPUT
OPCODE
y
OUTPUT

UH... WHY 15 IT SHAPED
LIKE A BOWL OR A V SIMPLE!

IT HAS THE TWO INPUTS, A
AND B, WHICH IT COMBINES
USING AN OPERATION...

TO PRODUCE SOME
OUTPUT V.

OH, I SEE. 5O IF WE WANTED TO,
FOR EXAMPLE, CALCULATE 5 - 3 = 2,
WE WOULD HAVE S AND 3 AS INPUTS

AND GET A 2 AS OUTPUT, RIGHT?

SUBTRACTION

EXACD

AlUs: THE CPU'S CORE 23

50 THE COMMAND INPUT
F 1S WHAT WE WANT THE
ALU TO DO...

LIKE ADDITION OR
SUBTRACTION, FOR EXAMPLE.

INPUT INPUT

F S
COMMAND STATUS
INPUT/ OUTPUT
OPCODE
Y
OUTPUT

AND THE STATUS OUTPUT
S TELLS US HOW THE
OPERATION WENT.

THIS COULD BE
INFORMATION ON
WHETHER OUR OUTPUT

VALUE WAS POSITIVE OR
NEGATIVE, FOR EXAMPLE.

COMMAND
INPUT
SUBTRACTION

(_ VALUE

STATUS
OUTPUT

SO IN THE CASE OF 5 - 3 = 2,
SINCE THE RESULT OF THE
CALCULATION IS 2, THE STATUS

OUTPUT SHOULD SAY IT'S A
POSITIVE VALUE, RIGHT?

[PosTVE \

o

J

BUT WHY DOES ANYONE
NEED TO KNOW WHETHER
THE OUTPUT WAS POSITIVE
OR NEGATIVE?

DECISIONS BASED ON WHETHER

THAT'S A GOOD QUESTION. AS
A MATTER OF FACT, THE STATUS
OUTPUT CAN BE USED TO MAKE

THE OUTPUT SATISFIES SOME
GIVEN CONDITION,

DECISIONS?

24 CHAPTER 1 WHAT DOES THE CPU DO?

CONDITIONS?

CPUs PROCESS OPERATIONS AND MAKE DECISIONS [

" LET'S USE A
CONCRETE
EXAMPLE.

LET'S ASSUME THAT THIS
COMPUTER CONTROLS AN ATM.

ACCOUNT |}
STATEMENT|:

OH! I SEE
WHAT YOU
MEAN.

WHEN WITHDRAWING CASH,
THE COMPUTER HAS TO CHECK
THE CUSTOMER'S ACCOUNT
BALANCE AS WELL.

LET'S SAY THE 5 - 3 IN THIS
CASE MEANS, "AN ACCOUNT
BALANCE OF 4500 MINUS A

WITHDRAWAL OF $300.” /

50 THAT'S WHY THE
STATUS OUTPUT IS
SO USEFUL!

CPUs PROCESS OPERATIONS AND MAKE DECISIONS 25

AECAU‘:‘E WHAT HAPPENS AFTER

THE SUBTRACTION 15 DONE WILL BE
COMPLETELY DIFFERENT DEPENDING
ON WHETHER THE RESULT WAS
POSITIVE OR NEGATIVE.

IF THE RESULT 1S POSITIVE, THAT
MEANS YOU HAVE ENOUGH MONEY
IN YOUR ACCOUNT, SO THE ATM WILL
GIVE THE MONEY TO YOU.

BUT IF THE RESULT 1S
NEGATIVE, THAT MEANS YOU
TRIED TO WITHDRAW MORE

MONEY THAN WHAT WAS
AVAILABLE...

50 DEPRESSING...

AND YOU'LL GET A MESSAGE
SAYING THAT YOU HAVE AN
INSUFFICIENT BALANCE SO YOU
CAN'T WITHDRAW THAT AMOUNT.

THE OPERATION RESULT WAS POSITIVE.

THE OPERATION RESULT WAS NEGATIVE.

PLEAsE
l / YOUR marKE

MONE%

THAT'S IT! IN OTHER WORDS,
THE STATUS OUTPUT WILL TELL
YOU IF YOU HAVE ENOUGH
MONEY IN YOUR ACCOUNT TO
MAKE A WITHDRAWAL.

INSUFFICIENT
' BALANCE
—

THE CPU WILL MAKE A DECISION
BASED ON WHETHER THE
RESULT OF THE SUBTRACTION
WAS POSITIVE OR NEGATIVE

AND CHANGE ITS BEHAVIOR

26 CHAPTER 1 WHAT DOES THE CPU DO?

ACCORPDINGLY.

THAT'S HOW THE CPU IS ABLE
TO PROCESS OPERATIONS AS
WELL AS MAKE DECISIONS!

‘
C -

\ Z

cPY
NRE

YES, COMPUTERS ARE ABLE TO
PERFORM CERTAIN TASKS FASTER
THAN HUMANS, PROCESS AMOUNTS
OF INFORMATION FAR TOO GREAT

FOR HUMANS TO COMPREHEND,
AND SURPASS HUMANS IN MANY
DIFFERENT SKILLS.

OKAY! 50 IF YOU GIVE
THE CPU A PROGRAM,
IT WILL BE ABLE TO
PROCESS INSTRUCTIONS
AND MAKE DECISIONS.

AND BY REPEATING THAT

OF TASKS, RIGHT?

ISEE/ I FEEL LIKE I
UNDERSTAND THE CPU
A BIT BETTER NOW.

HMM, BUT I BET
THERE'S A LOT I STILL
DON'T KNOW.

PROCESS, COMPUTERS ARE FOLE\EE:)?EA?P@L%
ABLE TO PERFORM ALL KINDS NO OFFENSE...

CPUs PROCESS OPERATIONS AND MAKE DECISIONS

27

NO, I WAS SUPER
FRUSTRATED! I'M PROBABLY
SO MAD I WON'T BE ABLE TO
SLEEP TONIGHT!!!

I GOTTA STUDY MORE!

| " U@AA’—\'/

OF COURSE, I WAS A
LITTLE FRUSTRATED THAT
I LOST AT SHOGI...

BUT 1 SEE THE CPU
THAT BEAT ME AS
MY RIVAL!

WELL, I HAVE TO ADMIT 1 FIND
IT PRETTY FUN TO EXPLAIN
COMPUTERS TO OTHER
PEOPLE...

AND I WANT TO LEARN
EVERYTHING I CAN ABOUT
MY NEW RIVAL!

OH, I SEE! I THINK
I FINALLY GET
WHY YOU'RE SO
ENTHUSIASTIC ABOUT
EXPLAINING THIS

I... I MEAN, I SUPPOSE 1 FIND
IT AMUSING TO EDUCATE THE
IGNORANT MASSES FROM
TIME TO TIME. FUHAHAHAHAHA!

28 CHAPTER 1 WHAT DOES THE CPU DO?

YOU DON'T HAVE ANY
FRIENDS, RIGHT?
I'M RIGHT, AREN'T 1?7

ARE YOU
PITYING MEZ/ <

YOU'RE JUST HAPPY TO FINALLY HAVE
SOMEONE TO TALK TO, RIGHT? 1
UNDERSTAND THAT IT'S FUN TO HOLE
UP AND WRITE PROGRAMS ALL BY
YOUR LONESOME, BUT IT'S IMPORTANT

TO TALK TO PEOPLE, TOO...

IT'S OKAY-THIS IS A
GREAT OPPORTUNITY
FOR YOU! TEACH ME

OR I SHOULD SAY...
IF YOU DON'T,
YOU AREN'T GETTING
THIS BACK...

ABOUT CPUs!

HEHEHE...

DON'T TAKE IT
HOSTAGE!!

T'LL TAKE THAT AS A YES! <
LET'S GET STUDYING!

M| e o HEY! DON'T PUT
e B o WORDS IN MY MOUTH!!
HLLY T ali T'VE GOT A LIFE TOO!

WHAT IS5 INFORMATION ANYWAY?

Information technology (IT) became an everyday phrase back in the 20th century. The
term is frequently heard when people talk about the internet and other computer tech-
nology, but it's worth noting that this term predates the use of computers.

First off, what does the word information actually mean?To put it simply, information
is everything in our environment that can be registered with any of our five senses.

EVERYTHING THAT I CAN PERCEIVE IS INFORMATION!

NATURE
589

S
@)

%o
: ///t'///'

Everything that occurs in nature or in paintings, photographs, music, novels, news,
radio, TV broadcasts, and so on is an example of information. Most of these things have
been around for a lot longer than our society has had access to electricity. As information
spreads throughout society, it affects our lives.

Every day, people and organizations value useful information while trying to filter
out everything else. Information that is not important is called noise, and important
information is called signal. Finding ways to maximize the signal-to-noise ratio—that is,
the amount of signal in an output compared to the amount of noise—without accidentally
losing necessary information is important.

One type of information that historically has been important both to people and
organizations is information about food—what’s safe or healthy to eat, how to find or
grow it, and how far away it is or how much it costs to buy. Related information, such as
climate and weather forecasts, is also vital. Obviously, information like this was valued
long before the rise of the internet. For example, merchants like Bunzaemon Kinokuniya
from Japan’'s Edo period specialized in products such as citrus and salmon and thrived
because they valued this type of information. Indeed, the value of information has been
respected for as long as people have needed to eat.

However, the digital age has affected many aspects of life. How has it affected our
access to information? Well, thanks to the digitization of data, we are now able to process
diverse data like text, audio, images, and video using the same methods. It can all be
transmitted the same way (over the internet, for example) and stored in the same media
(on hard drives, for example).

30 CHAPTER 1 WHAT DOES THE CPU DO?

DIFFERENT TYPES
OF INFORMATION

THE]
INTERNET EXCHANGING DATA!

IN THE PAST,
K DIFFERENT MEDIA
WERE USED

FOR EACH.

COMPUTER ANOTHER DEVICE

Computers that are connected to the same network can exchange digitized informa-
tion. By using computers to match and analyze large sets of data instead of analyzing
each instance or type of data individually, people can discover otherwise hidden trends or
implications of the information.

Like the storage of data, information transmission has made incredible advances,
thanks to important discoveries in electronics and electrical engineering. Commercial
applications of this technology in devices such as telephones, radio, and television have
played a role in accelerating this development. Today, almost all of Japan enjoys digital
television, which uses digital transmission and compression technologies. CPUs play a
central part in these applications by performing countless operations and coordinating
the transfer of information.

THE DIFFERENCE BETWEEN ANALOG AND DIGITAL INFORMATION

We have been talking about digitizing data into 1s and Os so that information can be
processed by a CPU. But before they are digitized, text, audio, video, and so on exist as
analog data.

What is the difference between these two types of data? An example that illustrates
the difference is thermometers. Analog thermometers contain a liquid that expands as
it heats up, such as mercury or alcohol, in a gradated capillary tube that is marked with
lines indicating the temperature. To determine the temperature, we look at the level of
the liguid in the tube and compare it to the markings on the tube. We say that the analog
thermometer has a continuous output because the temperature reading can fall any-
where between the marks on the tube.

Digital thermometers use a sensor to convert temperature into voltage* and then
estimate the corresponding temperature. Because the temperature is represented numeri-
cally, the temperature changes in steps (that is, the values “jump”). For instance, if the
initial temperature reading is 21.8 degrees Celsius and then the temperature increases,
the next possible reading is 21.9 degrees Celsius. Because 0.1 is the smallest quantity
that can be shown by this thermometer, changes in temperature can only be represented
in steps of 0.1 and the value could never be between 21.8 and 21.9 degrees. Thus, digital
output is said to be discrete.

* Voltage is a way of measuring electric currents and is expressed in volts.

THE DIFFERENCE BETWEEN ANALOG AND DIGITAL INFORMATION 31

ANALOG DIGITAL

A DISCRETE VALUE 1S EXPRESSED IN

EVEN SMALL CHANGES ARE VISIBLE. A CERTAIN NUMBER OF DIGITS,

ATTENTION/ c)

— I]
- e |21 B,

AFTER 21.8°C COMES

HMM, IT'S

A BIT LESS - 21.9°C. THERE ARE NO
T\ THAN 22°¢, e" VALUES IN BETWEEN.

I THINK...

The word digital comes from the act of counting off numbers using our fingers—or
digits. This tends to lead people to believe that digital computers can only work with data
comprised of integers (whole numbers), which is not necessarily true.

In the digital world, everything is expressed in 1s and Os. Indeed, they are not
even what the CPU works with. Note that these are not actually numbers in this context.
Instead, a 1 and a O are merely symbols. The CPU consists of transistors that transmit or
inhibit electrical signals and consequently output either low or high voltages. It is these
voltages that we represent as 1 or 0. A high voltage is represented with a 1, since the
transistor’s state is “on,” and a low voltage, or an “off” transistor, is represented with a 0.
In text, you could illustrate this by using the symbols @ and O. The 1s and Os are called
primitives, meaning they are basic data types. Computers can work with decimal numbers
as long as the value has a finite number of digits. Values such as these are also digital.
The important thing to remember is that for any digital number, you can never add or
remove a quantity smaller than the smallest possible value expressible.

Let’'s compare some analog data and its digitized version to better understand how
they are alike and how they differ by looking at the figure on the next page. The first pair
of images shows audio data, and the second pair shows image data.

As you can see, every time we translate analog data into digital data, some informa-
tion is lost. But as you've undoubtedly experienced, most modern digitization processes
are so good that humans can't tell the difference between the original and the digital
copy, even when they are presented side by side.

To store and transmit digital data of a quality such that our senses can't detect any
loss of information, we use special compression techniques. These techniques always
involve trade-offs among how much space is used, how much information is lost during
compression, and how much processing time is needed to compress and decompress
the data.

32 CHAPTER 1 WHAT DOES THE CPU DO?

AUDIO WAVEFORM

e~ e

ANALOG DATA DIGITAL DATA

GRAPHIC OR VIDEO

{2 = §)

ANALOG DATA DIGITAL DATA

When color information is translated into digital form, it is split into
three base component colors, most often red, green, and blue (known
as RGB). These colors are combined to create a composite color on a
screen. Each component color can be represented by a number, with
larger numbers indicating there’s more of that color.

When heavily compressing audio or video data, we often use lossy techniques that
change and simplify the data in such a way that we usually do not notice a difference.
While this approach saves a lot of space, as the name implies, reconstructing the original
data perfectly is impossible since vital information is missing. Other techniques—most
notably all text compression techniques—use lossless compression, which guarantees that
the original data can be completely reconstructed.

In any case, with the appropriate arithmetic and logic operations, as long as the data
is digital, a CPU can use any compression technigue on any form of information. Although
digitizing data can involve the loss of some information, a major advantage of digital data
over analog data is that it allows us to control noise when transmitting the data.

AS LONG AS THE INFORMATION 1S
MADE UP OF 15 AND Os, T'LL KEEP
APPLYING OPERATIONS!

THE DIFFERENCE BETWEEN ANALOG AND DIGITAL INFORMATION 33

4

DIGITAL OPERATIONS

(The Computer’s World Is Binary)

okayl | BuT THAT ALSO MEANS
TODAY |15 YOU HAVE TO TEACH ME
MY TREAT! ABOUT CPUs!

WOW... YOU'RE
PRETTY PUSHY...

I DON'T KNOW WHY 1
AGREED TO MEET YOU
AFTER SCHOOL.

DOES THAT MEAN YOU'RE
NOT A SHUT-IN ANYMORE?
50 YOU'RE AN EX-
HIKIKOMORI* NOW??

couLp you
PLEASE SET YOUR
CRAZY-SWITCH TO
OFF FOR ONCEZ?/

FROM SOCIETY, REFUSING TO LEAVE THEIR
HOMES FOR MONTHS OR EVEN YEARS.

THE RECIPROCAL STATES OF 1 AND O

LAST TIME, YOU SAID,

Y| 'COMPUTERS LIVE IN A WORLD
OF 15 AND Os,” BUT THAT WAS
ALL PRETTY ABSTRACT. "

OKAY, LET ME START
OFF WITH A QUESTION!

WHAT DO YOU
MEAN BY 15 AND Os
ANYWAY?

TWO RECIPROCAL
STATES...

GOOD QUESTION... YOU CAN
THINK OF 15 AND Os AS TWO
RECIPROCAL STATES THAT
ARE OPPOSITES.

YOU MEAN LIKE
LIGHT AND DARK,
LIFE AND DEATH, OR
ON AND OFF?

? THEY'RE MORE LIKE
INDICATORS THAN
NUMBERS, REALLY.

VOLTAGE

—> TIME
VOLTAGE CHANGES WITH TIME

TO PUT IT ANOTHER WAY, THE
VOLTAGES IN COMPUTER CIRCUITS
GENERALLY FALL INTO TWO BANDS.
HIGH VOLTAGES ARE CLOSE TO THE

SUPPLY VOLTAGE, AND LOW VOLTAGES

ARE CLOSE TO GROUND.*

* GROUND 1S THE
REFERENCE POINT FOR
VOLTAGE AND IS EQUIVALENT

TO ZERO VOLTS.

37

I SEE!

IF IT'S JUST TWO YEAH.
VOLTAGES, IT'S ALL
PRETTY CLEAR THEN.

©) /1
(Y ()

ALL COMPUTERS USE
THESE TWO VALUES (O AND 1,
OR LOW AND HIGH*) WHEN

THE VOLTAGE IS
EITHER LOW (O) OR

HIGH (. IT'6 REALLY |
SIMPLE! 7 PERFORMING OPERATIONS.

* IN THIS BOOK, WE'LL TREAT LOW AS O AND HIGH AS 1, BUT IT'S
POSSIBLE TO DO IT THE OTHER WAY AROUND AS WELL. IT'S UP

TO THE SYSTEM DESIGNER AS TO WHICH ASSIGNMENT TO USE.

DECIMAL V5. BINARY
NUMBER SYSTEMS

HEHEHE! NARROW-MINDED,
FOOLISH HUMAN!

HMM... BUT WHAT CAN YOU
REALLY DO WITH JUST
15 AND 05?2

WOULDN'T YOU
ONLY BE ABLE TO
DO VERY SIMPLE

CALCULATIONS?

COMPUTERS AND HUMANS
THINK IN DIFFERENT WAYS!

HUMANS USE THE DECIMAL

NUMBER SYSTEM, WHICH
USES THE TEN DIGITS

FROM O TO qa.

DECIMAL BINARY
(OR BASE 10) (OR BASE 2)

BUT COMPUTERS EXPRESS ALL
NUMBERS IN B/INARY USING
ONLY 15 AND Os.

38 CHAPTER Z DIGITAL OPERATIONS

AS YOU CAN SEE,
DECIMAL | BINARY YOU DON'T NEED MORE
THAN 15 AND Os!!
0] 0)
I
2| o)l
3 [D b WOW, IT REALLY 15
ONLY 15 AND Os! BUT
4| 100 er THE NUMBER OF DIGITS
5l 101 INCREASES REALLY FAST
IN BINARY...

6 110
g[7o00]) 55
8 1000 ’

@;ﬁ‘ﬁ"\ C Q1001

'/(101010 BY THE WAY, A BINARY DIGIT
1111011 (A1ORAO)I5 ALSO CALLED A
. . BIT IN COMPUTER TERMINOLOGY.
: THAT'S REALLY IMPORTANT, SO
/ |
COMPARING DECIMAL DONT FORGET IT!
AND BINARY
COME NOW, ARE YOU
PREPARED TO DIVE
INTO THE WORLD OF

15 AND 05?1
A FOUR-DIGIT BINARY NUMBER

IS FOUR BITS.

50 TO EXPRESS THE
DECIMAL NUMBER 9, WE
WOULD NEED FOUR BITS

(100D, RIGHT?

1 WONDER IF
HE'S ALWAYS
THIS HYPER...

EXPRESSING NUMBERS IN BINARY

Well then, let’s learn the basics of binary, or base 2, math! Let’s start by thinking about the
decimal, or base 10, system that we use every day. For example, the number 356 is divided
up, and then each digit is multiplied by successive powers of ten to get the final value.

6

5
«10" + 6x10°

2
3x10° +
ANANA AN AN
HUNDREDS TENS ONES*

|3
5

Okay! It's really easy if | think of the digits like different coin denominations: 356 yen is just
three 100-yen coins (10?), five 10-yen coins (10?), and six 1-yen coins (10°) added together.

That's right. The next step is to apply that same logic to binary. We just swap the 10 in our
decimal calculations for a 2 in the binary case to get the appropriate factors for each digit.

Take a look at the following illustration.

* Any number to the power of zero is equal to one. For example, 10° = 1, and 2° = 1.

40 CHAPTER Z DIGITAL OPERATIONS

(1011]

Ix2? +0x22 + 1x2] + 1x27

EIGHTS FOURS TWOS ONES

8+0+2+1 =@CDECIMAL)

Uh-huh! | don't think anyone uses coins like this, though. But if someone did, | would just
take either 1 or O of each of the 8-yen, 4-yen, 2-yen, and 1-yen coins, right?

So the hinary 1011 translates to 8 + 0 + 2 + 1 = 11 in decimal. As soon as you under-
stand the basic principle, it's easy!

By the way, this calculation also works for fractional expressions. Take a look at this.

014

0x10° + 1x107 + 4x107

ONES ONE-TENTHS ONE-HUNDREDTHS

In decimal, each digit after the decimal point has factors using negative powers. One-
tenth (0.1) is 10, one-hundredth (0.01) is 102, and so on.

So, it's the same reasoning with binary, right? We would use 2%, 2%, 27 and so on as we
add more digits after the decimal point. So the factors would be one-half (0.5), one-fourth
(0.25), one-eighth (0.125), and so on. It seems a bit cumbersome, but | think | get it.

THE COMPUTER'S WORLD 1S BINARY 41

FIXED-POINT AND FLOATING-POINT FRACTIONS

Next up, I'll teach you a really important concept. In computers, there are two ways to
store fractions—either fixed point or floating point.

When using extremely small values like 0.00000000000000 . .. 001 or very large
values like 2000000000000000. .. ., it's a lot more practical to use floating-point
fractions.

Hmm . .. why is that? What's the difference?

Well, for example, instead of writing a hillion in decimal as 1,000,000,000, you could write
it as 10° to save some space, right? And if you had a number like 1,230,000,000, you could
represent it as 1.23 x 10° instead. We call this form scientific notation or standard form,
where the nin 10" is called the exponent and the 1.23 is called the significand. Floating-
point numbers use scientific notation when storing values.

In contrast, fixed-point numbers express values the way we're used to, with a decimal
point. When expressing integers with this method, you can imagine the decimal point being
at the far right of the number. Here's a comparison of the two.

FIXED POINT FLOATING POINT
123. " Fonr 1.23x 702
1230000 1.23x 10°
0.00000123 1.23x 10

42 CHAPTER Z DIGITAL OPERATIONS

Oh, okay. So if youre using fixed-point fractions to express really large or really small
numbers, the number of digits you need increases by a lot. But if you're using floating-
point, only the exponent gets bigger or smaller while the number of digits stays the same.
Yeah, that's really useful!

That'’s right. That last example was in decimal, but since computers use binary, the prin-
ciple becomes even more relevant. The most common variant used is this one.

n
smege 1.69 x 20
ANANANANN ANNN

SIGNIFICAND BASE

An example of floating-point representation inside a computer
(using a base 10 number as the significand for illustration)

| used the decimal 1.69 just to make it easier to understand. The number would be in
binary in a computer. The important part here is that this significand always has to be
greater than 1 and less than 2.

Hm . . . so this representation makes it easy for computers to handle extremely small and
extremely large numbers. Theyre also easy to use in calculations, right?

Yes! And it's also important to understand that the speed with which you can calculate
using floating-point numbers is critical to CPU performance. Gaming systems that process
real-time, high-fidelity graphics also use floating-point arithmetic extensively. (See “CPU
Performance Is Measured in FLOPS” on page 137 for a more detailed explanation.)

Generally, scientific calculations require an accuracy of only around 15 digits, but in
some cases, 30 are used. Some modern encoding algorithms even use integers of up to
300 digits!

Ugh ...l don't think | could do those calculations in my head. | hate to lose to computers,
but | hope they're at least advancing some fields of science!

THE COMPUTER'S WORLD 15 BINARY 43

ADDITION AND SUBTRACTION IN BINARY

It's finally time to talk about binary arithmetic. Let's start by thinking about addition. First
off, adding two bits works like this!

0+0=0, 0+1=1, 1+0=1, 1+1=10

Okay, that's easy! The last equation, 1 + 1 = 10, means that we carried the 1 to the next
place value and the first digit became O, right?

|

CARRIED TO
THE NEXT PLACE
VALUE

=~

Yeah. If you understand how to add one bit to another, you should be able to understand
calculations with more digits, as well. For example, when adding the binary numbers
(1011), + (1101),* you just need to start from the right and work your way to the left,
carrying digits as you go. Take a look here.

1011
1101
77000

DON'T
FORGET
TO CARRY
THE 15!

CARRY

Uh-huh, | just have to be careful with the carries, right? Binary addition is pretty simple!
Or, it might just be my genius shining through.

Hey! Okay then, let's take a look at subtraction next. When doing subtraction, it is impor-
tant to learn how to create negative values using a technigue called two’s complement.

Adding the two’s complement (a number that corresponds to the negative version of
a number) of a binary number A to another binary number B is the same as subtracting A
from B!l What do you think—pretty cool, right?

* ()2 means the number is in binary representation, and ()10 means it's in decimal representation.

44 CHAPTER Z DIGITAL OPERATIONS

Ahh ... I'm sorry to stop you when you're on a roll, but | didn't understand that at all.

What are you talking about?

Let’s start out slow in decimal. First off, let’s agree that subtracting 15 is the same as add-
ing -15. But what would you do if you weren't allowed to use the minus sign at all? Is there
some other number that we can use to represent the number -15?

|.. .l have no idea. Stop putting on airs and just teach me already!

Where did your genius go? Well, have a look at these two equations then.

EQUATION A

15
+(15)
0

AN\

EQUATION B

15
+(85)

100

IGNORE!

Looking at just the final two digits of these equations, we see that the result of equa-
tion A'is 0 and the result of equation B is 00. We could therefore say that for the last two
digits, the results of 15 + (-15) and 15 + 85 are the same!

Whaaa . .. ? You're right, 0 and 00 are the same! But what happens to the 1 in the equa-

tion B result of 1007

Hah! Since we're doing two-digit math at the moment, we don't care about digits that carry
over beyond those two. Just pretend you can't see them! We call those overflow, and we

just ignore them.

What kind of twisted reasoning is that? Is that even allowed?

THE COMPUTER'S WORLD IS BINARY 45

Heh heh heh! Surprised? In situations like this, we say that 85 is the ten's complement of
15. In other words, we say that a number’s complement in some base is the smallest num-
ber you have to add to the original number to make the number’s digits overflow. As the
name suggests, you can think of the numbers as “complementing” each other to reach the
next digit. And this complement corresponds to the original value’s negative form. So in
this case, 85 is essentially equal to -15.

Let’s take another example. When calculating 9647 - 1200 = 8447, we might

as well calculate 9647 + 8800 = 18447 and ignore the carry. That's because in
the result we see that the lower four digits are the same. Therefore, we can use
8800 as the ten’s complement of 1200 during addition to get the same result as
we would get using subtraction.

Uhh . .. this is getting pretty hard to grasp! So using complements, we can perform sub-
traction by adding instead. | suppose that might be useful. So what happens if we try this
far-fetched solution with binary numbers?

It's not far-fetched—it's awesome! It’s logical!! Let me show you how to do it in hinary.

ADD THE TWO NUMBERS:
IF THE RESULT 15
O (IGNORING THE
OVERFLOW), IT MEANS
THE NUMBERS ARE
COMPLEMENTARY.

1010 1000
+ 01011000
1enore! -(1)0000 0000

As you can see, when you add two binary numbers and ignore the overflow, the two
numbers are complementary if the result equals 0. To subtract a number, simply add its
complement instead.

Okay, but finding the complement seems kinda hard. . . .

Don't worry, there is a really easy way to find a two’s complement. Just follow these steps.

46 CHAPTER Z DIGITAL OPERATIONS

~—————————— LET'S FIND THE TWO’S COMPLEMENT TO DO SUBTRACTION! ———

Step 1: Invert all the digits of the first number from 1 to 0 and vice versa. (This is also
called finding the one’s complement.)

Step 2: Add 1 to this inverted version of the number, and you'll end up with the two’s
complement!

Sweet! | tried finding the complement of that last example. Using this method, it was easy.

STEP1 STEPZ2

10101000 01010111
A A P
01010111 01011000 flowmse)

Computers (actually the ALUs) use these two steps all the time for arithmetic operations
(addition and subtraction). The only difference is that most ALUs perform subtraction by
adding the first number and the inverted second number. Then, they add 1 to that sum.

FLIP
ALL THE
il

The order of operations is different, but the end result is the same, right?

And since computer calculations only deal with 1s and Os, this method is both really

simple and incredibly fast at the same time.

| see. So there are some merits to binary, | suppose!

BY THE WAY... DON'T Dt

FRENCH FRIES KINDA
LOOK LIKE 15 AND
ONION RINGS KINDA
LOOK LIKE 052

THIS MUST BE LIKE...
BINARY IN THE FRIED-
FOOD WORLD/

THE COMPUTER'S WORLD 15 BINARY 47

(What Are Logic Operations? J

[IS8 X I |"
INTEGRATED CIRCUITS CONTAN \l
S

LOGIC GATES
/ P
/%

B 3
WELL THEN, LET'S A\ HA\ZRAGTC?;;':UL
GET INTO TODAY'S LOOK AT THESE!!

MAIN TOPIC.

THIS IS AN EXTREMELY IMPORTANT
ELECTRONIC COMPONENT CALLED
AN INTEGRATED CIRCUIT (IC).

DON'T BRING BUGS
INTO RESTAURANTS!!

THEY'RE
NOT BUGS!

¥ XX ¥ ¥

KX X X K M

¥ K K x

THEY'RE INSIDE MANY N LONG TIME, NO SBEL - (nnireis]

DIFFERENT BLECTRONICS.. /&y ey

™ t xR K K

x \ / ‘i‘:%:l:i:

> A

S a x

X CP U RSN SEIEN

x BN RSN IR I N

* ’ ‘ rl* Ty

:, == NG o) LRI

:::,,:::*‘:I::*:iﬁ:l:i:; EVEN CPUs ARE JUST
¢ * ¥(x. S - «

T M e s e T co\A/AEéTcAA?;éNﬁg@A;ADTED

48 CHAPTER 2 DIGITAL OPERATIONS CIRCUITS.

THEY'RE CALLED PINS, AND

EVEN SO, THIS BUG...
THIS IC... SURE HAS A LOT
OF SILVERY LEGS...

THEY ARE THE PATHS IN AND
OUT OF THE CIRCUIT.

DIGITAL ELECTRONIC
SIGNALS TRANSMITTED AS 15
AND Os (HIGH AND LOW VOLTAGE)
PASS THROUGH THESE PINS AS
INPUT AND OUTPUT.

OH, 5O THEY'RE
NOT JUST
DECORATIONS
THEN.

AND HERE'S THE
IMPORTANT PART!

000110114

LO AND BEHOLD! INSIDE, THE CIRCUIT
PERFORMS LOGIC OPERATIONS ON
THE 15 AND Os ON THE INPUT PINS AND

PRODUCES THE APPROPRIATE 15 AND Os

ON THE OUTPUT PINS!!

LOGIC OPERATIONS...? \LL
THAT SEEMS
EVEN MORE

COMPLICATED THAN

THOSE ARITHMETIC

OPERATIONS...

THERE'S NO NEED TO l
GET SO DEFENSIVE
ABOUT IT. LOGIC
OPERATIONS ARE REALLY
SIMPLE AND EASY TO
UNDERSTAND.

NO, I'VE DECIDED TO
THINK LOGICALLY,
SO THAT'LL MAKE

UNDERSTANDING

THEM A BREEZE!!

.1 THINK?

WHAT ARE LOGIC OPERATIONS? 49

FIRST, I WANT YOU TO GET
THE GENERAL IDEA. THE
INSIDE OF AN INTEGRATED
CIRCUIT LOOKS SOMETHING
LIKE THIS...

[14] [13] [r2] [i7] o] [9] [8]

L

L 2] 3] [&] Ls]
Scryy,
A DIAGRAM OF THE ’\ T 1\ “

INSIDE OF THIS CHIP

THIS 1S A 74L508 D)
INTEGRATED CIRCUIT.
5CRITCH

NOW LET'S FOCUS
ON ONE OF THOSE
SYMBOLS.

HMM. YEAH, I CAN
SEE THAT THERE ARE
FOUR SYMBOLS THAT

LOOK THE SAME,

AND THEY SEEM TO
BE CONNECTED TO
THREE PINS EACH...

LOOKING CLOSELY,
YOU CAN SEE THAT THEY
EACH HAVE TWO INPUTS

AND ONE OUTPUT. WE CALL

EACH OF THESE PINS A

LOGIC GATE.

: ATTENTION!

INPUT A —d]
INPUT B —— OUTPUT

I SEE,
SO THAT MEANS...

50 CHAPTER Z DIGITAL OPERATIONS

EACH LOGIC GATE
IS LIKE A MAGIC

BOX WHERE YOU

GET SOME OUTPUT INPUT A —
IF YOU PUT THINGS
INTO THE INPUTS!
INPUT B ——

LOGIC GATE — OUTPUT Z

EACH INPUT AND

AND OUTPUTS ARE,
OF COURSE,
15 AND Os,

THE OUTPUT CAN
EITHER BE 1 OR O.

YEAH, THAT'S
RIGHT.

THE THREE BASIC LOGIC GATES:
AND, OR, AND NOT

LET ME USE YOUR
MAGIC BOX
ANALOGY AS WE
GET INTO THE
SPECIFICS.

/ THE MOST BASIC

LOGIC GATES ARE THESE:
THE AND GATE, THE OR GATE,
AND THE NOT GATE.

OR

=) -

MEMORIZE ALL OF
THEM TOGETHERY

ALL OF THEMZ?
15 THIS A
BOOTCAMP?!

DON'T WORRY,
THESE GATES' RULES ARE
REALLY SIMPLE.

OF IT LIKE AN

ORAL EXAM!

LET'S ASSUME THAT THE
INPUTS ARE REPRESENTED
BY TWO INTERVIEWERS
WHO CAN GIVE EITHER A
PASS OR A FAIL...

AND THAT 1 MEANS A
PASS AND O MEANS A
FAIL IN THIS CASE.

SOUNDS
STRESSFUL...

IN THE CASE OF AN AND GATE, THE
OUTPUT WILL ONLY BE A1 (PASS) IF
BOTH INPUTS ARE 15 (PASSES). IF
EITHER INPUT OR BOTH ARE O (FAIL),
THE OUTPUT WILL ALSO
BE A O (FAIL).

50 IF BOTH DON'T GIVE
A PASS, THE RESULT
WILL BE A FAIL...

FOR AN OR GATE, IF
AT LEAST ONE OF THE
INPUTS IS A 1 (PASS),
THE OUTPUT WILL BE
A1 (PASS).

50 IF EVEN A SINGLE
INPUT GIVES A PASS, IT

MEANS YOU PASSED.
WHAT A RELIEF...

52 CHAPTER Z DIGITAL OPERATIONS

THE NOT GATE WILL FLIP
THE INPUT. 50 AN INPUT OF @ NOT “\‘\
1 (PASS) WILL GIVE THE 0
OUTPUT O (FAIL). < O

REALLY??Z SO IT
ALWAYS COMPLETELY
DISREGARDS THE
INTERVIEWER'S
OPINION?!

I'M STILL SHOCKED BY THAT
LAST NOT GATE. I WONDER

HOW THE INTERVIEWER
MUST BE FEELING...

...WELL YEAH, IT'S
JUST HOW LOGIC
GATES WORK.

BUT THE IMPORTANT PART IS
THAT YOU UNDERSTAND THAT
EVEN WITH THE SAME INPUT, AND
AND OR GATES CAN PRODUCE
DIFFERENT OUTPUTS.

TRUTH TABLES AND
VENN DIAGRAMS

HAH! I HAVE SOMETHING

I WANT TO SHOW YoU!

BUT THERE ARE EVEN MORE
PATTERNS, RIGHT? LIKE WHERE
BOTH INPUTS ARE Os (FAIL),

A TRUTH TABLE SPANNING

THE OUTPUT WOULD STILL ALL POS5IBLE PATTERNS!!
HAVE TO BE A O (FAIL), RIGHT? IT'S A TABLE CONTAINING

JUST THINKING ABOLUT IT IS ALL POS5IBLE INPUT/OUTPUT

MAKING ME DEPRESSED... COMBINATIONS!

WHAT ARE LOGIC OPERATIONS? 53

THIS 1S IT!
BURN IT INTO
YOUR MIND!!!

TRUTH TABLE FOR
THE AND GATE g 4D_Z

INPUT OUTPUT

IF BOTH A AND B ARE O,
THE OUTPLUT 15 O.

o)
O «— IFAISTANDBIS O,
0
1

THE OUTPUT 1S O.

«— IFAISOANDBISY,
THE OUTPLUT 1S O.
IF A AND B ARE BOTH 1,
THE OUTPUT IS 1.

== OO

OOOH! YOU CAN SEE ALL THE
INPUT AND OUTPUT POSSIBILITIES.
THAT'S SUPER USEFUL!

YES, BUT THE IMPORTANT
THING HERE |15 THAT THESE
VENN DIAGRAMS ILLUSTRATE /-

TWO STATES. "

ALSO, WHEN THINKING
ABOUT LOGIC GATES,
VENN DIAGRAMS ARE
REALLY HANDY.

ASSUMING
g THE WORLD CONSISTS
OH, I REMEMBER ONLY OF REGIONS
THOSE FROM WITHOUT COLOR (0
JUNIOR HIGH. OR WITH COLOR (...

..THEN USING VENN o e THAT'S RIGHT.
DIAGRAMS, WE CAN A AND B INTERSECT. LET'S USE THIS
VISUALIZE THE 15 \ 10 e A
AND Os. NICE! LOOK AT THE
THREE LOGIC

"""""" GATES AGAIN
ALL AT ONCE,

SHALL WE?

THE AREA INSIDE THE
RECTANGLE IS A WORLD
OF ONLY 15 AND Os.

54 CHAPTER Z DIGITAL OPERATIONS

A SUMMARY OF THE AND, OR, AND NOT GATES

Let's summarize the first three basic gates. Let's look at the symbols, truth tables, and
Venn diagrams as sets!

{ AND GATE (LOGIC INTERSECTION GATE) }
SyMBOL TRUTH TABLE VENN DIAGRAM
A B 2 A B
A—D_ 2 0 0] 0]
B— 0 1 0
INPUTS OUTPUT 1 0 0
1 1 1 Z=A'B

AND gates output 1 only when both inputs are 1, and they are sometimes expressed
in equation form as Z = A - B. The symbols used to represent AND are those for logical
intersections: - or N.

{ OR GATE (LOGIC UNION GATE) }

SYMBOL TRUTH TABLE VENN DIAGRAM
A B 2 A B
A :D_ 2 0l 0|0
B 0 1 1
INPUTS OUTPUT 1 0 1
T 1 [1 Z=A+B

unions: + or U.

OR gates output 1 when either input or both is 1, and they are sometimes expressed
in equation form as Z = A + B. The symbols used to represent OR are those for logical

WHAT ARE LOGIC OPERATIONS? 55

)

{ NOT GATE (LOGIC NEGATION GATE)]

SYMBOL TRUTH TABLE VENN DIAGRAM
A | Z A
A —l>o— 2 0|1
INPUT OUTPUT ! O
Z2=A

NOT gates output O only when the input is 1, and they are sometimes expressed in
equation form as Z = A. The symbol used to represent NOT is the one for logical negation

Ohh! So you can also write them as A - B, A + B, or A. | think | understand all these
forms now.

(complement)

THIS WHITE CIRCLE
INDICATES THAT O AND 1
SHOULD BE FLIPPED!

Good. Be extra careful about this though! In the examples here, we showed AND and OR
gates having only the two inputs A and B, but it's not uncommon for these gates to have
three or more inputs.

SOMETIMES | ——

MORE THAN < ——1

THREE! B ’)‘
\ SIGNAL

PATHWAYS

In these cases, we require that all inputs of the AND gate be 1 for the output to be 1.
In the case of OR gates, we require that at least one input be 1 for the output to be 1.

So these input and output lines are called signals and can either be a 1 or 0. That’s easy to
remember.

56 CHAPTER Z DIGITAL OPERATIONS

OTHER BASIC GATES: NAND, NOR, AND XOR

NAND NOR XOR

) >-

OKAY, LET'S TAKE A
LOOK AT NAND, NOR,
AND XOR* GATES NEXT.

:
v

WHATZ/

57

ARE YOU JUST GOING TO 4
TAKE THAT BACK? LIAR!
THERE'S EVEN MORE

OF THEM?!

* XOR IS WRITTEN AS EOR OR EXOR IN SOME CASES.

YOU JUST SAID THAT AND, OR,
AND NOT WERE THE THREE
BASIC GATES...

STOP WHINING
AND CALM
DOWN!!
YOU SHOULD KNOW EVEN MORE
ABOUT NAND, NOR, SOMETHING [‘ ZEALOUS THAN
AND XOR, TOO. yoUuLl REALIZE Y USUAL!

AFTER YOU LEARN
ABOUT THEM/Y w
\,l

AND THE

REASON IG/

WHAT ARE LOGIC OPERATIONS? 57

A SUMMARY OF THE NAND, NOR, AND XOR GATES

Okay, let’s talk about the other basic gates. These gates are really just combinations of
AND, OR, and NOT gates!

'—[NAND GATE (LOGIC INTERSECTION COMPLEMENT GATE)]—

SYMBOL TRUTH TABLE VENN DIAGRAM
A B Z A B
] z
B 0 | 1
INPUTS OUTPUT 1 0] 1
1 1 0 2=A'B

THE SAME!

The NAND gate is an AND gate wired to a NOT gate. The NAND gate’s output is therefore

the output of an AND gate run through a NOT (negation) gate. It's sometimes written
as the equation Z = A-B.

[NOR GATE (LOGIC UNION COMPLEMENT GATE) }
SYMBOL TRUTH TABLE VENN DIAGRAM
A B Z A B
B 0 1 0
INPUTS OUTPUT 1 0] 0
[1 0 Z=A+B

58 CHAPTER 2 DIGITAL OPERATIONS

N OR OR NOT

The NOR gate is an OR gate wired to a NOT gate. The NOR gate’s output is therefore the

output of an OR gate run through a NOT (negation) gate. It's sometimes written as the
equationZ = A+B.

[XOR GATE (EXCLUSIVE LOGIC UNION GATE) }
SYMBOL TRUTH TABLE VENN DIAGRAM
A B z A B

D |5
B 0 1 1
INPUTS OUTPUT 1 0 1

1 1 0] Z2=A®B

THE SAME!

5) -
XOR

The XOR gate outputs 1 only when the inputs A and B are different. This gate is some-
times written as the equation Z = A © B.

The XOR gate’s function is shown in the schematic above, where you see a combina-
tion of AND, OR, and NOT gates. The X in XOR stands for exclusive.

Oho! You were right. These gates really are just combinations of the three basic gates.

WHAT ARE LOGIC OPERATIONS? 59

DE MORGAN'S LAWS

This might be kind of off topic, but don't you feel a certain fascination whenever you hear
the word theorem or law? It's so charming and cool, | can't help but feel my heart throb
wistfully every time. . . . Well, let me tell you about an important theorem: De Morgan’s
indispensable laws for logic operations. Here it is!

DE MORGAN'S THEOREM
A-B
A+B =

@

.|.

I
> >
™

Aah, | might have eaten a little too much today. But fast food can be really good some-
times, don't you think?

Stop ignoring me! Well, | suppose formulas like this can look complicated at first glance. . . .
Let's start with the important part. This law basically just says a NAND gate is the same
as using an OR gate on each input’s complement, and a NOR gate is the same as using an
AND gate on each input's complement. Does that make it clearer?

60 CHAPTER Z DIGITAL OPERATIONS

Yeah! | can see that the left and right sides have big differences in how they use - (AND)
and + (OR). So according to De Morgan’s law you can swap AND for OR operators and vice
versa by using complements.

A B oy 5]

A-B=A+8B A+B=A'B
That's it! It also means that we can use De Morgan’s laws to show our circuits in different

ways. Using this technigue, it's easy to simplify schematics when necessary. Here are some
conversions using De Morgan'’s laws.

:DO— NAND :D—

BOTH OF THESE ARE NAND GATES!

NOR

D - & I

BOTH OF THESE ARE NOR GATES!

But they're completely different! Is there really no problem even though the left and right
side look nothing alike?

Yeah, the expressions might be different, but their functions are the same. Since logic gates
(digital gates) only work with 1s and Os, everything stays logically the same even if you
switch out all the gates. We're just leveraging that particular feature of the math.

| see. ... Then you won't mind if | just rewrite all of them? This is a law | like!

WHAT ARE LOGIC OPERATIONS? &1

(Circuits That Perform Arithmetic J

THE ADDITION CIRCUIT

d HEH, IT SEEMS T'VE
FINALLY MASTERED
ALL THE GATE
SYMBOLS...

...............
e o o o o o fu

SORRY
ABOUT THAT.

BUT IF YOU'RE
g REALLY SATISFIED WITH
SCRIBBLES LIKE THOSE, THEN
I SUPPOSE YOU'RE STILL FAR
FROM UNDERSTANDING THE
SUBTLETIES OF LOGIC @ATE}

HEY, THAT'S RUDE!

LOGIC GATES AREN'T GOOD FOR
ANYTHING UNLESS YOU MAKE A CIRCUIT
THAT ACTUALLY DOES SOMETHING USEFUL!!

WHA-WHAT DO YOU MEAN?!

R 7

62 CHAPTER 2 DIGITAL OPERATIONS

HERE IS A CIRCUIT THAT
ACTUALLY DOES SOMETHING
WORTHWHILE!

TAKE A GO0D LOOK AT
THE MAGNIFICENCE OF THIS
HALF APDER CIRCUITI!

THIS 1S A VERY
OLD, RUDIMENTARY
CIRCUIT BUT...

A USEFUL ONE
THAT PERFORMS
ADDITION.

BUT I DON'T SEE
HOW IT CAN ADD
NUMBERS...

IT DOES FEEL A BIT
MAGNIFICENT, ALL WIRED UP
LIKE THAT... I SEE IT'S USING
AND AND XOR GATES!

I-I WILL LET YOU
EXPLAIN IT TO ME!

IF YOU WANT ME
TO TELL YOU, JUST
SAY SO...

THE HALF ADDER

Let me explain what the half adder | showed you is all about (though | suspect you won't
need that much explanation at this point). First off, do you remember single-bit addition?

0+0=0, 0+1=1, 1+0=1, 1+1=10

If we bundle all of these together, it kind of starts to look like a truth table, doesn't it?
Let’s treat the two bits as inputs A and B, and let's standardize our output to two digits. So,
an output of 1 looks like 01.

B OUTPUT

A

0+0=00
0+1=01
1+0=01

" _|_ ‘, " (THE DIGIT 15

CARRIED.)

THE LOWER DIGIT

Well then, do you notice anything? Pay special attention to the gray area.

Wh—what? Could it be . .. ? The lower digit output... it looks just like an XOR gate’s truth
table (see page 59)! XOR produces an output of 1 only if the inputs are different, right?

64 CHAPTER Z DIGITAL OPERATIONS

That's correct. This time, look only at the upper output digit.

A B OUTPUT

0+0=00
O+1=0T1
1+0=01
1+1

" (THE DIGIT 15
CARRIED.)

THE UPPER DIGIT

Hmm, that looks just like the truth table for an AND gate (see page 55)! An AND gate’s
output is 1 only when both inputs are 1. . . .

That must mean that by combining an XOR and an AND gate, we can get two outputs
(one for the upper digit and one for the lower digit) and perform single-hit addition!

As soon as you get that part, it seems really easy, right? The lower digit comes from output
S, and the upper digit comes from output C. In this case, S stands for sum, and C for carry.

INPUT ’—‘)) > OUTPUT (THFE VALU)E
INPUT 7 Z oA
D_— o U'EPUT (CARRY)

HALF ADDER

This is how we can get two outputs from two inputs with the same half adder circuit. And
this is also how we can add two bits together!

CIRCUITS THAT PERFORM ARITHMETIC &5

THE FULL ADDER AND RIPPLE CARRY ADDER

Ripple Carry Adder

K THINK OF WATER RIPPLES

After learning how the half adder works, it seems really simple! Hmm . . . but, there’s still
something that bothers me about it.

In that circuit, there’s an output for the carry, but there’s no input for the carry from
the previous digit. That means you can only ever add two single digits, right? That doesn't
seem very useful. In fact, only being able to add two single digits seems pretty useless!

Heh, an acute observation, for sure. It's true that the half adder cannot deal with carries
from previous digits and can therefore only ever add two single bits. That's why half adders
are just that: “half an adder.” It's no use putting it down for something it can’t help.

I’'m not dissing anyone! Why am | the bad guy all of a sudden?!

Don't underestimate the half adder though! By using two half adders, you can make a full
adder. In addition to having the inputs A and B, you can use an additional input for the
carry in this circuit.

Take a look at this next schematic. We call this circuit with three inputs and two out-
puts a full adder. We'll put each half adder into its own box to make the diagram a bit easier
to understand.

66 CHAPTER Z DIGITAL OPERATIONS

A — S S S
HALF ADDER HALF ADDER
THREE B — Coutlq — Cout
INPUTS —| Cout
Cin
FULL ADDER

You were right—it’s using two half adders! Two halves really make a whole. | guess C_is the
carry input and C_ is the carry output then.

That's right. And by connecting one half adder and several full adders, we can add any
number of bits! We call a circuit like this a ripple carry adder.

In this example, we're using four adders, so we can add four digits. We've also put the

individual adders into their own boxes. During subtraction, we would deal with the inverse
carry instead (borrow).

THE CARRIES ARE PROPAGATED.

AoBo A1 B Az Bz AzB3
A S |_ A SH A SH I_ A S
B Cout B Cout B Cout B Cout
HALF ADDER Cin Cin Cin
FULL ADDER FULL ADDER FULL ADDER
N N N v

So Si S: Ss Cot

RIPPLE CARRY ADDER

Uh-huh. So each adder’s carry output goes into the next adder’s carry input. This is how
the carry flows so that we're able to do the calculation properly.

CIRCUITS THAT PERFORM ARITHMETIC &7

THE CARRY LOOK-AHEAD ADDER

But even then . . . that ripple carry adder kind of makes me feel like there’'s something
familiar with how it moves the carry after each step in the calculation. It's really similar to
how we humans do calculations with pen and paper by moving the carry from each lower
place value to the next higher place value.

Yeah. But that’s actually a big problem—it takes a lot of time to keep moving the carry from
one calculation to the next.

In ripple carry adders, the more digits there are, the slower the calculation speed will

be because of the larger propagation delay.
UPPER DIGIT
STILL

NOTHING... I'M SO BORED...

PROPAGATION DELAY IN A RIPPLE CARRY ADDER

Yeah, that seems a bit slow. . . . Addition and subtraction are pretty common, too, so | sup-
pose they're not something you want to be doing slowly. Hmm. So what do we do about it?!

Heh heh heh. To fix this problem, someone came up with what is known as a carry look-
ahead adder.

68 CHAPTER 2 DIGITAL OPERATIONS

The carry look-ahead adder basically delegates the
different circuit that serves its results to each digit”

carry calculations to a completely
s adder. Using this method, the upper
digits can do their calculations right away, without having to wait!

THE CIRCUIT THAT DEALS
WITH CARRIES
(LOOK-AHEAD-CARRY UNIT)

UPPER DIGIT

THEY DON'T HAVE TO WAIT FOR THE CARRY!

Eeeh, is that even possible? So does that mean there’s some other dedicated circuit that

decides whether or not there’s a carry?

Yeah. It determines whether there is a carry in eith

er direction during addition and sub-

traction. The downside is that the circuit is a lot bigger, but calculation times are drastically

reduced.

Hmm. So it's reducing calculation times with all kin

ds of smart tricks then. When we first

talked about making a circuit for addition, | was imagining something pretty small, but the

final product is quite impressive.

CIRCUITS THAT PERFORM ARITHMETIC &9

(Circuits That Remember)

CIRCUITS WITH MEMORY
ARE A NECESSITY!

OKAY... THIS MEMORY HAS

NOW, LET'S GET
INTO TODAY'S
LAST TOPIC.

CIRCUITS WITH
MEMORY.

LET'S TALK ABOUT

TO BE THE SAME MEMORY
WE TALKED ABOUT LAST
TIME, RIGHT?

BACK THEN, YOU
SHOWED ME
THESE THINGS...

(5EE PAGE 18.)

HMM, YEAH. IT'S TRUE
THAT WHEN WE SAY
“MEMORY,” WE USUALLY
MEAN PRIMARY MEMORY
LIKE THIS.

DATA AND
PROGRAM
INSTRUCTIONS,
ALONG WITH OTHER
THINGS USED IN
OPERATIONS

BUT THERE'S
ACTUALLY MEMORY
STORAGE INSIDE THE
CPU AS WELL.

AND THIS STORAGE 1S CALLED
REGISTERS!!

70 CHAPTER Z DIGITAL OPERATIONS

A SIMPLE ANALOGY
FOR REGISTERS MIGHT
BE SOMETHING LIKE A
DISPOSABLE NOTEPAD.

REGISTERS?
NEVER HEARD

WHEN PERFORMING
OPERATIONS,
REGISTERS ARE
USED TO STORE
TEMPORARY
VALUES!

WHAT ARE THOSE
THINGS?

THIS KIND OF MEMORY
IS MORE SHORT-TERM
THAN OTHER TYPES OF
MEMORY.

50 THERE ARE MANY
TYPES OF MEMORY,
EACH MADE FOR A
SPECIFIC TASK.

WELL, THE IMPORTANT THING WITH
ALL OF THEM IS THAT BY USING
THEM, WE ARE ABLE TO USE A
PREVIOUS MEMORY (THE STATE)

IN FUTURE OPERATIONS.

COULD YOU...
SAY THAT AGAIN IN
PLAIN LANGUAGE,
PLEASE?

i e

THAT 15, PREVIOUS MEMORIES
CAN AFFECT FUTURE
CALCULATION OUTPUTS!!

-

CIRCUITS THAT REMEMBER 71

OKAY, THEN.

I T/ Il
IMAGINE... YAY! TLL HAVE A COKE!!

o FULLY
) MOTIVATEDY

THAT YOU ARE ABOUT
TO BUY A DRINK FROM A
VENDING MACHINE.

HEY, WE'RE TALKING
HYPOTHETICALLY HERE!

TO BUY A 130-YEN COLA, YOU
HAVE TO PUT IN A 100-YEN COIN
AND THEN A S50-YEN COIN...
AFTER THAT, THE MACHINE
SHOULD DISPLAY A TOTAL
OF 150 YEN, RIGHT?

THAT JUST MEANS THAT THE
MACHINE REMEMBERS THE SUM
OF THE 100 YEN YOU PUT IN
BEFORE AND THE 50 YEN YOU
INSERTED JUST NOW.

AH, IT SEEMS VERY OBVIOUS
NOW. THE REASON WHY IT'S
ABLE TO SHOW THE SUM
OF 150 YEN IS THAT IT HAS

WHAT DO YOU THINK?
DO YOU UNDERSTAND HOW
THE PREVIOUS MEMORY
OF 100 YEN AFFECTED THE
END RESULT OF 150 YEN?

72 CHAPTER Z DIGITAL OPERATIONS

IF IT DIDN'T HAVE

ANY MEMORY...
GOT THAT I RECALL...
1 1
Ut 1% TR

WHAT A RIP-OFF!
I'D HAVE NO CHOICE
BUT TO DESTROY IT!!

Q\, VIOLENCE SOLVES
% NOTHING!

THEY COMPARE CURRENT
MEMORY TO PAST MEMORY.

150LD 3 APPLES TODAY, AND
I150LD Z APPLES YESTERDAY.
THIS MEANS 1 SOLD MORE
TODAY THAN YESTERDAY.

3
V7

APFLE

THIS IS WHY COMPUTERS,

CIRCUITS TO BE USEFUL.

SUCH AS THE ONE IN THE VENDING
MACHINE, NEED TO HAVE MEMORY

THEY USE RESULTS FROM PREVIOUS
CALCULATIONS AND NEW DATA AS
INPUT TO OTHER CALCULATIONS.

150LD 6 APPLES

YESTERDAY, AND

150LD 3 TODAY.
I'VE SOLD g IN TOTAL.

MANY PROGRAM
INSTRUCTIONS ARE
LIKE THIS.

ISEE.IGUESS IT
MAKES SENSE THAT
MEMORY CIRCUITS ARE
IMPORTANT THEN.

..NOW THAT THAT'S
SETTLED, I THINK

TLL GO AND HAVE
ANOTHER COLA.

SHE GOT THIRSTY?
THE POWER OF
SUGGESTION...

CIRCUITS THAT REMEMBER 73

FLIP-FLOP: THE BASICS OF MEMORY CIRCUITS

Ngh. | can’t even imagine a circuit that has memory. Even human memory is really compli-
cated, you know. . . .

Yeah. You have to think really simply. Computers can only use 1s and Os, right? That means
that to a computer, memory means somehow storing the states of 1s and Os.

I've already explained that these 1s and Os actually correspond to different voltage
levels (low and high) (see page 37). This means that to save a 1, we would have to create
something that can retain that state over a longer period of time, as in the graph below.
We call storing data like this latching.

STATE REMAINS 1 s 50 THIS
H) 1 ' 5 A LATCH

— > TIME

| see. But it's probably not very useful if it just stays in that state forever. What if | want it
to go back to O later on or | want to overwrite the memory with something else? Wouldn't
it make sense to be able to store whatever | want, whenever | want?

Yeah, that’s right! For example, if you turn on a room’s light switch, it would stay on until
someone turns it off again, and then it would stay off until someone turns it on again. It
would be great if we could create some kind of trigger condition to freely swap the 1 and O
states, just as we do with the light switch.

That is, we would like to be able to store 1s and Os indefinitely while still being able to
flip each bit individually whenever we want. This is exactly what memory circuits do!

74 CHAPTER Z DIGITAL OPERATIONS

Um, that sounds a hit selfish, doesn't it? | want to store 1s and Os, but | also want to be
able to flip them at will.

It is selfish, but flip-flop circuits are a basic component of any memory circuit.

Flip-flop . . . that's a cute name, but how are they useful?

They're super useful!! They grant us the ability to change states. First, take a look at the
picture below. To make it easier to understand, I've put the flip-flop in its own box. Using
one of these, we can store one bit of data.

IMPORTANT!

o<

&

o)

N
&
<
S

Ql—

The reason why there are no concrete symbols for the inputs is that they change
depending on the type of flip-flop we use.

Okay. There are inputs. . . . And two outputs Q and Q . . .

Yes. Pay special attention to the Q output! This is the output that will stay either 1 or 0. Q
will always be the inverse of Q. So, if Q is 1, then Q will be 0. Q can be very useful to have
when designing a circuit, but we're going to ignore it for now.

Uh-huh. Then how does it work? Tell me what’s inside that box!

All in good time. First off, there are several types of flip-flops. Both the function and circuit
depend on the type. Out of these types, I'll teach you about RS flip-flops, D flip-flops, and
T flip-flops.

CIRCUITS THAT REMEMBER 75

THE RS FLIP-FLOP

Okay, | guess RS flip-flops come first. So the box has two input signals, R and S. Rice . . .
sushi . . . rice and sushi?!

Q I THEY'RE ALSO SOMETIMES
CALLED RS LATCHES.

YOU CAN ALSO FLIP THE
R AND S AND CALL THEM
SR FLIP-FLOPS.

S
—R

Ol
|

Um, no. R means reset and S means set. The reset and set inputs are the two main fea-
tures of this type of circuit.

| might be jumping to the main point too quickly here, but setting S to 1 will set Q to
1 and setting R to 1 will reset Q to 0. Once Q has changed state, removing the input signal
won't change it back. It will keep that state until the countersignal (S for R and vice versa) is
sent. As soon as that happens it will, of course, flip the saved state back.

Hmm, so that means that it remembers which of the two got set to 1 last? If S got set
to 1 most recently, then the latch remembers 1, and if R was the last 1, it remembers O!
Is that it?

Yeah. It might seem a bit complicated here, but the circuit looks like the figure on the next
page. In accordance with De Morgan’s laws (see page 60), it can be created using either
NAND gates or NOR gates.

Whoa. It looks a bit weird. . . . There are two NAND gates (or NOR gates), but they're all
tangled up in figure eights.

Yep! The two circuits are interconnected, with the output of one acting as one of the inputs
of the other.

76 CHAPTER Z DIGITAL OPERATIONS

R— Q R Q

{ RsFLP-FLOP >

INPUTS | OUTPUTS FUNCTION

DOES NOT RETAINS ITS
CHANGE CURRENT OUTPUT

NOTE THAT 5 AND

1710 SET R HAVE NEGATION
SYMBOLS! THIS 15 CALLED
RESET ACTIVE-LOW, AND IT MEANS
THEY ARE ACTIVATED WHEN
THE INPUT VOLTAGE 15
1 1 NOT ALLOWED LOW (O) INSTEAD OF

o

OS=|O(= |0

HIGH (.

It's thanks to this figure eight that the circuit is able to retain either a 1 or a 0. We call this
a latch. You could say this figure eight is the most important characteristic of a memory
circuit!

Hmm, even so, it's pretty complex. If | look back and forth between the schematic and the
truth table, | get the feeling | kind of get it, but still. . . .

Let's see, the part of the truth table that says “does not change” means that output Q
either stays a 1 or a O indefinitely, right? But what does the “not allowed” on the bottom
mean? What's not allowed?!

Ah, yeah. That just means that you are not allowed to trigger both set and reset at the
same time. Remember that since the circuit is active-low, this means that both inputs can't
be 0 at the same time. If you were to set both to 0, this would make both Q and Q output 1
until you changed one of them back—but the outputs are always supposed to be either O
and 1, or 1 and 0. It’s not allowed to invalidate the rules we set for this logic circuit.

Oh, | see. So just follow the traffic, er, circuit rules, right?

CIRCUITS THAT REMEMBER 77

(H) 1
(L)O

78 CHAPTER 2

THE D FLIP-FLOP AND THE CLOCK

Let's see. The next one is the D flip-flop. The inputs are D and . . . what’s this triangle next
to the C?! It looks like that piece of cloth Japanese ghosts wear on their headbands!!

1 D a
ot

AN EDGE 1S5 WHEN A SIGNAL
TRANSITIONS BETWEEN TWO LEVELS
(O AND 1, FOR EXAMPLE).

—>C QF—

That observation is pretty far removed from the computer world. But | suppose it's a bit
cryptic and warrants an explanation. First off, it's easiest to think of the D as standing for
data. That triangle is the symbol for a rising edge, and the C stands for clock.

Um ... Rising edge?? And the clock—is that just a normal clock?

That's right! Computers need some kind of fixed-interval digital signal to synchronize all
the operational states in their circuits. That's what the clock does!

Just like a normal clock measuring time, it flips between high and low voltage (1
and 0) in fixed intervals. It has nothing to do with the circuit’s input or output though—
it's completely separate.

HEEEEENE

TIME

A CLOCK

DIGITAL OPERATIONS

Hmm. It really reminds me of a clock . . . tick-tock, tick-tock. . . . Just like we plan our days
with the help of clocks, | guess circuits need them, too.

Yeah. When a circuit needs to take some action, the clock can sometimes act as its cue.
Inside the clock, what is known as the rising edge acts as that action signal. Have a look!

(H) 1
Wl S LA L L L

Ohh! Those arrows are at even intervals on the clock graph.

When the clock goes from low to high (0 to 1), we see a rising edge, and when it goes back
from high to low (1 to 0), we see a falling edge.

RISING EDGE FALLING EDGE

WHEN THE CLOCK GOES | WHEN THE CLOCK GOES
FROM LOW TO HIGH FROM HIGH TO LOW

Oho, | think | get it. So the rising and falling edges are like ringing bells on the clock, right?
When the bell rings, it acts as a signal to take action, like at the start and end of class, for
example.

That's just it! That’s a pretty good analogy coming from you.

CIRCUITS THAT REMEMBER 79

Okay, let’s get back to the problem. In a D flip-flop, every time a rising edge passes, the
D input 1 or O is copied directly to the Q output.

It might be easier to understand by looking at the timing diagram below. A timing
diagram is a good way to see how signals change their state over time.

H H
D | 1 L]

-
cLk —4 L4 L&

(crock)

COPY!

Q v

W o o

The important lesson here is that the D input can change as much as it wants,
but Q won't change until a rising edge arrives!

Mmmbh. It's a bit complicated, but | think | get it now that I've looked over the timing
diagram. In any case, the main characteristic of the D flip-flop seems to be that it acts in
sync with the clock’s rising edges! Hmm, it seems like clocks are super important both to
modern man and circuits.

80 CHAPTER Z DIGITAL OPERATIONS

THE T FLIP-FLOP AND COUNTERS

So the last one is the T flip-flop. Wait, it has only one input! Did you forget to draw
the rest?

QrH—
—T _
Ql—

Fuhahaha! Like | would ever forget! The T flip-flop has only one input, as you can see, and
is pretty simple. Whenever the input T changes from O to 1, or 1 to O, the output stored in
Q flips state. It looks something like this time chart.

0-1 0-1 0-1

INPUT T —| |_ THERE ARE T
FLIP-FLOPS THAT
ACTIVATE JUST ON
FALLING EDGES
INSTEAD (1 TO O0.

OUTPUT Q —

FLIP FLIP FLIP

Oh, this was super easy to understand! It's a memory circuit even though it has only one
input.

CIRCUITS THAT REMEMBER 81

By the way, flipping between 1 and O is called toggling. The Tin T flip-flop actually stands
for toggle! Also, by connecting several T flip-flops, as in the following schematic, you can
make a circuit that can count—a counter circuit.

Qo Q Qe
Q Q Q ~4_
INPUT —O> —O> >

T Q T Q T Q

SEVERAL T FLIP-FLOPS TOGGLED BY THE FALLING
EDGE OF AN INPUT SIGNAL CAN ACT AS A COUNTER.

COUNTER CIRCUITS

The first flip-flop will toggle its output state every time the input on the far left
changes from high to low. Consequently, the second flip-flop will toggle its output when-
ever the first flip-flop's output changes from high to low. All following outputs will keep
toggling in this pattern. If the input signal is connected to a clock, then each flip-flop in
the series will toggle every 2"-? clock cycles if n is the flip-flop’s position in the series. Put
another way, the period of each flip-flop's output signal will be 2n of the original signal’s
period.

Counters that work this way are called asynchronous counters, since not all flip-flops
are connected to the same clock but, instead, each flip-flop's clock after the first is the out-
put signal of the flip-flop that came before. In contrast, there is a circuit commonly found
in CPUs called a synchronous counter. As the name here implies, all flip-flops in this type
of counter trigger on the signal from the same clock, meaning they all toggle at the same
time, in parallel. It's worth mentioning that I've simplified these descriptions to make them
easier to understand.

Umm, but why do we say that the circuit can count?

Looking at the time chart, do you see that each output signal has half as many toggles as
its input signal? This means that the period of the output signals is twice as long as the
period of the input signals. I've put all three of the flip-flops in the schematic above into
this time chart so you can see all of their individual outputs next to each other when they
are connected.

If you look at each column in this graph individually, you should see that the digits from
Q,. Q.. and Q, form binary numbers! Isn't it cool that every time we have a falling edge on
the input of the first T flip-flop, this binary number increases by 1? It's counting!

82 CHAPTER 2 DIGITAL OPERATIONS

OC1 234567

Wow, you're right! Q, corresponds to the 22 digit, Q, to 2%, and Q, to 2°, right?

If you look at Q.. Q,, and Q, in order, the first column forms 000 (the number 0), the
second one 001 (1), the third 010 (2), and the fourth 011 (3) in binary. So using this tech-
nigue, you can actually make the circuit count! That's a really smart design.

Yeah. In this example, we used three flip-flops, so that lets us express 2° (8) numbers,
meaning we can count from zero to seven.

You can actually make counters from other types of flip-flops, like D flip-flops, for
example. Using some other tricks, you can also make circuits that count down, if you want.

Oh, that seems like it could be really useful for a lot of things.

Yeah, well that’s it for flip-flops. Just don't forget what | said at the start: flip-flops are the
foundation of any memory circuit!

This means that both primary memory and CPU registers use flip-flops at their core.
And flip-flops are also the basis of any counter circuit, just like what we just talked about.

Haha, so theyre the base for a lot of different devices, basically. And even though they have
a cute name, they're super useful circuits we can't do without!

CIRCUITS THAT REMEMBER 83

THANKS FOR TODAY!
I LEARNED A LOT!

ooooo

nnnnnnnn
........

.......
ooooooo
.......
oooooooooo
.........
oooooooo
.......

ooooo

......

......

HEH, WELL THE THINGS
WE TALKED ABOUT
TODAY ARE STILL JUST
THE BASICS.

DON'T FORGET
THEM, THOUGH.

DON'T WORRY!! THERE'S NO
WAY THAT SOMEONE WITH
MY EXCEPTIONAL MEMORY
AND INTELLIGENCE WOULD
FORGET ANYTHING!

EXCEPTIONAL
MEMORY, HUH...

50 THAT MEANS THAT

YOU REMEMBER EVERY

SHOGI OPPONENT
YOU'VE EVER
PLAYED THEN?

WELLLLLL, YOU
KNOW, IT’S LIKE,

OF THE STORY REMEMBERS
EVERY SLIMEBALL SHE'S
SLAIN, RIGHT...?

IT'S5 NOT LIKE THE HEROINE §

L—
.YOU FELL RIGHT INTO
THAT ONE, WOW.

@)

I-I CANTHELP ITIF I
DON'T REMEMBER!!!!

84 CHAPTER Z DIGITAL OPERATIONS

MODERN CIRCUIT DESION: CAD AND FPGA

Multipurpose integrated circuit design is surprisingly similar to software development
these days. It's usually accomplished using a hardware description language (HDL) to
define the operation of a circuit.

In the past, circuits were drawn using logical circuit symbols, much like the ones we
have shown in this book, but these symbols are now used mostly for very simple circuits.
The development of computer-aided design (CAD) programs allows people to design com-
plicated circuits with relative ease.

But, it's important to learn the basics. It can be useful to know these symbols if
you're trying to figure out how data flows through a digital circuit or when you're trying
to understand a particular feature of some schematic.

At the dawn of CPU development, it was common to create reference circuits con-
sisting of many AND, OR, and NOT gates. These were then used when iterating, proto-
typing, and evaluating new generations of CPUs and other ICs.

By doing this, it was possible to test each function of the advanced circuit individually
and even hardwire the circuits together to try to work out problems in the design if some
error was detected.

Nowadays, reference circuits like these are rarely used in development. Instead
much more flexible field-programmable gate array (FPGA) circuits are preferred.

AWESOME,
I'M GOING
TO TAILOR
THIS TO MY

FPGAs CAN, JUST AS THE NAME SUGGESTS, BE REPROGRAMMED
“IN THE FIELD"” TO CHANGE THE FUNCTION OF THE IC COMPLETELY.
THEY ARE INDISPENSABLE TO CIRCUIT DESIGNERS.

FPGAs consist of a series of logic blocks that can be wired together in different ways
depending on the programming. Some of these blocks contain lookup tables to map
the 4-6 bits of input to output in a format that's similar to a truth table. The number of
lookup tables in an FPGA can range anywhere from a few hundred to more than several
million, depending on the FPGA model.

And of course, it's possible to reprogram all of the tables whenever needed. In this
way, the same FPGA circuit can be used to perform the functions of many different types
of ICs. You can simulate the function of a CPU using an FPGA if you want to, but it's a
lot cheaper and easier to mass-produce a dedicated circuit instead. Even so, since the
price of FPGAs is dropping and development costs for new ICs are high, if the life span or
projected sales of a particular IC are not high enough, it might be more cost-effective to
simply use an FPGA.

MODERN CIRCUIT DESIGON: CAD AND FPGA 85

3

CPU ARCHITECTURE

(All About Memory and the CPU)

REALLY...
TO THINK WE'D BE
HANGING OUT EVEN
ON SATURDAYS...

WELL, I WANT
TO LEARN ABOUT
CPUs OVER THE
WEEKEND, TOO!

AND I WANT TO
TRY THIS CAFE!

' THEIR CAKES LOOK

REALLY GOOPD.

AND IT'D BE KIND
OF EMBARRASSING
TO GO ALONE...

1 SEE... YOU
DON'T HAVE ANY
FRIENDS...

I1DO! 1 HAVE

LIKE A HUNDRED
FRIENDS!!!

SOUNDS LIKE
SOMEONE'S
OVERCOMPENSATING...

TN\

MEMORY HAS ASSIGNED ADDRESSES
< ——

WELL THEN...

DO YOU KNOW WHAT
ADDRESSES ARE?

OF COURSE I PO/
LIKE I WOULDN'T KNOW

YOU SEE, LOCATIONS
IN MEMORY...

UH, I WASN'T

TALKING ..ARE CALLED
ABOUT MAILING APDRESSES,
_ ADDRESSES.

I REMEMBER
MEMORY.

DATA FOR
OPERATIONS PROGRAMS

cpu OPERATION

OUTPUT DATA MEMO;zy

DATA AND PROGRAMS ARE
STORED IN MEMORY, AND
MEMORY COMMUNICATES
THOSE THINGS TO THE CPU,

RIGHT?

PROGRAMS AND
DATA ARE SAVED

ORGANIZED WAY.

TO MEMORY IN AN

YOU'RE RIGHT!!
EVERYTHING
HAS A UNIQUE
ADDRESS AND 1S
NEATLY SORTED
IN ORDER.

EVERYTHING 15 & INSIDE MEMORY >
ASSIGNED A UNIQUE
ADDRESS DEPENDING
ON WHERE IT IS GORETE Az
STORED. 0] INSTRUCTION
1 INSTRUCTION
ya INSTRUCTION PROGRAMS
3 INSTRUCTION
4 INSTRUCTION
30 DATA
31 DATA DATA FOR
USE IN
32 DATA OPERATIONS
33 DATA
BTN
\ <] YOU SHOULD ALSO U HAS FULL
' REMEMBER THAT CONTROL OVER
NG\ THE CPU... THIS APDRESS
& SPACE, WHICH CAN
7 ALSO BE CALLED
- MEMORY SPACE.
% —
[\
- e
N \
‘‘‘‘‘‘‘ /\

TYPE

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

DATA

DATA

DATA

DATA

ADDRESS SPACE
(MEMORY SPACE)

UH-HUH. O THE CPU
CONTROLS THE MEMORY

AND IF IT CAN READ AND
WRITE WHEREVER IT
WANTS...

a0 CHAPTER 3

CPU ARCHITECTURE

DOESN'T THAT MAKE THE
CPU LOOK KIND OF LIKE
A BAD GUY?

(MEMORY SPACE)

ADDRESS

TYPE

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

DATA

DATA

DATA

YOU HAVE A

DATA

PRETTY DARK
IMAGINATION.

BUT WHY DO
DATA NEED
ADDRESSES?

HOW 15
ASSIGNING

USEFUL?

THEM NUMBERS [::

HEH... DON'T
YOU SEE?

‘“““ i

.~ ADDRESSES MAKE IT
POSSIBLE TO FIND DATA

JUST BY POINTING TO THE

CORRECT NUMBER.

ACTUALLY, THIS 1S HOW
THE CPU ACCESSES ALL
DATA AND PROGRAMS
(OR STORES THEM,
FOR THAT MATTERD...

NUMBER 83,
PLEASE!
@,&

cPU

ADDRESS
POINTER

BY POINTING TO
AN ADDRESS!

OH, IT JUsT
SENDS THE
NUMBER ALONG!

1 6UESS USING
NUMBERS IS PRETTY
PRACTICAL AND EASY
TO UNDERSTAND.

BUT IT SEEMS SO
MECHANICAL AND
COLD... DEVOID
OF HUMANITY...

WELL, IT IS
A MACHINE,
YOU KNOW.

ALL ABOUT MEMORY AND THE CPU a1

DATA PASSES THROUGH THE BUS

> "WELL SINCE WE
ALREADY TALKED
ABOUT ADDRESSES,
LET'S ALSO TALK
A BIT ABOUT
__ THE BUS.

THE BUS...2

YEAH, IT ACTUALLY
COMES FROM THE
WORD OMN/IBUS.

BUS WE'RE TALKING ABOUT
IS A PATH THAT TRANSMITS
DATA INSIDE A COMPUTER.

OF

“” AND, AS SHOWN IN THIS

PICTURE, WE CALL THE
BUS THAT TRANSPORTS
ADDRESS POINTERS
THE APDRESS BUS.

APDRESS BUS

DATA BUS;

APPROPRIATELY, WE ALSO CALL
THE BUS THAT TRANSPORTS DATA—
WAIT FOR IT-THE DATA BUS.

MEMORY

1 SEE. 5O THEY'RE KIND
OF LIKE TWO ROUTES
WITH COMPLETELY
DIFFERENT PURPOSES.

)

o .

nnnnn

ooooo
)

YEAH, AND THERE ARE
ALSO EXTERNAL BUSES
AND THE INTERNAL
DATA BUS.

/ A

aZ CHAPTER 3 CPU ARCHITECTURE

.....

THE EXTERNAL
BUS CONNECTS
THE CPU TO MEMORY

AND EXTERNAL OH, JusT
DEVICES. THE MOST LIKE THE
COMMON ONE IS THE NAME SAYS.

UNIVERSAL SERIAL
BUS (UsB).

THE /INTERNAL DATA
BUS 1S A BUS THAT
PASSES INTERNALLY
THROUGH THE CPU.

AND INSIDE THE INTERNAL
BUS, THERE ARE SWITCHES
THAT CAN CHANGE THE
FLOW OF DATA, JUST LIKE
IN THIS PICTURE...

MULTIPLEXER
MUXd

Y Y

APATH FROMATO Y A PATH FROM B TO Y

THESE SWITCHES
ARE CALLED
MULTIPLEXERS (MUX.

THESE SWITCHES MAKE \\ 7" OOOH, THEY'RE REALLY
IT POSSIBLE TO SIMPLIFY : LIKE BUS ROUTES
THE CPU’S INTERNAL A= AFTER ALL!
DATA BUSES.

AND THEY'RE
DESIGNED TO MAKE
EVERYTHING AS EASY
---------- AS POSSIBLE. 1 CAN
APPRECIATE THAT!

BUS WIDTH AND BITS

0000 0100 1000 1100
0001 0101 1001 1101
0010 0110 1010 1110
0011 O111 1011 1111

2% = 16 wipe

Let's talk a bit more about buses. | said that buses are for transporting data, but to be
more exact, they're actually bundled signal pathways.

Ah, signal pathways, | remember those from before. Theyre lines that transmit 1s and Os,
right?

That's right! And, the number of pathways determines how many values those pathways
can represent. For example, if you have four pathways, and each can be a 0 or a 1, then
those pathways can be used to send or receive a four-digit (four-bit) binary number.

1 @ ONes
0 @ TwWos
0 @ Fours
1 @ EeleHTs

1001

L.-——v———l

4 BITS

Uh-huh. So that means that the number of pathways equals the number of bits. With four
pathways, we can send and receive 16 (2¢) different numbers from 0000 (0 in decimal) to
1111 (15 in decimal).

a4 CHAPTER 3 CPU ARCHITECTURE

Hah! | think | might have figured out something important! Doesn't that mean that the
more signal pathways you have, the better? If you can express larger numbers, that also
has to mean you can process more data.

Heh heh heh, good guess. You're correct! We call the number of signal pathways (or bits)
the bus width. A wider bus width gives the CPU faster processing capabilities.

For example, the ALU in the following diagram can process four-bit operations. This
means that the data bus serving this ALU also has to be four bits wide.

1000 0070
4-BIT
INPUTS
4-BIT
OUTPUT
1010

We chose 4 bits to make the diagram simpler, but most modern ALUs work with 64 bits.
It makes sense to use a bus with a bus width that matches the ALU’s data width, which
means buses end up being 64 bits wide more often than not. In general, the 64-bit CPUs
that you hear so much about have 64-bit ALUs and 64-bit data buses.

64-BIT CPU

64-BIT DATA
WIDTH ALUs

64-BIT
BUS WIDTH

It's worthwhile to point out that the data bus doesn’t necessarily have to have
the same width as the working bit length of the CPU. For example, in 1982,
you could find 16-bit CPUs with 16-bit ALUs using an 8-bit wide data bus.
This simply meant that you had to send data over the bus two times before
the CPU could start doing any work.

Haha! So that just means that the CPU’s performance is determined in part by the width of
the data bus. And the wider the data bus, the better the CPU’s performance!

ALL ABOUT MEMORY AND THE CPU 95

You should try to remember these things about data bus width.

By looking at the width of the external bus between the CPU and memory, you can see
how many bits can be sent between these two systems at once. By looking at the width of
the internal data bus, you can see how many bits can be processed at the same time in a
single operation.

Okay! So data bus width is super important. Gotchal

That'’s it for now about data buses. Let's talk a bit about the address bus. By looking at the
address bus width, you can see how large your system memory is. We call this the address
space size.

The address space size . . . ? Does that mean how many addresses there are? Then if
the address bus has a width of 4 hits, wouldn't that give us 2*, so a total of 16 different
addresses?

Yeah. On the other hand, if we have an address bus width of 32 bits, that would give us 2%,
or 4,294,967,296, different addresses. We can say that the size of our address space for 32
bits is roughly 4.3 gigabytes.

FOR AN ADDRESS
BUS WIDTH OF
\ 32 BITS, WE HAVE

272, OR ROUGHLY
4.3GB, DIFFERENT
ADDRESSES.

sng
s532day

a6 CHAPTER 3 CPU ARCHITECTURE

And the size of the address bus directly relates to memory capacity (see “Memory Capacity
and Bus Width” below).

Hmm, so address bus width is also really important. Does that mean it should be as large
as possible?

Is that greed or naive honesty | detect? Well | suppose it’s true that the bigger the buses,
the better.

MEMORY CAPACITY AND BUS WIDTH

Let’s think a bit about the relationship between memory capacity and bus width by

looking at a simple example. As shown in the diagram, one byte corresponds to one
address. One byte is eight bits. A byte is a unit commonly used to describe the size

of data.

8 BITS =1 BYTE

ADDRESS R

0 101001010
[[TTT00T01

AN 8-BIT DATA BUS THAT
SENDS 8 BITS AT A TIME

If instead our address space (address bus width) was 12 bits, then we would
have 2%, or 4,096 addresses. Each address fills 1 byte, so that means our memory
capacity is 4,096 bytes, or roughly 4 kilobytes (KB).

ALL ABOUT MEMORY AND THE CPU 97

R/W SIGNALS AND 1I/0 SIGNALS

I1/0

(Input) (Output)

(Write) |

ooooooo

.....
uuuuu

(Read)

Next up, I'll explain a bit about control signals. Do you happen to know what R/W stands for?

Red and white . . . is it something related to festivities . . . ? Santa?

Ah. Well, it sure seems festive inside that head of yours. It actually stands for two really
important terms related to the CPU—read and write.

Read means to extract data that has previously been stored somewhere. Write means
to save data to some place. We also sometimes use the words load and store instead.

WHAT 15 THE DIFFERENCE BETWEEN
READ/WRITE AND LOAD/STORE?

Read/write is the term we use when speaking from the iw
hardware perspective, and load/store is the term we use

when speaking from the software perspective.
R/W is an electrical operation in the memory, and the
memory doesn’t care where the data is going or where we

want to save something.
In contrast, a load operation reads some particular
data to store it in a register. Conversely, a store opera-

tion grabs some register data and writes it to memory.
So these operations deal with data flow.

a8 CHAPTER 3 CPU ARCHITECTURE

Ah, in that case, | think | kind of get it. The CPU deals with memory and data, right? It
reads data to use for operations and then writes the result of those operations to memory.

Yes! It seems you're really getting the hang of it. So the CPU issues read and write instruc-
tions to the memory—instructions such as “Fetch some data” or “Save some data.” We call
these R/W instruction signals.

We've talked about the address bus and data buses, but there is one more really
important bus—the control bus! And it’s this bus that is conveying these control signals

from the CPU.

CONTROL BUS
cry

2ATA BUS

Hmm. So if, for example, | wanted the data in number 83, | would send 83 on the address
bus and read on the control bus, like in the picture! And the data | wanted would then
arrive on the data bus.

Yeah, that’s it. You seem to be getting it now, so let's move on to the next topic. Have you
heard of 1/0 before?

Maybe . . . ice cream and oreos? Hee!

ALL ABOUT MEMORY AND THE CPU 9q

Ah, you're just choosing words at random now, huh? //0 stands for input/output.

Input is data traveling from the outside world into the computer. Conversely, output is
data traveling from the computer to the outside world.

Yeah, | know. The keyboard and mouse are two input devices, and the monitor and printer
are two output devices, right? Input and output!

Yeah. To control external devices like this, we use I/0 control signals. You should also
remember the term /0 port. Just as the word port suggests, ports are the gateway we use
when communicating data to external devices.

The CPU is connected to external devices like keyboards* through these /0 ports!
Have a look at the image below.

CONNECTED DIRECTLY!

Ny

/e — THERE IS ACTUALLY

Sl ey— A U5B CONTROLLER
1/0 PORT BETWEEN USB DEVICES
(5UCH AS MICE AND
/ KEYBOARDS) AND

cPU KEYBOARD THE 1/0 PORT.

Port . .. Yeabh, it really feels like there are unknown seas at the end of the map! But these
ports don't connect to other lands; they just connect to other devices.

Yeah. And additionally, we have an address port and a data port between the CPU and
memory, which in turn connect to the address bus and data bus, respectively.**

* Other external devices, such as the display, are not necessarily in direct communication with the CPU,
however.

** The address port, data port, R/W control, and I/0 control are shown in the helpful CPU overview diagram
on page 106.

100 CHAPTER 3 CPU ARCHITECTURE

INSTRUCTIONS ARE MADE OF OPERANDS AND OPCODES

n
Hesg
WHEN YOU FIRST AP
BY THE WAY, T HAVE SHOWED ME MEMORY, Q| INSTRUCTIONS
ONE GUEéTlON THERE WERE THESE 1 INSTRUCTIONS
INSTRUCTIONS. INSTRUCTIONS

WHAT ARE THEY?
THEY SEEM
AWFULLY FULL OF
THEMSELVES.

ITS BEEN BOTHERING
ME FOR AGES! HURRY

UP AND TELL ME
ALREADYY

UHH, YEAH... INSTRUCTIONS ARE
PARTS OF PROGRAMS WRITTEN
BY HUMANS THAT THE CPU
EXECUTES.

SHE SAYS WHILE
GIVING ME
INSTRUCTIONS,
ALL HIGH AND
MIGHTYY/

INSTRUCTION OH, SO IT'S KINDA LIKE
HOW CAKE RECIPES SAY:
YBREAK SOME EGGS.”

NSTRUCTION

meTRUCTIO PROGRAM "MIX THE EGGS WITH N
SUGAR." PROGRAMS ARE

INSTRUCTION A CHAIN OF INSTRUCTIONS

LIKE THAT?

YOU COULD SAY
THAT PROGRAMS
ARE CHAINS OF
INSTRUCTIONS.

ALL ABOUT MEMORY AND THE CPU 101

YEAH. ALTHOUGH THE
INSTRUCTIONS WE'RE
TALKING ABOUT ACTUALLY
LOOK LIKE THIS.

OPCODE
4
2+3
/ N
OPERAND OPERAND

THE OPCOPE (SHORT FOR
OPERATION CODE) IS WHAT TO DO,

AND THE OPERAND |S WHAT THE
CPU OPERATES ON.

AND THERE ARE LOTS
OF INSTRUCTIONS
OTHER THAN JUST
“ADD THESE TWO.”

UH-HUH! BUT THE
IMPORTANT PART IS THAT
INSTRUCTIONS TELL THE
CPU WHAT TO DO AND
WHAT TO OPERATE ON,
RIGHT?

YES, BUT BE CAREFUL!
OPERANDS MIGHT ALSO
BE AN ADDRESS INSTEAD
OF A VALUEX

THE OPERAND IS AN ADDRESS!
ADD THE DATA AT ADDRESS 30
TO THE DATA AT ADDRESS 3.

102 CHAPTER 3 CPU ARCHITECTURE

* THE ACCUMULATORS AND REGISTERS WE'RE GOING
TO TALK ABOUT NEXT CAN ALSO BE OPERANDS.

A-HA, SO IT'S LIKE
THIS THEN. A NUMBER

INSTRUCTION

NUMBER Y NUMBER Z

% OPERANDS OPCODE

INSTRUCTIONS (THE
PROGRAM) THEMSELVES
ALSO RESIDE AT SOME
ADDRESS...

MANAGING ALL OF
THEM BY NUMBER...
IT'S SO RATIONAL
AND ECONOMICAL!

AND THE OPERANDS
THE INSTRUCTION
OPERATES ON ALSO
RESIDE AT THEIR OWN /
ADDRESSES.

WEREN'T YOU €
JUST COMPLAINING
ABOUT THE LACK
OF HUMANITY?!

IT'S NOT THAT
HARD AFTER ALL!

ACCUMULATORS AND OTHER REGISTERS ARE
USED IN OPERATIONS

OKAY, WE JUST TALKED
ABOUT THE “ADDING”
INSTRUCTION...

BUT TO EXECUTE AN
INSTRUCTION...

v

: W/)
| i|||l “ m

YOU ALWAYS
NEED
REGISTERSIY

Illl
14
”

m’
7

UM, REGISTERS WERE THOSE
SMALL MEMORY CIRCUITS
INSIDE THE CPU, RIGHT?

N
YEAH, THAT'S RIGHT.
LET'S HAVE A LOOK AT

THESE TWO TYPES OF
REGISTERS FIRST.

ACCUMULATOR

USED FOR
CALCULATIONS AND
INCREASING VALUES

ADDITION

ACCUMULATORS ARE LIKE
NOTEPADS THAT ARE ONLY
USED FOR CALCULATIONS.

GENERAL-PURPOSE
REGISTER

USED FOR ALL KINDS
OF THINGS, AS THE
NAME SUGGESTS

GENERAL-PURPOSE
REGISTERS CAN BE USED
FOR CALCULATIONS
OR ANYTHING ELSE
YOU WANT.

v

[/
i

BOTH OF THESE TYPES
WILL BE USED ANYTIME
OPERATIONS ARE
PROCESSED!

HM..WHAT DO

You MEAD

FOR EXAMPLE, WHEN EXECUTING THE
INSTRUCTION TO ADD THE DATA AT
ADDRESS X AND THE DATA AT ADDRESS Y,
THIS 1S WHAT ACTUALLY HAPPENS.

JUST REMEMBER THAT
DATA IS SAVED TO
REGISTERS HERE.

104 CHAPTER 3 CPU ARCHITECTURE

T 1
ADDRESS Y

| 3

|
_/
ALU

)

ACCUMULATOR

T 1
ADDRESS X

2

|

GENERAL-
PURPOSE
REGISTER

ACCUM-
ULATOR

AFTER SAVING THE DATA
STORED AT ADDRESS X
(2) IN THE ACCUMULATOR
REGISTER AND SAVING
THE DATA STORED AT
ADDRESS Y (3) IN A
GENERAL-PURPOSE

REGISTER, PERFORM AN *

ADDITION OF THE TWO.

THEN AUTOMATICALLY STORE THE
RESULT OF THE OPERATION (5) TO THE
ACCUMULATOR REGISTER AGAIN.

OOOOH, YEAH,
I1SEE ALOT OF
REGISTERS BEING
USED HERE!

IT SEEMS A BIT
ROUNDABOLUT, BUT I
GUESS THAT'S JUST HOW

\... THE CPU WORKS!
| Do

THERE ARE MANY
OTHER TYPES OF
REGISTERS AS WELL. A

FOR EXAMPLE, THE
INSTRUCTION REGISTER 1S

FROM MEMORY.

USED TO TEMPORARILY STORE
PROGRAM INSTRUCTIONS READ

INSIDE THE CPU

INSTRUCTIONS

REGISTER

(PROGRAM)

MEMORY

IT EXECUTES THE
INSTRUCTION AFTER
DECODING* IT, HUH...

50 THERE ARE LOTS
OF DIFFERENT REGISTERS
FOR ALL KINDS OF
PURPOSES THEN!

I'D BETTER REGISTER
WHAT I'VE LEARNED
ON THE BACK OF
THIS RECEIPT!

Qe

T

* SEE PAGE 104.

" YOU'LL LOSE
PRETTY QUICKLY.

105

(CPU Instruction Processing)

CLASSIC CPU ARCHITECTURE

THEN LET'S "\
FINALLY GET |
INTO SOME CPU
ARCHITECTURE.

{ OVERVIEW OF A CLASSIC CPU »

BEHOLD! THE
ARCHITECTURE OF
A CLAsSIC cpull

* ALL BUSES ARE SIMPLIFIED IN THIS DIAGRAM AND ARE DRAWN ONLY AS SINGLE LINES.

1/0 EXTERNAL
—2lcontroL 7| pevices
ADDRESS 3
N REGISTER 9
N
MUX N
()}
3
PROGRAM COUNTER R
STACK POINTER m
K
TEMP REGISTER |— o
2
INTERNAL >
RAM {j 3 %
X 3 3
A <
3
INSTRUCTION <
M UX REGISTER
I
B A INSTRUCTION co.:{r\gol_ >
= DECODER
R ALU
o% Y
=9 ACCUMULATOR mer K—— RESET
=0 (INTERNAL SHIFT INTERRUPT
REGISTER) CONTROL L« INT

.........

HEY, LOOK! A TEA

LEAF 1S STANDING

UP IN MY COFFEE!
THAT'S GOOD LUCK!!

DON'T CHANGE
THE SUBJECTV

WHAT'S THIS

UHH... SO MANY
PROGRAM

WORDS I DON'T
UNDERSTAND...

COUNTER, FOR

THIS! | L

PROGRAM COUNTER

STACK POINTER

TEMP REGISTER
|

—— T

SINCE IT HAS
PROGRAM N ITS
NAME, IT SEEMS
IMPORTANT...

L

50, 15 MY INTUITION THAT

THE PROGRAM COUNTER

1% IMPORTANT RIGHT OR
WRONGZ/

ARENT I THE
TEACHER HEREP?
WHY |5 SHE
QUIZZING MEZ/

YEAH, I GUESS IT'S TRUE
THAT THE PROGRAM

COUNTER (PC FOR SHORT)

IS REALLY IMPORTANT.

el

EVERY CPU HAS ONE,
AND IT HOLDS THE
ADDRESS OF THE NEXT
INSTRUCTION TO BE
EXECUTED.

CPU INSTRUCTION PROCESSING 107

THE ADDRESS

OF THE NEXT
INSTRUCTION TO
BE EXECUTED...?

THAT THIS GUY 15
ALWAYS THINKING ¥
ONE STEP AHEAD!! .

THAT'S EXACTLY
HOW ANY SHOGI
PLAYER HAS TO

50 THAT MEANS S

NEXT UP IS)
oO THE SEVENTH (.
_INSTRUCTION. }

YEAH, 1 GUESS.
ALTHOUGH IT'S NOT A
PERSON, YOU KNOW.

O L
NUMBER
SEVEN...

AND AFTER THE
OPERATION* 1S EXECUTED,
THE ADDRESS OF THE
NEXT INSTRUCTION
CONTAINED IN THE
PROGRAM COUNTER...

THE
INSTRUCTIO!

ADDRESS MEMORY

POINTER

N'S

IS THEN
TEMPORARILY
TRANSFERRED TO THE
ADDRESS REGISTER

AND FORWARDED
TO MEMORY.

50 IT'S CALLED THE
ADDRESS REGISTER
BECAUSE IT STORES
ADDRESSES, EH?

THAT'S SO

||'7 g
I DON'T WANT
TO HEAR THAT

- SIMPLE!!
108 CHAPTER 3 CPU ARCHITECTURE

FROM YOU.

CPU INTERNALS

INSTRUCTION
"Deconer PROGRAND
h 1@" —
DECOPDING! INSTRUCTION
REGISTER MEMORY

IT IS THEN TEMPORARILY
STORED IN THE INSTRUCTION
REGISTER AND DECODED BY

THE INSTRUCTION DECODER.

d l‘i“““l\

THE MEMOR
THEN SENDS THE

INSTRUCTION LOCATED
AT THAT ADDRESS
BACK TO THE CPU.

1 SUPPOSE THE
DECODER IS PRETTY
SELF-EXPLANATORY.

BUT WHY 1S DECODING
NECESSARY AT ALL?
CAN'T THE CPU JUST UsSE
WHAT WAS SENT FROM
MEMORY RIGHT AWAY?

INSTRUCTIONS MUST
BE DECODED BECAUSE THE
INSTRUCTION CODE STORED IN
MEMORY IS NOT THE SAME AS
THE MACHINE CODE THE CPU
UNDERSTANDS.

THE INSTRUCTION RETRIEVED FROM MEMORY
NEEDS TO BE BROKEN DOWN BEFORE
IT CAN BE USED IN AN OPERATION. THE
DECODER TRANSLATES FROM INSTRUCTION-
LEVEL LANGUAGE TO HARDWARE-FRIENDLY
MACHINE CODE FORMAT.

OH WOW, IT SEEMS
A LOT OF DIFFERENT
PROCESSES ARE
NECESSARY...

INSTRUCTION
DECODER

THE INSTRUCTION
DECODER PUTS THE
INSTRUCTIONS READ FROM
MEMORY INTO A FORM THAT

CAN BE USED IN OPERATION
s EXECUTION.

.........

CPU INSTRUCTION PROCESSING 109

AND, AS SOON AS THE
INSTRUCTION HAS BEEN
DECODED... BEHOLD!!

THE OPERANDS AND OPCODE
ARE REVEALED!!

\\ OPERATIONS ARE
N OOOH! 50 THIS TIES IN V|| PERFORMED ON
\ TO WHAT YOU TAUGHT THE ALU USING THE
ME BEFORE! ACCUMULATOR,
RIGHT?
S~
—
—

THAT'S

CPU INTERNALS

N\ /

ﬁ

ACCUMULATOR

OPERATIONAL
RESULT DATA

AND FINALLY, THE RESULT
IS STORED IN EITHER A
REGISTER OR MEMORY.

STORE!

MEMORY

AND IF IT'S STORED
IN MEMORY, WE ALSO
NEED TO SPECIFY WHAT

1O CHAPTER 3 CPU ARCHITECTURE

ADDRESS TO STORE IT AT.

HA! 5O THAT
MARKS THE END
OF PROCESSING

ONE INSTRUCTION...

YEAH, TO TIE IT
TOGETHER...

LET'S HAVE A LOOK
AT ALL THE STEPS
NECESSARY FOR THE
CPU TO PROCESS
ONE INSTRUCTION.

.........

.......

<CPU INSTRUCTION onceseme>

AS SOON AS
ONE INSTRUCTION 15
OVER, IT HAS TO GET
THE NEXT ONE...
THE POOR THING...

.......

cccccc

READ THE
INSTRUCTION
(ALSO CALLED FETCH)

. 2

DECODE THE
INSTRUCTION
GO TO
‘ THE NEXT
INSTRUCTION BN oy Vi) Ll
EXECUTE THE BB
INGTRUCTION | & S E) Y e

2

......
.....
cccccc

WRITE THE RESULT
OF THE INSTRUCTION

......

......

......
.....
..........

..........

.

BUT BEFORE THAT, IT SHOULD

YOUR GLASSES AND TOAST!

CELEBRATE THE COMPLETION OF
THE PREVIOUS INSTRUCTION! RAISE

..PO I NEED TO
REMIND YOU THAT
I'M TRYING TO
TEACH YOU STUFF?

CPU INSTRUCTION PROCESSING

m

THE INSTRUCTION WE PROCESS CHANGES
DEPENDING ON THE PROGRAM COUNTER

Hmm, about that CPU overview diagram from before, though (see page 106). . .. There
are still a lot of words there | don't know. It all feels a bit hazy now.

Well, there’s no rush. Take another look after the next lesson. But for now, let’s look at the
program counter (PC).

Ooh, that guy who's always one step ahea— no, | mean the guy who remembers the
address to the next instruction! That reminds me, didn't we talk about counters before?
The circuits that count?

After the seventh instruction is done, we go to the eighth, and then the ninth, and
soon. ... s that how the saved address keeps changing?

Basically, yes. And by the way, the instruction register gets saved at the same time as the
counter changes, like in the image below.

COUNT COUNT

é é q...

/\ A

INSTRUCTION 7 1S INSTRUCTION 8 15
IN THE INSTRUCTION IN THE INSTRUCTION
REGISTER. REGISTER.

12 CHAPTER 3 CPU ARCHITECTURE

But be careful! Instruction number eight doesn’t necessarily follow instruction number
seven here.

The program counter stores the address of the instruction to be executed next. After
7, it might jump to number 15 or return to number 3.

Eeeeeh, why?! Why would the address return and jump around like that?

Hah! This is important, so pay attention. The reason it can jump around like this is that a
program might contain conditionals such as branches and loops!

When the program encounters one of these conditionals, the address of the instruc-
tion to be executed next might jump. It might be easier to understand this by looking at a

diagram.
EXECUTION l
EXECUTION
ERWY
A 4
EXECUTION EXECUTION EXECUTION
IMAGINING A BRANCH IMAGINING A LOOP

Ah! It’s like the ATM example we talked about a while back! It decided that the balance
was insufficient, so the outcome changed. And the ATM might throw you back to the main
screen if your PIN code is wrong.

CPU INSTRUCTION PROCESSING 113

Yeah, the ATM is a great example! And to accomplish these branches and loops, we only
have to rewrite the address inside the program counter to the address we want to jump to.

15

THE ADDRESS
WE WANT TO
JUMP TO!

| see. So by rewriting the address in the program counter, we can change which instruction
to execute! This way, the program is able to proceed appropriately.

It's also good to know that the bit width of the program counter (the bit width of the
addresses in the PC) is the same as both the address bus bit and the address space bit
width. If you think calmly about that for a bit, you should realize that they have to have
the same bit width.

| see. It seems obvious, but it feels really nice to see the relationship between the different
things we've talked about so far!

By the way, the program counter only knows what the next step is, right? Shogi
players have to read reeeally far into the future, so maybe the program counter and
shogi players are slightly different after all!

Slightly? You're joking, right?!

VIRTUAL MEMORY

Most computer programmers don't have to care about the CPU address bit length of

the programs they write for any modern operating system (such as Windows). It is the
operating system that decides how it will actually interact with the physical memory, and it
exposes this through something called virtual memory. The hardware that maps this virtual
memory to its physical counterparts is known as the memory management unit (MMU).

114 CHAPTER 3 CPU ARCHITECTURE

(All Kinds of Memory Devices J

THIS MIGHT BE A

BIT SUDDEN, BUT ID
LIKE YOU TO TRY TO

REMEMBER...

AT

SOMETHING LIKE
THIS ON THE DAY
OF THE CULTURAL

MEMORY
COMES IN TWO
FLAVORS...

PRIMARY MEMORY

WHEN WE SAY "MEMORY,”
WE GENERALLY MEAN
PRIMARY MEMORY.

THERE 1S MAIN MEMORY
AND SECONDARY MEMORY, BUT
WHEN LEARNING ABOUT THE
CPU, THE MAIN MEMORY, ALSO
CALLED PRIMARY MEMORY, IS A

LOT MORE IMPORTANT.

FESTIVAL...
\ 7] ~
WELL, IT TURNS OUT |
THAT SECONDARY /
UH, SURE, MEMORY 15 ALSO
BUT WHY...2 REALLY IMPORTANT!!

et
|| |||||lll y (| l’
\."l' ‘

THE MOST REPRESENTATIVE
TYPE OF SECONDARY MEMORY
IS THE HARD DISK DRIVE (HDD),

SOMETIMES JUST CALLED A

HARD DISK!! ALMOST EVERY
COMPUTER HAS ONE!

N
-/

CAN YOU
PLEASE STOP
CHANGING
YOUR MIND?!

ALL KINDS OF MEMORY DEVICES 115

A COMPARISON BETWEEN HDD AND MEMORY

Umm, I'm shocked by this new information. So what does this small box-looking thingy . . .
this hard drive (secondary memory) . . . do?

The easiest way to answer that is to compare it to primary memory. Let’s start with the
first big difference! When you turn your computer off, everything in primary memory dis-
appears! But any data stored on your hard drive does not.

This is why the operating system running your computer (for example Windows), all
your programs, and any data you might have created or downloaded (text, video, and so

on) are stored on your hard drive.

tions are stored in primary memory?

Eeeeeee!! That's amazing!! But didn't you say that all data and programs used for opera-

Yeah. Actually, when you turn on your computer’s power, certain parts of the data in your
hard drive are copied to primary memory. Anyway, when you turn your computer off, all
your data is safely stored on your hard drive. Take a look below.

(PRIMARY MEMORY)

IF THE TOP OF
YOUR DESK 1S LARGE,
YOU CAN DO A LOT OF

THINGS AT ONCE.

ON TOP OF THE DESK]

| wreLLect Py |

IF YOU'RE REALLY
SMART, YOU CAN

PROCESS THINGS
QUICKLY.
LAYBAC
(e ‘f\ DRAWERS
(HARD DRIVE)
\ SOFTWARE || TEXT | IF YOUR DRAWERS
ARE LARGE, YOU CAN
VIPEO. SAVE A LOT OF THINGS.

16 CHAPTER 3 CPU ARCHITECTURE

Mmusic {

Let’s imagine how the CPU, memory, and hard drive interact. We could say your memory is
like the top of your desk and your hard drive is like the drawers of that desk. You should be
able to understand their roles better by using this analogy.

Oooh, they're really different! If primary memory is large, it becomes easier to process
large amounts of data at once! And if the hard drive is large, you can save and store a lot
of data.

Now, let’s talk about the second difference between the two. The CPU can read directly
from primary memory but not from the hard drive!

The CPU sends control signals to something called the hard disk interface located in
a piece of memory called the //0 space. It is this hard disk interface that then controls the
hard drive itself.

HDD
INTERFACE
m— /0 | =
CONTROL MANAGED
SIeNAL 1/0 SPACE

CPU

THE CPU CANNOT ACCESS MEMORY
ADDRESSES ON THE HARD DRIVE DIRECTLY!

This might seem counterintuitive since we manipulate the data on the hard drive all the
time when using our computers. But really it works like in the picture above.

That is, your CPU only works directly with the address space, which your hard drive is
not part of!!

Aha. The only things that can interact with the CPU directly are the primary memory and
I/0 devices. So that’s why you placed so much emphasis on the importance of primary
memory. . . .

ALL KINDS OF MEMORY DEVICES 117

Then let’s talk about the third and final difference: hard drives are a lot slower than pri-
mary memory!

There are lots of different types of memory inside any computer, but by compar-
ing each of their relative storage sizes and speeds, you end up with something like this

pyramid.
FAST
A
«— INSIDE
-7g THE CPU
0O
Q CACHE
3 MEMORY*
< * CACHE MEMORY 15
% USED TO TEMPORARILY
STORE FREQUENTLY
¢ el USED DATA. THIS MAKES
o IT EASIER TO QUICKLY
m ACCESS DATA YOU
A DISK CACHE* MIGHT WANT.

v / HARD DRIVE (6ECONDARY MEMORY) \
SLOW

Z N

~ P

MEMORY STORAGE SIZE

Huh?! So memory close to the CPU is fast but small. As you get further away from the
CPU, it gradually grows larger but slower!

That's it. So, for example, registers have fast processing speeds but small memory sizes. A
good comparison might be a small, handy notepad.

Yeah. Anyway, | think | understand the difference between primary memory and hard
drives now. Even though they're both memory devices, their uses are completely different.

But that’s why we can play to their strengths, when appropriate.

An interesting example is that today’s computers, especially laptops, have started
using solid state drives (5SDs) instead of mechanical hard disk drives (HDDs). SSDs store
all data using semiconductor memory technology. This makes SSDs much faster and more
resistant to shaking and other types of blunt force than mechanical disks.

18 CHAPTER 3 CPU ARCHITECTURE

RAM SPACE, ROM SPACE, AND 1/0 SPACE

1/0 SPACE

Okay, let’s talk a bit about address space (memory space) again. Do you remember what |
taught you before?

Yeah, no problem! It's the dark space ruled by the CPU’s iron fist. ... No, | mean . . . it's the
space directly managed by the CPU, right?

TYPE ADDRESS
0 INSTRUCTION
1 INSTRUCTION
2 INSTRUCTION
3 [INsTRUCTION ADDRESS SPACE
4 INSTRUCTION (MEMORY SPACE)
20 DATA
31 DATA
32 DATA
33 DATA

Indeed. But to be more exact, address space comprises all the memory space outside of the
CPU that is controlled by the CPU.

Hmm? All the memory space outside of the CPU? That seems a bit convoluted. Are there
other types of memory in there other than primary memory?

Yes. This is important. The address space is actually divided into two parts: RAM (memory
you can read from and write to) and ROM (memory you can only read from). We say that
we have RAM space and ROM space inside our memory space.

ALL KINDS OF MEMORY DEVICES 119

R AM ROM

YOU CAN BOTH READ YOU CAN ONLY READ
FROM AND WRITE TO IT. FROM IT. THE DATA IS
THE DATA DISAPPEARS SAVED EVEN IF YOU
IF YOU TURN OFF THE TURN OFF THE POWER.
POWER.
EXAMPLE: PRIMARY MEMORY EXAMPLE: BIOS-ROM

Huh? What's this about rams and roms?! Okay, so RAM is our old friend the primary
memory, right? We can read from and write to it, and its data disappears if you turn off
the power. . ..

But what about ROM? So the data is intact even if you turn off the power and you
can only read from it, and this is somehow part of the memory space? Umm, what is it,
though?!

Yeah. We haven't really talked about it yet, but there is ROM on something called the moth-
erboard inside the computer. This is where you can find the program the CPU runs when
you start your computer. This program that runs before any others is called the BI0S.

| see. So if it couldn’t run this program, the computer would just be a very expensive
box? That's why the BIOS is put into a special part of read-only memory—so it won't be
forgotten!

THE BIOS IS THE
WHAT 15 THE BIO5? \\ FIRST STEP. //

The BIOS (Basic Input/Output System) is a program found
in ROM that the computer runs when you first turn it on.
The BIOS checks that all the devices in your computer
are in working order after you turn on the power. It also
launches your operating system from your hard disk.

120 CHAPTER 3 CPU ARCHITECTURE

In addition to the RAM space and ROM space, there is also a very tiny space called the

1/0 space.
-,
1/0 SPACE*
RAM SPACE {t
SMALL
ADDRESS
SPACE
* IN SOME SYSTEMS, THE
ROM SPACE YOI hovRese SPAcE.
\

input/output, right?

cPU

_ ADDRESS
SPACE

I/0 PORT

| think | remember hearing you mention I/0 earlier today. Ice cream and oreos ... no. ..

Yeah. The I/0 ports live inside this I/0 space. As | explained before, the CPU uses these 1/0
ports to talk to external devices directly (such as keyboards and mice). This is why your
computer responds when you press a key on the keyboard.

KEYBOARD

Hoho! Go CPU! So that means that since external devices use the address space managed
by the CPU, they are also managed by the CPU, right? In any case, | think | get that there
are different types of spaces inside the address space!

ALL KINDS OF MEMORY DEVICES 121

(What Are Interrupts?)

INTERRUPTS ARE USEFUL INTERRUPTS...!

GAH.

1 SUPPOSE THE

WORLD IS FULL
OF UNPLEASANT
INTERRUPTIONS,

LET'S WRAP UP TODAY
BY TALKING ABOUT
INTERRUPTS.

REALLY! USEFUL!

BUT FOR COMPUTERS, FEATUREY

INTERRUPTS ARE A...

WHAT DO
YOU MEAN?

BUT IF YOUR
IMAGINE YOU'RE PHONE RINGS, YOU
COOKING 7 TEMPORARILY STOP
SOMETHING. COOKING TO ANSWER [T,

122 CHAPTER 3 CPU ARCHITECTURE

WHILE ANSWERING THE

PHONE WILL INTERRUPT 1 SEE...
YOUR PREVIOUS TASK 1 GUESS
(COOKINGD)... THAT'S TRUE.

THAT MIGHT BE A
GOO0D THING IF THE
CALL HAPPENS TO BE

IMPORTANT.

I DON'T MIND
INTERRUPTIONS IF THEY'RE
REALLY IMPORTANT.

THE CALL MIGHT BE FROM A
SENIOR I GAVE UP MY TRAIN
SEAT TO WHO WANTS TO GIVE
ME HIS ENORMOUS INHERITANCE,
WHO KNOWsZ/

IVE NEVER SEEN

: THOUGHTS AS OPTIMISTIC

: AS THIS. SHES WAY PAST
’ ‘ /r— DELUSIONALY

WELL, UH, I GUESS
WHAT I WANT TO SAY IS
THAT INTERRUPTS ARE
REALLY USEFUL...

SINCE THEY LET YOU
ADVANCE MULTIPLE
TASKS EFFICIENTLY.

WHAT ARE INTERRUPTS? 123

50 EVEN IF YOUR CPU

IS BUSY WITH SOME
CALCULATION...

IT WILL STILL RESPOND*
RIGHT AWAY WHEN YOU
MOVE THE MOUSE OR

. PRESS KEYS ON THE

i)

* WE CALL THE PROCESS OF THE COMPUTER
KEEPING PACE WITH SIGNALS FROM
EXTERNAL DEVICES SYNCHRONIZATION.

AH! YEAH, T WOULDN'T
WANT TO BE IGNORED
BY MY COMPUTER JUST
BECAUSE IT WAS DOING
SOME CALCULATIONS.

BECAUSE OF
INTERRUPTS...

THE COMPUTER CAN
CONCENTRATE ON
THAT PREVIOUS TASK.

PERIODICALLY TO CHECK WHETHER

LET'S ASSUME THE CPU HAD
TO MONITOR THE KEYBOARD

A KEY HAD BEEN PRESSED...

IF THERE WERE NO INTERRUPTS...

PRESS A KEY?
CPU 7 KEYBOARD
DID SOMEONE (T

DID SOMEONE
\ @ THERE'S NO

j | ONE HERE

YOU KNOW...
LOOK! DOESN'T
THAT SEEM
WASTEFUL?!

CALCULATIONS
ARE GOING
SLOWLY...

IF THERE ARE INTERRUPTS...

SOMEONE
PRESSED A
BUTTON!

—E

WHOA. THERE WOULD
BE A WORLD OF
DIFFERENCE IN

PRODUCTIVITY...

ALSO, AFTER
THE INTERRUPT QG(A)VI; UVAI,?E;ZI-CE)
THE PROGRAM
COUNTER WAS
AND ALL THE DATA
IT WAS USING
SOMEWHERE.

usT A SMALL
I ZEM\NVE‘Z!

IT'S IMPORTANT THAT W

THE CPU 15 ABLE TO
EASILY RETURN TO THE
PREVIOUS CALCULATION.

.....
OO

o IT WOULD BE -

7" PRETTY ANNOYING IF THE

1 INGREDIENTS I WAS USING

‘\\PISAPPEARED WHENEVER 1
. WAS INTERRUPTED.

HMM, YEAH
THAT MAKES

AND I WOULDN'T LIKE
TO FORGET WHERE
I WAS, EITHER.

>

YOU'RE GOING
TO EXPLAIN THEM
TO MEZ/

I'D LIKE TO
EXPLAIN
INTERRUPTS.

DON'T INTERRUPT ME/Y/

THE STACK AND THE STACK POINTER

Okay, let’s get right into it. As | said, to be able to return to the task it was doing before the
interrupt, the computer needs to take some memos before it starts a new task.

It uses something called the stack—a part of main memory reserved for bookkeeping—
to do this. The way it does this is pretty interesting—take a look.

YOU PUSH DATA S .AND POP DATA
TOADD TTO THE push POopP TO REMOVE IT
STACK... /\ /\ FROM THE STACK.

IT SAVES 3 BUT REMOVES
IN ORDER... IN THE REVERSE

1,23 2 ORDER... 3, 2, 1

1
STACK

Ooh, that's a funny way to remember things! It's kind of like a stack of books that you can
keep piling up, but if you want to take one out, you always have to take one from the top.
You can't just take data from anywhere.

That’s exactly right. And a special register holds something called the stack pointer (SP for
short) that points to the last stack address we worked with.

Push

"

THE ADDRESS
THAT THE
STACK POINTER
REMEMBERS

| see. While the program counter keeps track of the address for the next instruction, the
stack pointer keeps track of the last address on the stack.

126 CHAPTER 3 CPU ARCHITECTURE

When using stacks, it's important to use the stack pointer correctly. Because . . .

With just one interrupt, everything is fine. But if you keep adding interrupts one after
another, the stack will keep growing and eventually bad stuff will happen. . ..

STACK
POINTER | ™ DATA FROM
INTERRUPT B
DATA FROM
INTERRUPT A

MAIN PROCESS

} DATA FROM THE

DATA

The data that is saved during an interrupt consists of the
accumulator, status registers, and the program counter.

Whoaaa! I'm not sure I'm getting what's happening there.

Bugs or even just frequent interrupts that the stack has no coping mechanisms for can
result in the stack pointer losing control over the program’s execution.

This usually means that the person or people who wrote the software didn't properly
understand the implications of using a stack...

Ah! Have you ever made one of your programs go out of control like this?

When working with the CPU, interrupts can be really efficient. But if you don't know how to
work with the stack, youre bound to make a program that runs into problems like this. And
that's all | have to say about that!!

So you were also like that once, right? You didn't know how to work with the stack and

something happened right? I'm right, aren't 1?!

Fuhahahah! I'm just talking hypothetically!

WHAT ARE INTERRUPTS? 127

INTERRUPT PRIORITY

INTERRUPT \
A: PHONE
CALL \ 0
&
INTERRUPT B: o7
DOORBELL

@@\
7

MAIN TASK:
COOKING

<>

Ahem. Let’s try to refocus and talk a bit about interrupt priority.

Let’s once again assume that you were interrupted with a phone call while cooking.
Now let’s assume that you also hear the doorbell while on the phone. What would you do?

Eeeeh!? That's just bad timing! | don't think | could deal with that. I'd rather people would
stop interrupting me all the time. . ..

Heh heh heh. Yeah, | thought so. This is when interrupt masks are really useful! By using
an interrupt mask, you can avoid being interrupted at all. You know, like how you can hide
your face behind a mask.

Yeah, wearing a mask can stop all kinds of things!

But you can't let your guard down. You can still be forcefully interrupted by some things,
even if youre using a mask. We call these resets!

Resets are the interrupts with the absolute highest priority. They are special inter-
rupts that are not affected by masks.

Resets! The word does have a kind of “don’t argue with me” air about it. Just like when you
press the reset button on your game console, it returns to its initial state, right? It really
gives me this “let’s start over” vibe.

128 CHAPTER 3 CPU ARCHITECTURE

Yeah, that's right. And whether it's your computer or your console, both of them start at
their initial state when you turn on the power, right? That's because when you turn on the
power, the first thing the system does is issue a reset.

Resets return programs to their initial state. Put another way, they return all the cir-
cuits to their initial state. Completely. This is why when we want the computer to wake up
nicely—that is, when we want it to start in a functional state—we have to issue a reset.

Oooh, it felt a bit scary when you said it was forceful, but | guess a bit of force is necessary.

There are also some interrupts of the highest priority that the CPU will not mask even
though these interrupts might not be resets.

We call these interrupt signals that go through masks non-maskable interrupts (NMi).
They can have many uses depending on the system architecture, and they're really conve-
nient in some cases.

It seems interrupts have all sorts of uses.

There are also timer interrupts that issue an interrupt when they reach zero after counting
down using a decrementing counter. (Think 3, 2, 1, interrupt now!) Using these, it's pos-
sible to execute programs at regularly timed intervals.

Ah! That timer interrupt gave me an idea! There is a program that runs every day at 7 AmM
that sounds a bell when I'm executing my sleep task. It's issuing an interrupt right when I'm
snoozing away peacefully!!

Ah. That’s just your alarm clock.

WHAT ARE INTERRUPTS? 129

OKAY, THAT'S ENOUGH
FOR TODAY! THANKS!

BY THE WAY,
YOU'RE STILL TAKING
GO0D CARE OF MY

SHOOTING

SHOOTING STAR,
RIGHT?

{4 \S

L

IT'S REALLY
IMPORTANT
TO ME.

/4

/" OH, THAT BLACK LAPTOP? X
IT'S FINE.

I PUT IT UNDER
ONE OF MY BEST
SHOGI BOARDS!

THAT HAS TO BE
ONE OF THE WORST
PLAcCES TO PUT ITV

DON'T WORRY, I'M JOKING!
I PUT IT IN A SAFE PLACE,
AND T'LL GIVE IT BACK AS
SOON AS YOU'RE DONE
TEACHING ME ABOUT

...IF YOU'RE THAT
WORRIED ABOUT
IT, WANT TO COME
BY TOMORROW?

THAT'S OKAY THEN,
BUT YOU'RE REALLY...

130 CHAPTER 3 CPU ARCHITECTURE

VERY WELL.
I SHALL TAKE
YOU UP ON
THAT OFFER.

I MEAN, WE WENT TO THAT
FAST-FOOD JOINT THE OTHER
DAY AND HAD CAKE TODAY, SO
WE'RE REALLY CONSUMING A
LOT OF CALORIES!

AND IF WE GO OUT
EVERY DAY, ITLL
GET EXPENSIVE!
TOMORROW 15

SUNDAY, SO IF YOU

WANT TO COME BY...

BUT YOU'LL HAVE TO CLEAN EVERY
CORNER OF YOUR ROOM BEFORE I
ARRIVE/ DONT THINK I SHALL MI55
EVEN A SINGLE MOTE OF DUST

WHAT DO YOU THINK
YOU'LL BE DOINGZ/
YOU'RE JUST COMING
OVER TO TEACH ME.
THAT'S 1T

\\\\\\\\\\\\\\\\ ™

MEMORY CLASSIFICATIONS

ROM stands for read-only memory and is a type of memory that will not lose its data
even if the power is turned off. As the name implies, you can only read from ROM. You
can't write to it.

In contrast, with RAM, which stands for random access memory, you can read from
or write to any address in any order. You might think that ROM and RAM are opposites,
but that isn’t necessarily the case.

RAM
—{ RwM CAN BE ACCESSED

RANDOMLY
CAN READ
AND WRITE
MEMORY —
- CAN ONLY BE
R O M ACCESSED
SEQUENTIALLY
CAN ONLY
READ

As you can see in the image above, the opposite of RAM is actually SAM (sequential
access memory), which was an older type of memory commonly found on magnetic tapes
and drums. As the name suggests, it could only read memory addresses in order. In addi-
tion, the opposite of ROM is the now defunct RWM (read-write memory).

Memory that retains its data even when the power is turned off and allows this
data to be accessed again when the power comes back on is called non-volatile memory.
Memory that loses its data when the power is turned off is called volatile memory.

These terms are no longer commonly used, however, and have largely been replaced
by RAM (instead of volatile memory) and ROM (instead of non-volatile memory).

I/0 PORTS AND THE GPU

If there were no connection between input/output devices and the CPU’s registers or
ALU, the CPU would be unable to accept external input. External input doesn’t only come
in the form of character input from the keyboard; it can be a mouse click or any electri-
cal signal. If we didn't have some output, such as LEDs that light up when an operation is
complete or some other signal, it would be very hard for us to interact with any com-
puter. In the same way we need feedback, the internal data bus needs input and output
ports (/0 ports) to communicate with external devices such as memory and so on.

132 CHAPTER 3 CPU ARCHITECTURE

The most commonly used output device is the computer display. This is an example
of a device that is not connected directly to the CPU. The display is instead connected to a
special IC called the GPU (graphics processing unit), which generates and outputs images
on demand. When the CPU needs to use the GPU, it has a special I/0 port dedicated to
GPU communication.

DIRECTLY CONNECTED!

CPU —

KEYBOARD

EXCLUSIVE
1/0 PORT

NO DIRECT
CONNECTION

DISPLAY

Smaller systems sometimes don't have a GPU but are still attached to a color LCD
(liquid crystal display). In these cases, the CPU communicates by sending any necessary
data through an 1/0 port to an LCD controller. This LCD controller and its driver then
output the image data to the display.

CLOCK FREQUENCY AND DEGREES OF ACCURALCY

Of course, you need electricity for the CPU to work. But you also need a clock frequency.
A clock is a signal that alternates between high and low voltage at regular intervals. The
clock frequency is how many times this signal alternates in one second.

The clock is like the heartbeat of the CPU. It is essential for updating the CPU’s
internal circuits, such as the latching of the data inside the ALU and the block™ advancing
the program counter.

Clock frequency is measured in Hz (hertz), which is a measure of how many times
the clock cycles in one second. So, a clock running at 40 MHz would be cycling 40 million
times per second.

This clock speed is also a measure of the performance of the CPU. Everything that
the CPU does, like instruction decoding and ALU operations, it does in synchronization
with the clock. The CPU can execute one action per clock cycle, so the higher the clock
frequency, the higher the clock speed and the faster the execution speed of the CPU.

* Block is a term used to denote the group of things needed to realize some function.

CLOCK FREQUENCY AND DEGREES OF ACCURACY 133

THE FLOW OF TIME
ﬂ
SLOW HIGH VOLTAGE
coc | LI LI LITLILILIL
SPEED i LOW VOLTAGE

ONE CLOCK
oYcLe

FAST

SPEED

WE GET A HIGHER NUMBER OF CLOCK
CYCLES OVER THE SAME AMOUNT OF TIME!

The degree to which the clock speed matches the clock frequency is called the
degree of accuracy. When using computers for communication applications, connecting
two devices with clock frequencies that do not match can cause timing problems.

CLOCK GENERATORS

We call circuits that generate clock signals clock generators. Most CPUs have internal
clock generators, but it is also possible to connect externally generated clock signals

to a CPU. The different components inside the CPU that make up the clock generator—
including the crystal oscillator, capacitors, and resistors—all contribute to the accuracy
of a clock signal’s frequency. Some situations don't require high accuracy, but if a CPU
must be synchronized with other devices to exchange data, for example, then the accu-
racy of the clock signal’s frequency is a high priority.

WHAT ARE CRYSTAL OSCILLATORS? <

Crystal oscillators are made from small artificial crystal shards

that have been cut incredibly thin. If you attach two electrodes to

a shard and apply a voltage, the crystal warps. By fluctuating the

direction of the voltage, it is possible to create vibrations that give ¢
rise to a stable frequency. Consequently, you can generate oscilla-
tions at very precise time intervals.

Crystal oscillators are used in many kinds of devices in which
precise time intervals need to be measured, such as computers,
phones, and watches. The quartz in a quartz watch is actually a
crystal oscillator.

By connecting clock generators to crystal oscillators and
condensers (electronic components that store and release electri-
cal charge), it’s possible to create an alternating signal.

134 CHAPTER 3 CPU ARCHITECTURE

To achieve a high degree of accuracy, you can use an external clock signal instead
of the clock signal from the CPU’s internal clock generator. External oscillators usually
provide higher quality clock signals than internal clock generators.

TIMER INTERRUPTS

By using the decrementing counter inside CPUs, we can initiate interrupts whenever the
timer reaches zero. We call this a timer interrupt.

JUutmm JUL

LOWERS THE A COUNTDOWN
FREQUENCY 3210
MASTER TIMER BASIS
cLocK PRESCALER | CLOCK
DECREASING TIMER
(FREQUENCY TIMER e INTERRUPT
DIVIDER)
A
LATCH SIGNAL
SELECT INITIAL VALUE
REGISTER REGISTER

AMOUNT TO
COUNT FROM

MULTIPLICATION
FACTOR

TIMER INTERRUPT BLOCK

It is also possible to use the CPU’s base clock (or master clock) with a frequency
divider* Dividing the CPU’s base clock with a frequency divider allows you to increase
the time required for a countdown timer to count to zero. Indeed, you can change the
amount of time required for the timer to count down to zero from several seconds to
several hundred seconds.

It is then possible to execute some program at given intervals by setting the initial
value of the countdown timer to some value (for example, 100). To change the interrupt
frequency, all you need to do is tell the CPU to rewrite the register where the “value to
count down from” is stored. Changing this value from 100 to 50, for example, would
double the interrupt frequency.

You can set a countdown timer to run even while other programs are running, and
it will issue an interrupt when it has counted down to zero. There are many uses for this.
For example, you can turn a light on and off at fixed intervals. Timer interrupts are more
effective than other methods for doing this because they save valuable CPU time.

* Frequency dividers change the period by lowering the frequency.

TIMER INTERRUPTS 135

HOW TO USE TIMER INTERRUPTS

To use a timer interrupt, you must first configure it by writing a value into its
control register. The value written to this register determines the clock source,
whether the clock frequency is to be divided before counting and by how much,
and other timer behavior.

Next, we write the initial value into the counter and set the timer to start on
the reset signal. After it has started, the timer will interrupt the CPU every time it
counts down to zero.

We then rig the timer to start on the reset signal (see the next page) and to
cancel if commanded by the CPU to do so. After it has started, an interrupt signal
will be sent from the timer block to the CPU control circuit every (master clock
cycle) x (multiplication factor) x (value to count from) units of time.

Finally, let's examine the timer interrupt component present in classic CPU architec-
tures, which can be seen in the image below. INT here is the signal that the CPU uses to
send instructions to the timer interrupt block. RESET (timer reset) is the signal used to
start the timer.

RESET
INT

TIMER
INTERRUPT
CONTROL

If you were to leave the reset input in an active state, the timer would stop and
never start. If you then were to clear the timer reset, it would start counting down again
and eventually issue an interrupt. After this, it would count down from the set value on
every cycle of the multiplied master clock frequency, issuing an interrupt signal when it
reached zero.

When it reached zero, it would once again latch to the value stored in the “value to
count from” register and start over. By doing this over and over again, the component is
able to produce interrupts at fixed intervals indefinitely.

RESET SIONALS

To reset means to set programs and internal circuits to their initial state. The program
counter is set to zero, and temporary operational data is cleared. A reset signal is issued
every time you start your computer. This is extremely important as it makes sure that
any programs you run after the start-up process work correctly.

Let’s take a closer look at the reset process. The reset signal is raised by setting an
active state after a low voltage state. After you turn on the power, the voltage will fluctu-
ate a bit before finally settling down at a stable level. If the CPU were active during this
period, all kinds of problems would result. This is why the reset signal is constantly active

136 CHAPTER 3 CPU ARCHITECTURE

during this period, making the CPU unable to process anything. In other words, we pro-
tect the CPU by maintaining the reset state until the voltage has stabilized. Then, when
the voltage has stabilized, we release the reset signal by raising the voltage.

/\ STABLE

" POWER
) VOLTAGE
<
A
)
>
\I N
7 [d
THE VOLTAGE 15 IT HAS STABILIZED,
UNSTABLE, 5O WE KEEP 5O WE CAN RELEASE
THE RESET ACTIVE. THE RESET.

THE STATE OF THE RESET SIGNAL AND
VOLTAGE CHANGES OVER TIME

If, for example, the CPU were to start acting in an unexpected manner, it is possible
to initiate a forced reset by lowering the voltage below the necessary level (and therefore
enabling the reset) and setting all programs and circuits to their initial state. Resets are
an essential function needed to ensure that the computer will work as we expect it to.

CPU PERFORMANCE 15 MEASURED IN FLOPS

CPU performance is determined by the CPU clock speed and its operation execution speed.
The clock speed tells us how often the logic circuits in the ALU can perform calculations.
And the operation execution speed tells us how quickly the CPU can perform calculations
one after another.

Older CPU ALU blocks worked only with integer arithmetic. Back then, the CPU’s
performance was measured by how many instructions it could handle in one second, or
its MIPS (million instructions per second) value, rather than by how quickly it could per-
form calculation operations. As its name suggests, MIPS indicated how many millions of
instructions the CPU could handle in one second.

These older CPUs were, of course, also able to work with floating-point values, but
modern CPUs have specialized integrated hardware for just this purpose. This is why
in more recent years the preferred measure of performance has become how many
floating-point operations the CPU can handle in one second, or MFLOPS (million floating-
point operations per second). Once again, as its name suggests, this value indicates how
many millions of floating-point operations with 15 significant digits the CPU can handle
in one second.

CPU PERFORMANCE IS MEASURED IN FLOPS 137

We sometimes use units other than MFLOPS, such as GFLOPS (gigaFLOPS) and
TFLOPS (teraFLOPS). One GFLOPS is the processing of a billion floating-point operations
with 15 significant digits in one second. One TFLOPS is the ability to process a whopping
trillion floating-point operations with 15 significant digits in one second.

=Y

TM 50
EMBARRASSED.

YOU CAN SEE THE
PERFORMANCE OF A
CPU BY LOOKING AT

ITS FLOPS VALUE!

138 CHAPTER 3 CPU ARCHITECTURE

OPERATIONS

s

Types of Operations J

V WELCOME!
PLEASE

COME IN.
MT\

(THANK YOU.
EVERYTHING SEEMS

WHAT AM 1 SAYING?! WHY PRETTY CLEAN. T WAS

AM I EVEN NERVOUS?!! EXPECTING IT TO BE A
LOT MESSIER...

1 Ml
LT
(7 i
| ‘.I \x],,i
Iy i | AWt A
)|
. g

\
‘lII i

WHAT ARE YOU
I||| UPSET ABOUTZ/

J

HMM...

A'l" !!'"Iilll'inn. il

//// M

140 CHAPTER 4 OPERATIONS

I CAN'T HAVE YOU
LOOKING DOWN
ON ME.

THE BEST SHOGI PLAYERS N
KEEP THINGS TIDY! A WELL-
ORDERED SPACE 1S ESSENTIAL
FOR A WELL-ORDERED MIND.
I'M ALSO REALLY...

HEY MOM!
R 515 BROUGHT A
= | BOY HOME!

uK
U

REALLY? NO WONDER
SHE SPENT ALL
NIGHT CLEANING!

THERE'S A
FIRST TIME FOR
EVERYTHING.

KEEPING YOUR PRESENCE OF
MIND IN DIFFICULT SITUATIONS
IS WHAT MAKES A STRONG
SHOGI PLAYER, TOO!!

N4
~J

il
UH, I GUESS
CONGRATULATIONS
ARE IN ORDER FOR

A NIGHT'S WORK
WELL DONE...

TYPES OF OPERATIONS 141

THERE ARE MANY
TYPES OF INSTRUCTIONS

DO SOMETHING...

OKAY, TODAY
WE'RE GOING
TO TALK ABOUT
INSTRUCTIONS.

..TO SOMETHING

OH, I REMEMBER
WE TALKED ABOUT
INSTRUCTIONS
BEFORE. THESE
ONES, RIGHT?

PROGRAMMING
INSTRUCTIONS ARE REALLY
JUST STRINGS OF 15 AND
Os, SOMETIMES CALLED
MACHINE LANGUAGE.

0/0(0|0/0|0|0|1(0]0|0|0/0|10|1

Y Al

OPCODE OPERAND
(INSTRUCTION) THE VALUE
OR ADDRESS

TO USE

DEPENDING ON THE
TYPE OF INSTRUCTION,
THE LENGTH OF THE
INSTRUCTION (HOW MANY
BYTES LONG IT 1S) AND THE
NUMBER OF OPERANDS
MIGHT CHANGE.

3 %
50 THERE ARE LOTS
OF DIFFERENT KINDS
OF INSTRUCTIONS,

CPUs ONLY UNDERSTAND
MACHINE LANGUAGE.

(

THAT'S RIGHT! T'VE

DIFFERENT TYPES OF
INSTRUCTIONS HERE

INSTRUCTION TYPES

CATEGORIZED

IN THIS TABLE. 1.

INSTRUCTIONS THAT DEAL

2.
3.

INSTRUCTIONS THAT DON'T
DEAL WITH CALCULATIONS

Data transfer instructions

WITH CALCULATIONS
Arithmetic instructions
Logic instructions Input and output instructions

Bit shift instructions Branching instructions

BwoN o

Conditionals (comparison
instructions and so on)

THROUGH THESE IN

WOW, THERE ARE
THAT MANY...2

ILL BE GOING
ORDER TODAY.

WELL, YOU'VE ALREADY
LEARNED A LOT, SO
I WOULDN'T BE THAT
WORRIED.

IF YOU UNDERSTAND
THESE INSTRUCTIONS,
THEN YOU'LL KNOW
WHAT 1S HAPPENING
INSIDE THE CPU.

N

/ /
THEN GIVE ME A DETAILED

EXPLANATION OF ALL THESE
INSTRUCTIONS IN UNDER

THREE SECONDS!!
"{ k
A \

I SEE...

\/

V

>4 A|
U

DON'T GIVE ME
) IMPOS5/BLE
R INSTRUCTIONS

LIKE THATY/

) \\ “

INSTRUCTIONS FOR ARITHMETIC
AND LOGIC OPERATIONS

LoGIC
ARITHMETIC
OPERATIONS OPERATIONS

LET'S START WITH

AND (LOGIC INTERSECTION)
THESE TWO.

PLUS (ADDITION)
OR (LOGIC UNION)
MINUS
(GUBTRACTION) NOT (LOGIC NEGATION)

DO YOU
UNDERSTAND WHAT I MEAN
BY ARITHMETIC OPERATION
AND LOGIC OPERATION
INSTRUCTIONS?

N
\Iﬁ’“l \‘ll ‘e[

THINGS LIKE ADDITION
ARE ARITHMETIC, AND
THINGS LIKE “AND” ARE
LOGIC, RIGHT?

YEAH, BUT TO GET A DEEP
UNDERSTANDING OF THESE
THINGS, WE REALLY NEED TO
LOOK AT WHAT'S HAPPENING
INSIDE THE ALU...

50, IT'S BASICALLY WHAT
TYPE OF INSTRUCTION
THEY ARE!

BUT LET'S LEAVE THAT
PIECE OF FUN FOR LATER
AND CONTINUE WITH THE
OTHER INSTRUCTIONS.

144 CHAPTER 4 OPERATIONS

WHAT ARE BIT SHIFTS?

50, NEXT UP ARE BIT
SHIFT OPERATIONS?

WELL, I GUESS IT HAS
SOMETHING TO DO WITH
MOVING BITS, BUT OTHER

THAN THAT...

YEAH, THAT'S RIGHT.
LOOK AT THE NEXT
FIGURE.

LOGICAL RIGHT SHIFT WUSING TWO BITS)

REMOVE THE BITS
ON THE RIGHT...

AND ADD Os

TO THE LEFT. WE MOVE THE REST OF

THE BITS TWO PLACES
TO THE RIGHT!

AS YOU CAN SEE, BIT SHIFTING
MOVES THE BITS LEFT OR RIGHT
ALL AT ONCE!

OOH!! JUST LIKE YOU SAID,
THEY ALL MOVED! THEY WERE
SHIFTED TOGETHER.

THIS OPERATION 1S J
PERFORMED IN THE ACCUMULATOR, ~
THE REGISTER WHERE OPERATIONAL
RESULTS ARE TEMPORARILY STORED.

BIT SHIFT
FUNCTION-
ALITY

(BIT SHIFT FUNCTIONALITY
RESIDES IN THE ACCUMULATOR.)

TYPES OF OPERATIONS 145

ooooooooooooooo

. .

ooooo

HMM, BUT...
WHAT DO YOU USE
SHIFTS FOR?

HEH, WELL, THERE ARE
SEVERAL USES.

Tg
SN

£~~~ ONE THAT'S FAIRLY EASY

TO UNDERSTAND IS THAT THEY'RE
USED TO PERFORM CERTAIN
DIVISION AND MULTIPLICATION

OPERATIONS QUICKLY.

THE RESULT 1S
ACTUALLY EQUAL TO 100/4
(100 DIVIDED BY 22 OF
THE ORIGINAL VALUE!

(BINARY)

DIVISION?
MULTIPLICATION?

: e]OO (pEcmaL)

WHAT DO YOU MEAN?

AN d00/a)
0]] 00 I ... 25 (DECIMAAL.)

THAT LAST EXAMPLE
INVOLVED A RIGHT
SHIFT USING
TWO BITS.

RIGHT SHIFT BY
TWO BITS

RIGHT SHIFTING A BINARY NUMBER
BY ¥ BITS IS EQUAL TO DIVIDING

LEFT SHIFTING A BINARY NUMBER
BY N BITS 1S EQUAL TO MULTIPLYING

THAT NUMBER BY 2.

THAT NUMBER BY 2.

THIS REALLY 1S

USeFUL! BUT THIS 1S

ONLY POSSIBLE IN
BINARY, RIGHT?

146 CHAPTER 4 OPERATIONS

THE SIGN BIT LETS US EXPRESS
NEGATIVE BINARY NUMBERS

Before | explain bit shifts more, | want to talk briefly about sign bits.

Sign bits . . . ? What are those?

In a binary number, the sign bit is the bit to the far left, and it tells us if the number is
positive or negative. If the left digit is O, the number is positive, and if it's 1, the number is
negative.

Look at the image below. The most significant bit, which is the leftmost bit, is the sign
bit. The sign hit, along with the rest of the hits, determines what numerical value is being
represented.

5IGN BIT 5IGN BIT
{ (O MEANS POSITIVE, {

AND 1 MEANS NEGATIVE)
EXAMPLES |() 1 1 (RePresenTs +3)

1 O 1 (rePresents -3)

N\
NUMBER

Uhh ...l can see how 011 would make +3 just by thinking in simple binary. But why does
101 equal -3? That doesn't make any sense.

Remember complements? When expressing negative numbers in binary, we use the two’s
complement.

O11
@D rfuPALL
. THE BITS!
b1

%%@ ADD 1.
101

Oh, now | see it! So to express the negative value of 3 (011), we get 101. With the impor-
tant part being the sign bit to the far left.

TYPES OF OPERATIONS 147

Yes. Using three bits without a bit sign, we could express eight different numbers from O to
7, but using three bits including one sign bit, the range changes to -4 to 3. We still get eight
numbers though, as shown in the table below.

NUMBER

TWO'S
COMPLEMENT

8

011

010

OI0|—=|—|O|O
O—=|OCO|—|O|—

SIGN BIT

SIGNED THREE-BIT NUMBERS

They look the same, but the expressed values are completely different. . .. That's just

Doesn't that mean that if | have some binary number—say 101—I could interpret that
number as -3 if | assumed it was signed or as 5 if | assumed it was not signed?

confusing, don't you think?! What were they thinking??

* Programs have a flag that changes depending on the calculation’s result to track changes to the sign. If
the program monitors this flag, it's possible to tell whether any unforeseen changes occur to the sign of a
number. Not all CPUs support this feature, though, and if the CPU doesn't, it's up to the program to keep

track of the sign bit.

148 CHAPTER 4 OPERATIONS

Ah, it's true that humans wouldn't be able to tell the difference. Computers, however, have
dedicated systems that keep track of this.* So don’t worry about it!

LOGICAL SHIFTS AND ARITHMETIC SHIFTS

Now let’s return to hit shifts. There are two types, logical shifts and arithmetic shifts.
Essentially, the difference is whether we are using the sign bit we talked about before.

LOGICAL SHIFT

SHIFT (NO SIGN BIT)

OPERATION

ARITHMETIC SHIFT

(HAs SIGN BIT)

Oho! So logical shifts don't have sign bits, but the arithmetic shifts do. | see where this is
going.

The outcome of a logic operation is always either true or false, right? That means that
concepts like sign bits or negative numbers wouldn't exist. But since arithmetic operations
deal with adding and subtracting numbers, those concepts would be necessary.

Mm, yes! That is an astute observation—you are correct.

Logical shifts are very simple, and we've already talked about them. Arithmetic shifts,
on the other hand, are a bit tricky.

TYPES OF OPERATIONS 149

Look at the next figure. When performing arithmetic shifts, we fill in the blank spaces with
1s if the sign bit is 1 and with Os if the sign bit is 0. You have to pay attention to the sign
bit, essentially.

ARITHMETIC RIGHT SHIFT

O|1(1|0(0|1|0 O POSITIVE VALUE
DS (e
OO]]OO]O THE RIGHT

—
FILL INWITH O

]] O] O] EE NEGATIVE VALUE

f_\\A\A\A\A\ WHEN SHIFTING
T{1{1[1[0]1]0]1] \ ™e¥&r

——
FILL IN WITH 15

Ohh! With logical shifts, you could just fill the blank spaces with Os without a second
thought, but with arithmetic shifts, you have to keep the sign bit in mind.

There is another really important thing, though. Please look at the next image. We shift a
positive number (the sign bit is 0) to the left and . . . whoa! A 1 from the number value bits
might end up becoming the most significant bit.

Oh my . .. that can't be good. It would look like the number turned negative all of a sudden
(since the sign bit is 1).

Yeah. While the operation was only supposed to multiply the value 2", it ended up flipping
the sign bit instead. We call this overflow, just like how water can overflow from a cup if
you pour too much in. When this happens, it means that the calculation result used more
digits than it was allowed and therefore “overflowed.”

150 CHAPTER 4 OPERATIONS

ARITHMETIC LEFT SHIFT TAKE NOTE! NOT ALL CPUs ARE

GUARANTEED TO HAVE THIS FEATURE.

G0 OTOTITO] e
L TR LerT

—
1 FILL IN WITH Os
THE BIT ON THE FAR LEFT CHANGED!
(OVERFLOW)

A serious state of affairs, for sure! | guess this is an error? It's not like you can pretend it
didn’t happen . . . and you couldn’t continue the calculation like this.

Mhm. When overflow occurs, the overflow flag (overflow bit) of the status register is set.
It makes sure to remember that an overflow occurred as a result of a calculation.

Hah! So another register is in charge of taking notes about any grave errors that might
occur in the accumulator register. This way they won't be missed!

OVERFLOW AND UNDERFLOW

Calculations using floating-point numbers (as opposed to the integer operations we've been
talking about) can both overflow and underflow if the algorithm (the method of calculation) used
produces a result that falls outside of the acceptable range of values.

For example, if the result of some calculation is a value that is so close to zero that it cannot
accurately be expressed using the available bits (think 0.00000000000 . . . 1), it would generate
an underflow.

TYPES OF OPERATIONS 151

CIRCULAR SHIFTS (ROTATING SHIFTS)

Before we move on to the next subject, | would like to talk a bit about circular shifts
(rotating shifts), which are important in cryptography.

The easiest way to think about it is as if the edges of the bit sequence in the accumu-
lator were glued together into a wheel that can rotate freely.

LEFT EDGE RIGHT EDGE

(MOST SIGNIFICANT BIT) (LEAST SIGNIFICANT BIT)
y y
91)1]olo]1lojolof1{1{0lo]1jOL!

Oh. It’s like we stuck the two edges of the tape together. Spinnn!

Applying circular shifts has the following effect. Remember that the left edge (most signifi-
cant bit) and the right edge (least significant hit) are connected.

CIRCULAR SHIFT

THE BITS AT O

®)
o
&)

THE LEFT O
EDGE... (g — (WHEN SHIFTING
FOUR BITS TO
/ ‘// / THE LEFT
O[1[{O|O|O[1|1|0]| -Arreazon

THE BITS AT THE
RIGHT EDGE...

=~ WHEN SHIFTING
\\ \ THREE BITS TO
THE RIGHT

O
o

¥c

..APPEAR ON
THE LEFT!

152 CHAPTER 4 OPERATIONS

DATA TRANSFER
OPERATIONS

OKAY, LET'S TALK
A BIT ABOUT SOME
INSTRUCTIONS THAT

AREN'T CALCULATIONS.

7 JUST WHAT T WAS \

HOPING FOR!

FIRST OFF, WE HAVE
THE DATA TRANSFER
INSTRUCTION. AS YOU MIGHT
GUESS, IT'S AN INSTRUCTION
THAT DEALS WITH THE
TRANSFER OF DATA.

I KNOW THIS!

CPU
(REGISTERS)

THEY'RE THE :
INSTRUCTIONS USED WHEN
THE CPU REGISTERS READ
AND WRITE DATA FROM
MEMORY, RIGHT?

REGISTER A REGISTER B

YEAH, BUT THAT'S NOT ALL.
THEY'RE ALSO USED TO
TRANSFER DATA BETWEEN

MEMORY REGISTERS IN THE CPU.

TYPES OF OPERATIONS 153

INPUT/OUTPUT

INSTRUCTIONS

/',NE'XT UP ARE
INPUTYOUTPUT

INSTRUCTIONS.

THESE INSTRUCTIONS ARE USED
WHEN THE CPU EXCHANGES DATA*
WITH EXTERNAL DEVICES
(1/0 DEVICES AND SO ON).

: l INPUT AND

OUTPUT DATA
m——l ====//4
1/0 PORT E’
———_H J
¢y EXTERNAL
DEVICES

UMM... I/O PORTS ARE
USED WHEN WORKING
WITH INPUT AND OUTPUT
DATA, RIGHT?

YEAH, YOU
REMEMBERED!

WELLLL, IF YOU HAVE MY
INPUT CAPABILITIES, YOU
DON'T FORGET ANYTHING
YOU'VE LEARNED...

RINGHAT...
LET'S MOVE ON TO THE

* THERE ARE TWO TYPES OF DATA TRANSFER METHODS.
154 SEE PAGE 185 FOR MORE INFORMATION.

NEXT INSTRUCTION!

BRANCH

INSTRUCTIONS

NEXT, WE'LL TALK
ABOUT THE JUMP
BRANCH INSTRUCTION*

LIRS
{/
SRR
¢
odedelele!
XN
%

&
o
S5
&

L
Q

AAH, I REMEMBER US
TALKING ABOUT JUMPING

XXX INSTRUCTION TO BE EXECUTED.

::
::0
PG

THE ADDRESS
TO JUMP TO!

BEFORE.

BASICALLY, IF NECESSARY,
X THE PROGRAM CAN JUMP TO
THE ADDRESS OF THE NEXT

3 A
THE ADDRESS (
LOCATION | \
CONTAINING 7
THE CURRENTLY [/
EXECUTING Y
INSTRUCTION
8
[}
DIRECTION q
THE PROGRAM
COUNTER IS
MOVING
..... 5 N

..........
..........

® @ ® ® @ @ & & & & & & s s = e .
P & & & & & & & & o

......

YEAH, EVEN THOUGH WE MIGHT

BE EXECUTING ADDRESS
NUMBER 7...

.....
.....

THE NEXT INSTRUCTION TO BE
EXECUTED MIGHT WELL BE INSTRUCTION
NUMBER 15 OR INSTRUCTION NUMBER 3,
JUST LIKE IN THIS FIGURE.

1 SUPPOSE THAT MEANS WE CAN
CONTROL PROGRAM FLOW BY

* THERE ARE CASES IN WHICH WE DISCRIMINATE BETWEEN

BRANCH INSTRUCTIONS AND JUMP INSTRUCTIONS.

USING BRANCH INSTRUCTIONS.

50... I GUESS IT'S ONE
SMALL STEP FOR MAN,
ONE GIANT LEAP FOR
COMPUTERS! RIGHT?

IT'S ALSO WORTH
NOTING THAT SOME JUMPS
ARE UNCONDITIONAL,
WHILE OTHERS REQUIRE
THAT CERTAIN CONDITIONS
BE MET.

UNCONDITIONAL

M
BRANCH JUmMP
INSTRUCTIONS

CONDITIONAL

JUMP

1 SEE! THERE ARE DOLPHINS THAT
JUMP WHENEVER THEY FEEL LIKE IT,

WHEN THERE'S FOOD!

IT ALL MAKES SENSE!!

WHILE OTHER DOLPHINS JUMP ONLY

)

SURE.. <

WHATEVER HELPS
YOU REMEMBER...

RO,

'

ORCANE Y
THEJWAY:

BRANCH INSTRUCTIONS, JUMP INSTRUCTIONS, AND SKIP INSTRUCTIONS

When it comes to branch instructions, there is unfortunately no standard terminology.
Depending on the CPU maker, the instructions might be known as branches, jumps, or even
skips. But lately, it's become popular to differentiate among them in the following way.

ADDRESS
CONTAINING

THE CURRENTLY

EXECUTING
INSTRUCTION

DIRECTION
THE PROGRAM
COUNTER IS
MOVING

7

S
'—-—— erap

=

/_/

;\

\wﬁ
N:

THE DIFFERENCES
AMONG THE THREE

1. Branch instructions branch to
addresses not far from the
execution site.

2. Jump instructions jump to
addresses farther away from
the execution site than branch
instructions do.

3. Skip instructions can either skip
or not skip the next instruction
to be executed.

Ohh! So they're different in terms of the distance moved. Pretty cool.

There are also other program control instructions, such as STOP and SLEEP instructions.

DIFFERENT CPUs USE DIFFERENT TERMINOLOGY

If you look at the mnemonic tables of CPUs from companies like Intel (the i8080) and Zilog (the
Z80) at the dawn of the 8-bit CPU, you can't even find the word branch mentioned. If you instead
look at the single-chip 16-hit TMS9900 CPUs made by Texas Instruments (TI) in 1974, jump was
used for short branch operations, while branch was used solely for branch operations concerning
registers. Then, the ATMega series CPUs made by Atmel, which are part of the Arduino micro-
controllers, use jump for changing the current execution address unconditionally, but they also
have skips and branch instructions that relate to the currently executing address.

TYPES OF OPERATIONS 157

CONDITION EVALUATION AND

STATUS FLAGS F s roame. | T Wae NeaATNE,
FINALLY, LET'S TALK A PLEase Tace E—
BIT ABOUT CONDITION [veiRectEs,_ | aaT
EVALUATION (COMPARISON —
AND OTHER INSTRUCTIONS). =\
: ACK.

(5EE PAGE 26.)

1” A GOOD WAY TO
{ THINK ABOUT IT IS TO
= CONSIDER THE ATM
EXAMPLE AGANN.

. A s o AH, SUCH COLD-HEARTED S,
~~~~~~~~~ S (Jiie| [ JUpGEMENT! TO HAVE YOUR FATE
NN DECIDED BY A COMPARISON
BETWEEN THE VALUES OF
YOUR ACCOUNT BALANCE AND
THE AMOUNT YOU WANT TO

WITHDRAW...

I SUPPOSE. IN THIS CASE,
TWO INSTANCES OF DATA
WERE EVALUATED USING A
COMPARISON INSTRUCTION

THAT HAS SOME KIND OF
CONDITION.

COMPARES
THEM AND
DECIDES!

15 DATA A BIGGER?
WHAT'S IT GOING
TO BE?

UGHHH. AND WHAT A
CALLOUS DECISION
ITIS...

158 CHAPTER 4 OPERATIONS



NOW, T WANT
YOU TO PAY
ATTENTION TO...

THE STATUS FLAG*
THAT 15 USED WHEN
EVALUATING WHETHER
A CONDITION IS MET.

EXAMPLE: 5-3=2

COMMAND INPUT STATUS OUTPUT

SUBSTRACTION

STATUS FLAG...
DIDN'T WE TALK ABOUT
STATUS OUTPUT BEFORE?
WASN'T THAT SOME VALUE THAT
INDICATED THE STATE OF SOME
OPERATIONAL RESULT, LIKE
WHETHER IT WAS POSITIVE AND
STUFF LIKE THAT?

* ALSO CALLED A 5TATUS BIT

YEAH. THE PURPOSE OF THE
STATUS FLAG 1S TO RECORD
INFORMATION LIKE THAT.

IT SIGNALS THE RESULT OF A
CALCULATION USING EITHER A
ZERO OR A ONE.

THE FLAG 1S5 UP! THE FLAG IS NOT UP...

—=U

SET (D RESET (O)
THE RESULT OF THE THE RESULT OF THE
CALCULATION 15 CALCULATION 15
NEGATIVE! POSITIVE!

HMM. 5O A FLAG 1S SET
WHENEVER A CONDITION
IS EVALUATED TO BE
NEGATIVE?

TYPES OF OPERATIONS 159



THERE ARE ACTUALLY

MANY TYPES OF FLAGS, EACH
OF THEM RAISED (GET TO D IF
SOME PARTICULAR CONDITION
ASSOCIATED WITH THE FLAG
EVALUATES TO TRUE.

DECISIONS ARE MADE IN
ACCORDANCE WITH EITHER A
SINGLE FLAG STATE OR SOME

COMBINATION OF SEVERAL
FLAG STATES.

IN ADDITION TO THESE, WE INTRODUCE SOME
OTHER COMMON FLAGS ON PAGE 187.

SIGN FLAG

SET WHEN THE RESULT
OF A CALCULATION 15

Sigﬂ NEGATIVE
CARRY FLAG
SET WHEN THE
Carry  CALCULATION RESULTS
arty "IN a carrieD DiGIT

50 WE CAN LOOK
AT SINGLE FLAGS OR
COMBINATIONS OF FLAGS
TO DECIDE WHAT TO DO,
DEPENDING ON WHETHER
SOME CONDITION

IS MET.

STATUS REGISTERS

C

7 1

CARRY
FLAG

EVERY BIT STORES
DIFFERENT STATUS FLAGS

A STATUS REGISTER IS
SIMPLY THE 8-BIT OR
16-BIT COMBINATION OF
A LOT OF THESE FLAGS
(EACH OF THEM ONE BIT).

T

SIGN
FLAG

THEY ARE EITHER
10R O.

OOH, STATUS REGISTERS!
THEY'RE LIKE HARDWORKING
DETECTIVES, EACH OF THEM

REMEMBERING DIFFERENT

INFORMATION ABOUT AN
OPERATOR!!

SUPPOSED
TO BE?

.
Y
o

160 CHAPTER 4 OPERATIONS




PUTTING BRANCHES AND CONDITION EVALUATION TOGETHER

Okay, we've learned about branch instructions and condition evaluation, but we can get
some truly useful instructions by putting the two together.

One example is the jump on minus instruction. It simply states that the program
should jump to some address if the value in the accumulator is negative.

CONDITION. BRANCH (JUMP)
WHEN JUMP TO SOME
NEGATIVE... ADDREZS

So basically, jump to this address if these conditions are all met!

Or, put another way, the program is able to change its execution depending on some
condition.

Yeah, we can also make other combinations of instructions like conditional jumps,
conditional skips, and conditional branches. Thanks to these, we can do some really
useful things.

SOME THINGS WE CAN DO USING CONDITIONAL JUMPS
AND OTHER INSTRUCTIONS

1. We can run a different program depending on some condition.

2. We can decide not to run a program (skipping it) depending on some
condition.

3. We can set and reset bits on output ports depending on some condition.

For example, we could control a lamp by setting or resetting some 1/0
port value to turn the lamp on and off.

Whoa! This seems absolutely essential not only for computers but also for any electrical
application really!

TYPES OF OPERATIONS 161



[ Operand Types ]

HOW MANY OPERANDS
DO WE HAVE?

IT SEEMS YOU
UNDERSTAND THE
DIFFERENT INSTRUCTIONS
WE'VE TALKED ABOUT.

/

I -
OPERANDS... N

OPER-OPERATION?
AS IN SURGERY? ,

o

o
o
o

50 LET'S MOVE ON
TO LEARNING ABOUT
OPERANDS NEXT!!

T'LL JUST PRETEND
I DIDN'T SEE THAT

COSPLAY, OKAY...? SAYS THE ONE WHO

WAS COSPLAYING AS
A DETECTIVE JUST A
MINUTE AGO!!

THE NUMBER OF
OPERANDS ALSO

DEPENDS ON THE TYPE
OF INSTRUCTION WE'RE
DEALING WITH. LOOK AT
THE NEXT FIGURE.

LET'S SEE. OPERANDS
ARE THE DATA AND
ADDRESSES USED AS
THE TARGET OF AN
OPERATION, RIGHT?

OPCODE OPERAND
TYPE OF
INSTRUCTION

BUT THEY CAN
ALSO BE REGISTERS,
IF I REMEMBER
CORRECTLY.

THE TARGET
DATA OR
ADDRESS OF AN
OPERATION

162 CHAPTER 4 OPERATIONS



YEAH. AND THE APD HERE

TWO OPERANDS 5 ACTUALLY SOMETHING
OPCODE .y CALLED A MNEMONIC
THE HUMAN-READABLE
ADD a b REPRESENTATION OF
THE OPCODE.
™ ADD A AND B

IN THIS EXAMPLE,
IT SEEMS THE ADD
OPERATION NEEDS
TWO OPERANDS.

ALL INSTRUCTIONS HAVE
EITHER ZERO, ONE, OR
TWO OPERANDS. THIS
INSTRUCTION HAPPENS

TO HAVE TWO.

15 THAT CORRECT?

* IN ENGLISH, MNEMONICS ARE MENTAL TOOLS THAT HELP WITH REMEMBERING THINGS.

HUH? HOW COULD
AN INSTRUCTION HAVE
NO OPERANDS?! THAT
SEEMS COMPLETELY

POINTLESS!

HEH. WELL OPCODES
THAT HAVE NO
OPERANDS DO EXIST.

/)

FOR EXAMPLE...
THE SET ACCUMULATOR TO 1 OPCODE!!

SET ACCUMULATOR TO 1

AN INSTRUCTION THAT SETS ALL THE BITS
IN THE ACCUMULATOR TO ONE

117711111

ACCUMULATOR TA— —PArv

WHOAAA! YOU'RE <
RIGHT, THAT WOULDN'T
HAVE ANY OPERANDS!




A LOT OF OPERATIONS WITH ZERO
OR ONE OPERANDS SIMPLY WORK

ON WHAT'S IN THE ACCUMULATOR
REGISTER AT THAT TIME.

1 SEE!
THE ACCUMULATOR 15
A POPULAR GUY!

ALSO, FOR TWO-OPERAND
OPERATIONS WHERE
BOTH OPERANDS ARE

ADDRESSES...

50 THEIR ROLES ARE
DECIDED ALREADY.

WE CALL THE FIRST
OPERAND THE SOURCE
OPERAND AND THE SECOND
THE DESTINATION OPERAND.

SOURCE DESTINATION
OPERAND OPERAND

OPCODE FIRST SECOND

_ AS YOU CAN TELL FROM THE NAMES,
OPERATIONS LIKE THIS USE THE DATA IN THE SOURCE
R OPERAND TO AFFECT DATA IN THE DESTINATION OPERAND.

164 CHAPTER 4 OPERATIONS



OPERANDS TAKE MANY FORMS

LET'S FINALLY
APPROACH THE
CORE SUBJECT
HERE...

DIFFERENT KINDS OF OPERANDS

(HOW WE POINT TO ADDRESSES AND OPERANDS)

1

2.

Immediate value processing

* Address reference

A ADDRESSING MODE

Absolute 3. Indirect addressing

addressing 4 Address

Relative addressing modification

LOOK AT THIS! THERE
ARE LOTS OF DIFFERENT
OPERANDS, TOO!

AH... S5O MANY! ESPECIALLY THE
ADDRESSING MODES! WHY ARE
THERE SO MANY TYPES?!

DON'T WORRY.
T'LL EXPLAIN THEM
ONE BY ONE.

COME! IT'S TIME TO
OPERATE WITH OPERANDS!

THAT...

FHA N

\
1
\
0|

YOU'RE REALLY
ENJOYING THAT
COSTUME.

OPERAND TYPES 165



IMMEDIATE VALUE PROCESSING

IMMEDIATE
NOODLES

.........
..........
---------

IMMEDIATE
OPERAND

Let’s start with immediate values.

The word immediate here means that the value will be used right away, just as it is.

In other words, the operand itself is a value.

In the end, it's
immediately!

166 CHAPTER 4 OPERATIONS

Add 2.

MNEMONIC  IMMEDIATE VALUE
“ADD" OPERAND

You're right! So | guess this would mean, “Add two to the value in the accumulator.”

AShftL 2

7 —~—'T IMMEDIATE
armimenic . ST LerT VALUE
OPERAND

And this example shows a two-bit arithmetic left shift. Immediate value operands can be
used with many different operations—for example, arithmetic operations, shift operations,
and logic operations.

just a concrete value though, right? | learned about immediate values



ADDRESS REFERENCES

| guess address references have to be operands that are addresses, like address number 1
or number 2. . ..

Yeah. Either internal* or external memory addresses, to be exact. The operation will grab
the data on the address in question and use it.

Hmm, so for example, | could instruct the CPU to get the data on address 1 and address 2,
add them, and store the result on address 3—right?

Yeah, in that case, it would turn out like this.

LDA ADDRESS 1 Read the data on address 1 and store it in the accumulator.
ADD ADDRESS 2 Add the data on address 2 to the accumulator.
STA ADDRESS 3 Store the value in the accumulator to address 3.

— ACCUMULATOR — READOUT
MEMORY

ADD

—_—
N /N
b
N—a

WV
W

STORE

CPU I

Oh! So is it important that calculations are always done in the accumulator then?

That's right. The accumulator even has its own mnemonic: A. The mnemonic LDA means
LoaD to Accumulator, while STA means STore Accumulator.

* |f you look at the architectural diagram on page 106, you can see that classic CPUs had internal RAM.
These were also referenced using memory addresses.

OPERAND TYPES 167



WHAT ARE ADDRESSING MODES?

JAPANESE
PLUM
DRESSING 1S

OKAY! LET'S TALK A BIT
ABOUT APDRESSING
MODES NEXT!

\\\\.

MY FAVORITE... SALAD IT CAN'T—

\

YES, YES! ON

ADDRESSING MODES ARE
ALL ABOUT DIFFERENT
WAYS OF REFERENCING
ADDRESSES!!

HERE ARE THE ONES WE
LISTED BEFORE.

DO

uuuuu

K ADDRESSING MODES

1. Absolute addressing 3. Indirect addressing

2. Relative addressing 4. Address modification

FOUR DIFFERENT ADDRESSING
MODES SEEMS A BIT EXCESSIVE.
I MEAN, HOW WOULD YOU
REFERENCE AN ADDRESS IN ANY
WAY OTHER THAN JUST SAYING,
YT'S ON NUMBER FIVE"?

WHY WOULD ANOTHER WAY
BE NECESSARY?

168 CHAPTER 4 OPERATIONS



SURE, IT CERTAINLY WOULD BE
EASIER TO SAY, “IT'S ON FIVE/”

IN NUMBER FIVE.

AND HAVE THE DATA ALWAYS BE

THIS 1S WHAT WE
CALL ABSOLUTE
ADDRESSING.

YEAH, YEAH! THAT'S
THE ONLY THING THAT
MAKES COMMON
SENSE, RIGHT?

EFFECTIVE
ADDRESS DATA

BY THE WAY... WE CALL THE
ADDRESS THAT ACTUALLY
CONTAINS THE DATA WE'RE AFTER

THE EFFECTIVE APDRESS.

IN THIS CASE, THAT
WOULD BE ADDRESS
NUMBER FIVE.

YEAH,
IT WOULD.

LET'S LOOK AT
SOME OF THE
OTHER METHODS.

OPERAND TYPES 169



LET'S SAY WE POINTED
OUT NUMBER TWO, AND
WHEN WE OPENED IT...

A REFERENCE

TO NUMBER

FIVE (ADDRESS
NUMBER FIVED.

Y

N
I

WE FOUND OUR
DATA WAS AT
NUMBER FIVE!

DATA  |¢&—

THIS 1S WHAT WE WOULD CALL

INDIRECT APDRESSING.

WHAAATZ WHY
WOULD YOU EVER
DO SOMETHING SO
UNNECESSARILY
COMPLICATED...

e

HA! IT'S LIKE FINDING A LONG-LOST
WILL OR SEARCHING FOR HIDDEN
TREASURE! ONLY THE ONES WHO ARE
TENACIOUS ENOUGH TO MAKE IT TO
THE END CAN GET THE PRIZE.

CALM DOWN.

EXAMPLE, YOU TRIED TO DIRECT

------

THERE ARE SOME MERITS TO
INDIRECT ADDRESSING. IF, FOR

ADDRESS AN ADDRESS WITH
A VERY LONG NUMBER LIKE
“ADDRESS NUMBER 99949..9"..

170 CHAPTER 4 OPERATIONS

NOPE!
LOOOO ——NG...

N,

—

—

OPCODE

OPERAND 22

THE NUMBER WOULD
REQUIRE MORE BITS THAN
WE HAVE AVAILABLE FOR
THE OPERAND, AND THAT
WOULDN'T WORK, RIGHT?

THE NUMBER OF BITS RESERVED FOR THE
OPERAND |5 LIMITED, AND WE CAN'T HAVE
ARBITRARILY LONG NUMBERS!




OH, I SEE!

BUT IF WE USED INDIRECT
ADDRESSING, WE COULD FIRST
G0 TO A CLOSER ADDRESS
NUMBER THAT WOULD REQUIRE
FEWER BITS AND FIT IN THE
OPERAND.

.....
ooooo

LIMITED!

SOME ] USABLE
oooo|  ADDRESSING
OPCODE e

AND DEPENDING ON
THE OPCODE, SOME
ADDRESSING MODES
MIGHT NOT BE ALLOWED.

WOW, SOME OPCODE
CAN'T WORK WITH
CERTAIN ADDRESSING

7 AMAZING!

ONE REASON WHY CPUs
CAN EXECUTE COMPLEX
PROGRAMS IS THAT THEY
HAVE SO MANY DIFFERENT
ADDRESSING MODES.

AND A GENIUS PROGRAMMER
LIKE ME, OF COURSE, KNOWS
ALL OF THEM INTIMATELY...

1 SUPPOSE THEY MIGHT BE A
BIT TOO HARD TO GRASP FOR
SOMEONE LIKE YOU.

I-I NEVER SAID I THOUGHT
THEY WERE HARD! T'LL GET
THEM RIGHT AWAY. YOU
JUST HAVE TO EXPLAIN

THEM FIRST!

IN THAT CASE, LET'S TACKLE
ALL THE ADDRESSING MODES
IN ONE GO.

71




ADDRESSING MODE OVERVIEW

Modern CPUs can address memory in several different ways, which we call addressing
modes.

ABSOLUTE APPRESSING

Absolute addressing is when the operand’s value is used as the effective address (the

address where the operation’s target data is located). It is also sometimes called direct
addressing.

INSTRUCTION ADDRESS MEMORY

orerane | 20 0

10

> 20 DATA

—

Depending on the CPU, there are cases where the size of the opcode makes it so
the CPU can't address the entire address space. It's possible to lengthen the operand size
if need be, however. In 16-bit CPUs, it's common practice to store the opcode and the
operand in 16 bits (2 bytes), but if the operand is lengthened, the instruction could end
up being 4 bytes, or even 8.

Jk ADDRESSING MODES

Absolute addressing

Relative addressing

Indirect addressing

Address modification

172 CHAPTER 4 OPERATIONS



RELATIVE APDPRESSING

Relative addressing is when the effective address is the result of the sum of the operand
value and the program counter.

INSTRUCTION ADDRESS MEMORY

OPERAND ] 9] 0

PROGRAM
COUNTER 10

/0 :
> 20 DATA

ADDED/ T~

Relative addressing is most commonly used for jump instructions. Since the distance
to the address we want to point out is limited by the range expressed by the two's comple-
ment of the number of bits available in the operand, relative addressing is best used for
conditional branching instructions in the program and is not recommended for any larger
jumps in the address space.

The base value for an operation that uses relative addresses is the current value of
the program counter, or PC. As soon as the PC has read an opcode, it immediately starts
pointing to the next opcode to be processed.

Also, besides using the program counter as the base value for the relative address,
we can use the address in a register instead. We call addresses like these xx-register
relative addresses.

OPERAND TYPES 173



INPIRECT APPRESSING
Indirect addressing is used when the operand contains the address to some register and
that register, in turn, contains the effective address for our target data.

INSTRUCTION

OPERAND 7 0

REGISTER

7020

20 DA:TA
/\5/

The best way to think about indirect addresses (and the address modification mode
coming up next) is their close relationship with arrays in the programming language C.
When working with arrays, you generally use the effective address as a starting point
and add or subtract some offset values to or from it, ending up with a new address in
the end. This process is what we call address modification.

L. WHY WOULD You
SHORTEN THATZ!

IT WAS A BIT DIFFICULT, BUT I
THINK I GOT EVERYTHING!

I SUPPOSE AFTER THIS, IM
ALSO AN ADDRESS MASTER!
OR APMAS FOR SHORT!

174 CHAPTER 4 OPERATIONS



ADPRESS MOPIFICATION

Address modification is the process of using the value stored in a modification register
to modify a number or address. We get the effective address by adding the value in the
modification register to a base value, which may be stored in another register or in the
program counter or even in an immediate value.

[ orerane | INSTRUCTION

MOPDIFICATION
REGISTER
MODIFICATION
REGISTER
COMES WITH
THE OPTION TO L BASE REGISTER
MODIFY THE VALUE
IN THE OPERAND [ 700 }——=<\#erer/
INDIRECTLY —
REFERENCED
ADDRESS ADDRESS
100 v
ONLY ADD THE :
VALUE IN THE 120 [ 20
MOPDIFICATION
I
REGISTER! 140 40 K
| BAse |+|Mommt | -y

DATA

One of the most commonly used modification registers is the index register. We
usually call the register containing the value we want to use as a base the base register.
Most CPUs create the effective address in this case by simply adding the value in the
base register and the value in the modification register (the index register, for example)
together.

By using address modification in this way, you can achieve very practical effects. For
example, you could extract some particular data from a set by specifying the offset in
the index register and the start of the data set in a base register.

OPERAND TYPES 175



(The Structure of Operations in the ALU )

A LOOK INSIDE THE ALU / —_——

...HUH? I WASN'T
WAITING FOR
ANYTHING.

WE'VE FINALLY ARRIVED
AT TODAY'S HIGH POINT!
IT'S THE THING YOU'VE
BEEN WAITING FOR...

LET'S GO INTO
FUN-TIME MODE!!

REMEMBER, TO
UNDERSTAND ARITHMETIC
OPERATION INSTRUCTIONS

AND LOGIC OPERATION
INSTRUCTIONS, YOU
HAVE TO...

ARITHMETIC

AAH! RIGHT,
LOGIC UNIT

WE WERE TALKING
ABOUT THE ALU!

A 745181, MADE BY
YEP! I'M GOING TO USE THIS TEXAS INSTRUMENTS

4-BIT ALU IC AS AN EXAMPLE.
ITS NAME |S 745181

i
e

* THE TI MICROCONTROLLER WE TALKED ABOUT ON PAGE 157 USED FOUR OF THESE 745181 CIRCUITS.
THEY WERE USED IN MANY HIGH-SPEED CALCULATION COMPUTERS—FOR EXAMPLE, IN AIRCRAFT
SIMULATORS AND THE LIKE. THE 745181 CIRCUIT WAS EVENTUALLY SIMPLIFIED INTO THE 745381 CIRCUIT.

176



HMM...? 50 EVEN Boflt ~ 2aflvec INPUTA
ONE OF THESE ICs FOUR AQ E 2 2 % A INPUT B
IS CAPABLE OF s3[la 22[] B1
BOTH ARITHMETIC 9”;%,?5 T s2[la  21[]A2 EAcH 4 BIT=)
OPERATIONS AND LOGIC sills  20fB2
OPERATIONS? THAT'S sofle 1ofl A3
PRETTY IMPRESSIVE! CARRY c. s 1sll53
n —
INPUT Pt E s 7 % S
Fol]e 16[]Cn+4
MODE PN | F1 E 0 15 % P
F2 11 14]]A=B
GND\([J12  13[]F3
OUTPUT (4 BITS)
ISN'T IT, THOUGH?
IF YOU LOOK AT THIS
DIAGRAM, YOU CAN SEE
THE ENTIRE PIN LAYOUT.

YOU CHOOSE ARITHMETIC
OR LOGIC OPERATIONS
USING THE MOPE PIN,
AND YOU USE THE SELECT
PINS TO DETERMINE WHICH
" OPERATION TO DO.

EXCELLENT! LET'S FINISH
UP TODAY'S LESSON
BY HAVING A LOOK AT
THE ARCHITECTURE
(CIRCUIT DIAGRAM) AND
THE FUNCTION TABLE
OF THE 745181 IC.

7
AS®

mnﬁ

1 SEE. 50, FOR EXAMPLE,
IF I HOOKED UP THE IC TO AN
AIR CONDITIONER, THE MODE PIN
WOULD LET ME CHOOSE IF 1
WANTED HOT OR COLD AIR.

THE STRUCTURE OF OPERATIONS IN THE ALU 177



SELECT
PINS

INPUT A
INPUT B

(EACH 4 BITS)

MODE PIN

CARRY

BASIC CIRCUIT ARCHITECTURE OF THE 745181
REFERENCED FROM A TEXAS INSTRUMENTS DATA SHEET (PARTIALLY REVISED)

83 3
S2 4
§1 5
SO 6
L
B3 ﬁ:n D
A3 12 E
Nl
) D B
Do T
- 20 il H
B2 —s .
D 1 H
% )/ »
- 21 It
2 'n N T 1 2
% > iE:
-2y ] i
’_‘D 1, ] @1—4A=B
] 23 §
D ) D> &
-1
1 T E .
B0 —e
> t
JD ) L)
A0
N
M
D

Cn

178 CHAPTER 4 OPERATIONS

Yeah, that's right. The carry is also there, denoted by Cn.

Whaal! It's really complicated, but | can see the four-bit inputs A and B clearly. | also see the
select pins SO through S3 and the mode pin M.



745181 FUNCTION TABLE

SELECTION ACTIVE-HIGH DATA
M=H M = L; ARITHMETIC OPERATIONS
s3 | s2 | sa | so | LOGIC OPERATIONS C, = H (no carry) C, = L (with carry)
L L L L F=A F=A F=APLUS1
L L L[ H F=A+B F=A+B F=(A+B)PLUS1
L L H L F=AB F=A+B F=(A+B)PLUS1
L LfH|[H F=0 F = MINUS 1 (2'S COMPL) F = ZERO
L H L L F=AB F = APLUS AB F=APLUSABPLUS 1
L H L H F=B F = (A+B)PLUS AB F = (A+B)PLUS AB PLUS 1
L H|[H L F-A®B F = AMINUS B MINUS 1 F = AMINUS B
L H H H F=AB F=ABMINUS 1 F=AB
H L L L F=A+B F = APLUS AB F = APLUS AB PLUS 1
H L L[ H F-A®B F=APLUSB F = APLUS B PLUS 1
H L H L F=B F=(A+B)PLUSAB F=(A+B)PLUSAB PLUS 1
H LfH[H F=AB F = AB MINUS 1 F=AB
H | H L L F=1 F = APLUS A* F=APLUSAPLUS 1
H | H L[ H F=A+B F=(A+B)PLUS A F=(A+B)PLUSAPLUS 1
H H H L F=A+B F=(A+B)PLUSA F=(A+B)PLUSAPLUS 1
H|H]|H]|H F=A F = AMINUS 1 F=A

* Each bit is shifted to the more significant position.

For more information on the symbols used in these formulas, please see pages 55-59. PLUS and
MINUS are exactly what they seem. The symbols +, -, and @ are symbols used in Boolean algebra
(logical algebra).

There are also some redundant or unnecessary operations in the diagram, as you might see.

The most important parts of the 745181 function table are marked with gray.

First off, M is the mode pin, H stands for high, and L stands for low. When M = H, we are
using logic operations. If M = L, arithmetic operations are being used instead.

Arithmetic operations then further differ depending on whether we have a carry or
not. If C_= H, that means we do not have a carry, and if C_ = L, we do have a carry.

And S is the four select pins, right? Depending on the combination, we have 16 (2*) differ-

ent operations to choose from!

THE STRUCTURE OF OPERATIONS IN THE ALU




Now let's take a closer look at the opcodes in the function table. For convenience, let’s
assign a number to each of the opcodes: 0-15, or 16 in total. Of course these numbers may
not be the same for other CPUs.

I'll explain the ones with gray backgrounds in detail.

Arithmetic Operations
Logic Operations
No Carry With Carry

0 F=A F=APLUS1 0 F=A
1 F=A+B F=(A+B)PLUS1 1 F=A+B
2 F=A+B F=(A+B)PLUS1 2 F=AB
3 | F=MINUS 1 (2'S COMPL) F = ZERO 3 F=0
4 F = APLUS AB F = APLUS AB PLUS 1 4 F=AB
5 F = (A+ B) PLUS AB F = (A+B) PLUS AB PLUS 1 5 F=B
6 | F=AMINUSBMINUS 1 F = AMINUS B 6 F-A@®B
7 F = AB MINUS 1 F=AB 7 F=AB
8 F = APLUS AB F = APLUS AB PLUS 1 8 F=A+B
9 F=APLUSB F = APLUS B PLUS 1 9 F-A@B
10 F=(A+B)PLUSAB F = (A+B) PLUS AB PLUS 1 10 F=B
11 F = AB MINUS 1 F=AB 11 F=AB
12 F=APLUS A F=APLUSAPLUS 1 12 F=1
13 F=(A+B)PLUSA F=(A+B)PLUSAPLUS 1 13 F=A+B
14 F=(A+B)PLUSA F=(A+B)PLUSAPLUS 1 14 F=A+B
15 F = AMINUS 1 F=A 15 F=A

OPCOPDE &6

No carry: The calculation result F is the difference between A and B minus 1.
With carry: The calculation result F is the difference between A and B.

OPCOPDE 9

No carry: The calculation result F is the sum of A and B.

With carry: The calculation result F is the sum of A and B plus 1.

180 CHAPTER 4 OPERATIONS



OPCOPDE 1: NOR A, B)

The operational result F is the negated output of the OR between the A and B bits.
That is, it is the NOR of the bits in A and B.

OPCODE 3: ZERO
The operational result F is 0, regardless of the input.

OPCODE 4: NAND (A, B)
The operational result F is the negated output of the AND between the A and B bits.
That is, it is the NAND of the bits in A and B.

OPCOPDE 5: NOT (B)

The operational result F is the NOT of input B. That is, every O bit in B is flipped to a
1, and every 1 hit in B is flipped to a 0.

OPCOPDE &: EXOR (A, B)
The operational result F is the EXOR of the bits in A and B.

OPCOPDE q: EXNOR (A, B)
The operational result F is the negated output of the EXOR of the bits in A and B.

OPCOPDE 10: B
The operational result F is simply B.

OPCOPDE 11: AND (A, B)
The operational result F is the AND of the bits in A and B.

OPCODE 1Z: ONES
The operational result F is all 1s, regardless of the input.

OPCODE 14: OR (A, B)
The operational result F is the OR of the bits in A and B.

OPCODE 15:A
The operational result F is simply A.

THE STRUCTURE OF OPERATIONS IN THE ALU

181



THANKS FOR TODAY! \N
BY THE WAY, HERE'S N
THAT THING I'VE BEEN
KEEPING FOR YOU...

HM, YOU SEEM TO
BE TAKING 600D
CARE OF IT.

BY THE WAY... WHY DO YOU

CALL YOUR COMPUTER . YEAH... IT'S A BIT
THE “SHOOTING STAR"? / SENTIMENTAL...

LIKE A METEOR.

-------
--------

INN

IT MIGHT GET A
BIT LONG-WINDED
BUT...

I DON'T CARE
IN THAT CASE.

LEARN TO SENSE
THE MOOD!! YOU'RE
SUPPOSED TO LISTEN

TO THIS!

UH... WHERE
WAS 1.,

182 CHAPTER 4 OPERATIONS



I'VE ACTUALLY BEEN
OVERSEAS FOR QUITE
SOME TIME DUE TO MY

FATHER'S WORK.

AAH, DELUSIONS
LIKE THAT CAN BE
FUN SOMETIMES.

---------
ooooooooo
----------

.1 GET WHERE -
O WYOURE COMING'
FROM. ’

AND I ONLY CAME BACK
TO JAPAN RECENTLY...

IT'S NOT A
DELUSION!!
I'M TELLING
THE TRUTH!

THE TRUTH... THEN
B THAT MUST MEAN...

UNFAMILIAR
SURROUNDINGS
AND CUSTOMS, A

| DEEPENING LONELINESS, |
HOMESICKNESS...

THE STORY OF A
DESOLATE AND LONELY
BOY MAKING A SHOGI
GAME WHILE THINKING

OF HIS HOME.

I CAN'T STOP
MY TEARS!!

\/

WHAT ON EARTH ARE
YOU IMAGININGZ!
AND YOU CALL ME
DELUSIONALZ/

AYUMI!
YOU SHOULD
INTRODUCE
YOUR GUEST
TO ME.

7 K

THE STRUCTURE OF OPERATIONS IN THE ALU

183



MOM,
DON'T GET
THE WRONG
IMPRESSION
HERE! HE'S
JUST A..

/]

7

OH MY! IS IT YUU?
IT'S BEEN SO LONG!

IT'S WONDERFUL
TO SEE YOU AGAIN.

YOU'VE BEEN

ABROAD FOR
QUITE SOME TIME,

HAVEN'T YOU?

LS

IT MUST BE MORE
THAN 10 YEARS SINCE
YOU AND AYUMI LAST
PLAYED TOGETHER.
THIS IS MAKING ME
SO NOSTALGIC!

184 CHAPTER 4 OPERATIONS

UH...AUH? WHAT'S "
GOING ON?
L WHY? WHAT?




SERIAL TRANSMISSION AND PARALLEL TRANSMISSION

There are two types of digital data transmission: serial transmission and parallel
transmission.

ONE BIT AT A TIME SIMULTANEOUSLY!

0->1-1-0

SENDER
RECEIVER
SENDER
RECEIVER

SERIAL TRANSMISSION PARALLEL TRANSMISSION

Systems that use serial transmission send data one bhit at a time; systems that use
parallel transmission send several bits at a time. An interesting thing to note is that USB
(as in USB memory or USB connectors) is short for Universal Serial Bus, which, as you
might have guessed, uses serial transmission.

SHIFT REGISTERS AND PARALLEL-SERIAL CONVERSION

One of the components often used in logic circuits is a shift register. This type of register
can perform shift operations and nothing else. An example is the accumulator within
the ALU.

The most common use for shift registers is to parallel shift several bits of data
(for example, 8 bits) to the right in one clock cycle. The rightmost bits are then con-
verted and sent as serial data.

There is some discussion about whether this serial transmission function should
be seen as part of CPU functionality or as part of 1/0. Overall, it's easier to think of it
as the means by which the CPU communicates with devices other than the memory, all
bundled together as “I/0 devices,” and as distinct from things not directly operated by
the CPU block.

SERIAL TRANSMISSION AND PARALLEL TRANSMISSION 185



AN OVERVIEW OF SOME BASIC REGISTERS

Registers are useful in many contexts, and they are essential to the CPU. Here are some
basic registers and their functionalities.

HIGHLY EVOLVED
MODERN CPUs HAVE
EVEN MORE REGISTERS
THAN THIS.

LOOKING AT A
CPU'S REGISTER
CONFIGURATION CAN
TELL YOU A LOT ABOUT
ITS FEATURES AND
PROPERTIES.

ACCUMULATOR

This register stores calculation results from the ALU. It's designed in such a way as to be
ready for the next calculation as soon as the previous one is done. It's called the accumulator
in part because it's generally used when incrementing values and counting sequentially, but

also since it's often used as the input for a follow-up sum right after another calculation has
finished.

INSTRUCTION REGISTER & INSTRUCTION PECOPER

These registers store and decode the program instructions. This decoding process deter-
mines not only which operation to execute but also the operands on which to operate.

STATUS REGISTER

The status register is a collection of flags that take the value 1 or O as a result of calculations
and operations. These flags can determine the order of program execution and how the CPU
interacts with I/0 devices. Since flags are only 1 bit each, it is very common to lump them
together in 8-hit or even 16-bit registers. There are many different kinds of flags, and you
can read more about them starting on page 187.

MOPIFICATION REGISTERS (BASE REGISTERS, INPEX REGISTERS)
These registers serve as the starting point in certain addressing modes. The hase register
serves as a basis for address calculations. In relative addressing, adding an offset to the
base register yields an effective address.

Index registers hold fixed values that modify operand immediate values in special
circumstances to form the effective address. For example, you would add the offset found
in the index register to a data array’s base address to find a specific value in the array.

TEMFP REGISTER (TEMPORARY REGISTER)
Temp registers are used to save temporary data during the many tasks undertaken by the
CPU. Depending on the CPU, some blocks of the circuit might have several temp registers

available. You can see a temp register labeled in the diagram of classic CPU architecture on
page 106.

186 CHAPTER 4 OPERATIONS



PROGRAM COUNTER (PC)
The program counter holds the address to the next instruction to be executed. All CPUs have
this register.

STACK POINTER
Necessary when working with a stack, this register holds the last used stack address.

AN OVERVIEW OF SOME BASIC STATUS FLAGS

When the CPU calculates a result, status flags (status bits) might be set or reset. The
CPU makes decisions by evaluating the status flags, either just a single flag or a combi-
nation of several flags. As a result of these decisions, the program might take different
branches or end up doing different calculations.

ZERO FLAG (Z-FLAG)

Indicates whether the accumulator (the result of a calculation) is zero. If the CPU doesn't
have a dedicated module for doing comparisons, the Z-flag might also double as the flag
that reports the outcome of a comparison test (the EQ-flag).

S5/GN FLAG (5-FLAG) OR NEGATIVE FLAG (N-FLAG)
If the accumulator contains a number, this flag tells you whether the number is negative or
positive.

CARRY FLAG (C-FLAG) OR OVERFLOW FLAG (OV-FLAG)

Indicates whether a carry or an overflow occurred in the latest arithmetic add operation. It
is also set if a shift operation resulted in overflow. In the case of an arithmetic subtraction
operation, it is not set if borrowing (the inverse of carrying) didnt occur.

BORROW FLAG

Indicates whether a borrow occurred during a subtraction. More often than not, a borrow is
indicated by the carry flag not being set, but in some cases, the borrow flag might be used
instead.

&T FLAG
This flag is set if the outcome of a comparison operation was “greater than.” The GT flag's
associated symbol is >.

LT FLAG
This flag is set if the outcome of a comparison operation was “less than.” The LT flag’s
associated symbol is <.

oPD FLAG
Indicates whether the result of a calculation is an odd number.

INTERRUPT MASK
Set beforehand, the interrupt mask determines what types of interrupts will occur. Setting it
to all 1s will disable interrupts.

AN OVERVIEW OF SOME BASIC STATUS FLAGS 187



INTERRUPT FLAG
Indicates whether an interrupt is in progress or not. This flag will be set even if interrupts

have been disabled.

WHEN THE
CONDITION IS MET,
THE BIT IS SET TO 1,
AND THE FLAG
STANDS UP.

&
¢

WHEN THE
CONDITION IS NOT
MET, THE BIT IS
RESET TO O, AND
THE FLAG 1S PUT
BACK DOWN.

—

THE SLEEP INSTRUCTION

In addition to other control instructions, such as branches and jumps, there are instruc-
tions like STOP and SLEEP. The SLEEP instruction disables the program completely, put-
ting it into a resting state temporarily until some input (such as an interrupt) occurs. This
function exists on the system level as well.

By using the SLEEP instruction, the CPU is able to slow the period of the clock and
thereby the program, leading to lower power consumption. To return the CPU to its
normal state, some kind of button on the device usually has to be pressed to trigger an
interrupt in the CPU itself, rousing the system and programs back to full speed.

188 CHAPTER 4 OPERATIONS



PROGRAMS




:Assembly and High-Level Languages:

HOW COULD 1
HAVE COMPLETELY
FORGOTTEN HIM...

REALLY... HOW COULD
YOU NOT REMEMBER
HIM? LITTLE YUU FROM
DOWN THE STREET.

YOU USED TO PLAY
SHOG! TOGETHER ALL
THE TIME... YOU'RE
PRETTY INSENSITIVE FOR
BEING MY DAUGHTER...

190 CHAPTER 5 PROGRAMS

I||||IlIIIIIIIIlIIIIl|||||

MAYBE...

MY MEMORY 15
ACTUALLY REALLY

BAD...?

T

)
»




NO, THAT CAN'T
BE IT! I KNOW
I'M SMART!!

U-UMM... T MEAN...
ABOUT YOU...

ARE YOU DONE
TALKING TO
YOURSELF YET?

o

DON'T WORRY

AH, YUU... ABOLUT IT.

I WAS AWAY FOR
SO LONG, IT'S NO
WONDER YOU DON'T
REMEMBER ME.

D,

pr-

YOU'D BETTER LISTEN
RESPECTFULLY TO
GENIUS PROGRAMMER
YUU KANO’S EVERY
WORPD VERY
CAREFULLY!

MAYBE IT'S NOT THAT
STRANGE 1 FORGOT
ABOUT THIS GUY
AFTER ALL...

ENOUGH ABOUT THAT,
LET'S TALK ABOUT
PROGRAMS TODAY!

FUHARAHAHAHAZY

N



WHAT ARE ASSEMBLY
LANGUAGES?

)
<
LIKE I SAID, TODAY

WE'RE GOING
TO LEARN ABOUT
PROGRAMS...

DO YOU REMEMBER
THAT WE LEARNED ABOUT
THESE INSTRUCTIONS
USING MNEMONICS?

BUT WE SHOULD SKIP
STRAIGHT TO THE
CONCLUSION BECAUSE
YOU ACTUALLY ALREADY
KNOW ABOUT THEM!!

/

) ‘
WHAAA, SO MY

MEMORY REALLY 1S
BAD AFTER ALL?!

LDA ADDRESS 1
READ THE DATA AT ADDRESS 1 AND
STORE IT IN THE ACCUMULATOR

ADD ADDRESS 2
ADD THE CONTENT AT ADDRESS 2 TO THE ACCUMULATOR

STA ADDRESS 3
STORE THE CONTENT IN THE ACCUMULATOR TO ADDRESS 3

ANY COMBINATION OF THESE
INSTRUCTIONS IS ALREADY A
PROGRAM (OR RATHER, THE
SOURCE CODE FOR ONE™).

AH! T REMEMBER
THESE!

NOW THAT YOU
MENTION IT, YOU DID
SAY PROGRAMS

INSTRUCTION

ARE WORK
INSTRUCTIONS.. NSTRUCTION PROGRAM
.......... (WORK
INSTRUCTIONS)

INSTRUCTION

THAT ARE ALL

LIKE A CHAIN OF

* YOU CAN LEARN ABOUT THE DIFFERENCE BETWEEN A
PROGRAM AND ITS SOURCE CODE ON PAGE 194.

INSTRUCTIONS.



AND WE CALL ANY
LANGUAGE MADE TO

WRITE PROGRAMS A PROGRAMMING Uses ARRAYS OF Os ‘
LANGUAGE LIKE N N N
A PROGRAMMING AGE LIKE C MNEMONICS AND 15
LANGUAGE. HIGH-LEVEL ASSEMBLY MACHINE
0 LANGUAGES LANGUAGES LANGUAGE
‘ EASY FOR
EASY FOR PEOPLE THE CPU TO

UNDERSTAND

CLASSY CARS AND
HOTELS—YOU CAN
GET A LOT BY SIMPLY
USING SOPHISTICATED
LANGUAGE.

TO UNDERSTAND

AS YOU CAN SEE,
THERE ARE MANY TYPES
OF LANGUAGES. THE ONES
THAT USE MNEMONICS

ARE CALLED ASSEMBLY
LANGUAGES.

I DON'T REALLY
GET IT, BUT AT LEAST
IT MAKES SENSE THAT

THE HIGH-LEVEL ONES
ARE ON TOP!!

HMM... HIGH-
LEVEL, ASSEMBLY,
AND MACHINE

LET'S TALK A
BIT ABOUT THE
DIFFERENCE...

NO, IT'S HIGH-LEVEL,
NOT HIGH-cLASS.

HIGH-LEVEL SIMPLY
MEANS THAT IT'S EASY FOR
PEOPLE TO UNDERSTAND
AND CAN BE USED WITH
ANY TYPE OF CPU.

BETWEEN ASSEMBLY
LANGUAGES AND HIGH-
LEVEL LANGUAGES.




THE CHARACTERISTICS OF ASSEMBLY LANGUAGES
AND HIGH-LEVEL LANGUAGES

DID YOU KNOW... i
HUMAN LANGUAGES |
ARE CALLED NATURAL ‘
LANGUAGES?

Okay, let’s talk a bit about the assembly languages that are easy for CPUs (machines) to
understand and the high-level languages that are easy for people to understand.

A PROGRAMMING USES ARRAYS OF 05
LANGUAGE LIKE C  MNEMONICS AND 15
HIGH-LEVEL ASSEMBLY MACHINE
LANGUAGES LANGUAGES LANGUAGE
. EASY FOR EASY FOR
PEOPLE TO THE CPU TO
UNDERSTAND UNDERSTAND

Umm. | don't think | really understand what you're saying. Because machine language is
made up of arrays of 1s and Os, | see how that would only be understandable to CPUs and
not people.

But wouldn't assembly languages be pretty easy for people to understand because
they use mnemonics . . . ? Instructions like ADD are just plain English. . . .

So how could high-level languages be even easier to understand than that?!

Heh, that’s a valid question. It's true that assembly languages are rather easy to
understand.

194 CHAPTER 5 PROGRAMS



But that's because you already know how a CPU works and you've learned about registers
(like the accumulator), addresses, and different kinds of instructions!

With a high-level language, you don't have to care about things like registers,
addresses, and instructions if you don’t want to. Some high-level languages don't even
let you work with low-level concepts like that. For example, if you want to add two and
three together in a high-level language, you can just write, “a = 2+3”!

A

pmoN N

A oH-LEvEL
LANGUAGE

§m=2+3
T

THIS IS A VARIABLE. 1T'S THE RESULT OF THE
ADDITION AND 1S STORED TO AN ARBITRARY
LOCATION. YOU DON'T HAVE TO SPECIFY WHERE
IT'S GOING (WHETHER TO A REGISTER OR A
MEMORY LOCATION) IF YOU DON'T WANT TO.

Whaaa??! But that's completely different from everything we've learned so far!

So high-level languages are easy for people to understand. You're saying they let us
write more intuitive instructions without having to care about how the CPU works! Is that
right? If it is, that would be groundbreakingly useful, and it makes a lot of sense why it
would appeal to people. It's really close to how we think.

Heh heh heh. It seems you understand the appeal of high-level languages then. High-level
languages are used for all large-scale program development, essentially.

There are other advantages of high-level languages, as well. Let’s look at those.

ASSEMBLY AND HIGH-LEVEL LANGUAGES 195



Programs written in high-level languages can be used on a variety of CPUs. In contrast,
assembly language instructions (represented by mnemonics) that run on one CPU probably
will not run on other CPUs. They are CPU type dependent. Mnemonics relate directly to the
instructions offered by a specific CPU instruction set, and they can’t be run on CPUs that
don't support that set of instructions.

HIGH-LEVEL ASSEMBLY
LANGUAGE LANGUAGE
PROGRAM PROGRAM
\ Y
\OK' MNEMONICS OK! \ HUH?
v
~ =~ - =
4 P " " = "
A DIFFERENT A DIFFERENT
TYPE OF CPU TYPE OF CPU

THE DIFFERENCE BETWEEN HIGH-LEVEL LANGUAGES
AND ASSEMBLY LANGUAGES

Hmm. | see how high-level languages are super useful. . . . But what are the advantages of
using the assembly languages you've been teaching me, then?

| mean, if high-level languages are this useful, why did you bother teaching me about
the CPU structure and assembly in the first place? | kind of get the feeling that using high-
level languages is the new way to do things and assembly languages were the old way. . . .

No, that's not true! Especially in scenarios where execution speed is paramount, assembly
languages are very useful since they can push the CPU closer to its potential limit.

196 CHAPTER 5 PROGRAMS



Assembly languages are essentially using mnemonics for a specific CPU instruction set,
right? This means that assembly languages are easy to convert to machine language and
don’'t waste much CPU time.

110107
ASSEMBLY
LANGUAGE ﬁ
PROGRAM

EASY TO CONVERT TO MACHINE LANGUAGE!

Some human-readable programming languages, like C, need to be compiled to convert
them into machine language that the CPU can understand.

Even though the code might be easy for us to understand, it comes with a price.
Because the code is being translated from a high-level language into a form the CPU can
understand, it might end up executing slower* than if you had crafted it yourself in assem-
bly code. The calculations will turn out correct, but the way that the translation system
ends up performing the calculation might not be the most efficient. In the end, this means
you might not be able to use all of the CPU’s potential if you use a high-level language!

o1 70
5110101,

A BIT INEFFICIENT...

HIGH-LEVEL
LANGUAGE -q

PROGRAM

WHEN A HIGH-LEVEL LANGUAGE IS TRANSLATED
INTO MACHINE LANGUAGE, UNNECESSARY PARTS OR
INEFFICIENCY ARE INTRODUCED INTO THE PROGRAM.

Ohh, | see. Using assembly languages, you can write more efficient code that uses the CPU
to its full potential! Assembly languages are so incredible, they are still in use today.

* But it's worth mentioning that modern CPUs are so fast that the delay doesn't really affect us much in
most cases, even if some operations do take slightly longer.

ASSEMBLY AND HIGH-LEVEL LANGUAGES 197



LARGE-SCALE SOFTWARE DEVELOPMENT

The computer programs that we use every day include word processors, chat programs,
and spreadsheets. We call these application programs, or just applications. Creating
applications requires an incredible amount of work from many programmers over an
extended amount of time. We call programs like this large scale, and the languages used
to create them are generally high-level languages. Some examples include C, the slightly
newer C++, and other languages such as Java and Python.

When developing with a high-level language, you don't have to be aware of the
CPU’s machine language instructions in the same way that you would if you were devel-
oping with an assembly language. You also don't have to pay attention to the different
addressing modes we talked about before.

Program source code that’s written in a high-level language has to be compiled so
it can be converted into the machine language that the CPU can execute. Since this pro-
cess is automatic and tries to optimize the use of addressing modes, among other things,
the developer doesn't need to rack their brains paying attention to the CPU’s instruction
set or the different registers or even the addressing modes, themselves.

But when writing smaller-scale device software, it is still not uncommon to use
assembly languages. In these situations, if you don’t know everything there is to know
about the CPU’s peculiarities, its addressing modes, and more, writing correct software
will be more or less impossible.

The mnemonics you use when writing assembly code in a particular CPU’s instruc-
tion set are automatically converted into binary opcodes through a process called assembly.
In effect, you are assembling the assembly language source code into a CPU’s machine
language.

Today, even basic software like your operating system (Windows, for example) is
mostly developed using high-level languages like C. But parts that are critical for perfor-
mance may still be developed using assembly languages. This is also true for software
such as simulation applications, where assembly code might be used to optimize certain
parts of the program that need to be blazing fast.

198 CHAPTER 5 PROGRAMS



THE DIFFERENCE BETWEEN
PROGRAMS AND SOURCE CODE

Let's see. We talked a bit about programs and source code before. The two words might
seem to mean the same thing, but they are different, strictly speaking.

Hmm, it might be cool to know the difference. I'm all ears!

Sure. A program usually refers to the chain of instructions fed to a computer to make it do
something. A program combined with all the other resources it needs to perform its task
is referred to as object code, while the word source code is usually reserved for the code
(machine or high-level) used to create the program.

PRODUCED 0
BY HUMANS
EB 7 PROGRAM

EVERYTHING
SOURCE CODE TOGETHER

Source code includes all of the instructions and text produced by humans, while the object
code is the machine code that is produced when the source code is compiled, which is then
executed by the CPU. Some recent Al (artificial intelligence) can even automatically produce
source code.

Huh. | think | get it. Programs are the work instructions and their resources. Source code,
on the other hand, is the instructions and text produced by humans to generate the work
instructions.

You might also run into the term source program, but for simplicity’s sake, you can just
think of this as being the same thing as source code.

ASSEMBLY AND HIGH-LEVEL LANGUAGES 199



[ Program Basics J

WHAT CAN YOU MAKE USING CONDITIONS AND JUMPS?

COME AT ME!

OKAY, LET'S T'LL SERVE BACK
SUMMARIZE WHAT ANYTHING YOU
MAKES THE BASIS THROW AT ME!

OF A PROGRAM.

ITLL ALSO SERVE
AS A REVIEW OF
THE THINGS WE'VE
LEARNED SO FAR.

THIS 1S NOT
A GAME!!

FIRST OFF, IF WE'RE ONLY

UH-HUH. IT
USING OPERATIONAL JUST KEEPS
INSTRUCTIONS (ARITHMETIC, oceenG PROCESSING

LOGIC, AND SHIFTS) AND ONE INSTRUCTION

DATA ACCESS...

<

AFTER ANOTHER,

A 4
PROCESSING

A 4
PROCESSING

m
/X
S
Y THEN THERE 15 ONLY A

SINGLE PATH THROUGH
THE PROGRAM.

AN

BUT IF WE ALSO USE CONDITIONS
AND BRANCHES (JUMPS)...

PROCESSING

w BRANCHED!

PROCESSING PROCESSING

N

WE CAN WRITE
COMPLEX PROGRAMS
THAT CAN CHANGE
EXECUTION FLOW
DEPENDING ON
DECISIONS MADE
BY THE CPU!

200 CHAPTER 5 PROGRAMS



YEAH! I HAVEN'T
FORGOTTEN.

THE FLAG 15 THE FLAG ISN'T

STANDING UP! STANDING...

THE FLAGS IN THE STATUS
REGISTER ARE SET ACCORDING
TO DIFFERENT CONDITIONS, AND
THESE ARE CONSIDERED WHEN
MAKING DECISIONS.

THAT'S CORRECT! YOU
CAN THINK OF EACH FLAG
AS REPRESENTING TWO
DIFFERENT BRANCHES, SINCE
EACH OF THEM CAN EITHER
BEATORAO.

AND IF WE START
CONSIDERING CONDITIONS
INVOLVING COMBINATIONS
OF SEVERAL FLAGS...

FOR EXAMPLE,
A BRANCH coULD
BE “NEGATIVE
OR POSITIVE” OR

“YES OR NO.”

S e N\

YOU CAN SEE HOW
THIS WOULD LEAD TO
A LOT OF POTENTIAL
. BRANCHES.

LIKE THIS! PROCESSING
\ 4

THIS WOULD BE REALLY
USEFUL IF WE WANTED
TO CREATE A MORE

COMPLEX onezﬁy

CONDITION (IF WE CONSIDER A COMBINATION OF TWO FLAGS,
WE END UP WITH FOUR BRANCHES)

l ! | l

PROCESSING PROCESSING PROCESSING PROCESSING

®

PPF Pa 2P 24

(M (Mo (© 1) (©) )

PROGRAM BASICS 201



AND IF WE ALSO APPLY
CONDITIONAL JUMPS...

N
rd

IN THIS NEAT
LITTLE DIAGRAM, PROCESSING
WE REPEAT THE

SAME INSTRUCTIONS

OVER AND OVER. H NoO
THE

Yes CONDITION
IS NO

LONGER
MET.
ONWARD!

YOU CAN KEEP
REPEATING THE SAME
PROCESS IN A LOOP
AS LONG AS SOME WE CALL THIS

CONDITION IS MET. A REPEATING
PROCESS.

/ ...WELL, YES,
BUT LET'S STOP
TALKING ABOUT

THE BASIC

CONCEPTS HERE.

OOOH! THIS SEEMS
REALLY USEFUL.

YOU CAN
REPEAT A SERIES OF
INSTRUCTIONS WITHOUT
_ HAVING TO WRITE THEM
N, MULTIPLE TIMES. 1

EH?!
THAT'S IT??2

WELL, NO. TO BE NEED TO HAVE

ABLE TO CREATE A LOT MORE HOWEVER!
PROGRAMS, IN-DEPTH
YOU WOULD, OF KNOWLEDGE.

COURSE...

202 CHAPTER 5 PROGRAMS



NO MATTER HOW COMPLEX
THE PROGRAM AND
REGARDLESS OF THE

LANGUAGE USED...

DENYING THE EXTREME
IMPORTANCE OF
CONCEPTS LIKE

DECISIONS AND

I SEE. SO CONDITIONAL
DECISIONS AND BRANCHES
(JUMPS) ARE THE
FOUNDATIONAL SECRETS
TO UNDERSTANDING ANY /-
- >»_ PROGRAM FLOW!

THERE'S NO

CONDITIONAL
BRANCHING!!

YES. YOU ONLY NEED
TO KNOW THIS...

AND IF YOU WANT TO LEARN
MORE ABOUT PROGRAMS,
THEN READ AS MANY BOOKS AS
YOU CAN AND WADE THROUGH
AS MUCH SOURCE CODE AS
POssIBLE...!

THE ROAD TO
BECOMING A GENIUS
PROGRAMMER!!

Y/

/A
/ /L

HE UsED UP ALL
OOOH! THE HIS STRENGTH <
ENTHUSIASM!! [ STRENGTH

L
ENTHUSIASMY




WHAT SHOULD WE MAKE THE COMPUTER DO?

By the way, we've been learning about programs today, but try to remember when we
talked about digitization of information. In modern society, by digitizing things like music,
images, video, and any other type of information, it becomes a lot easier to process infor-
mation using a computer.

Ah, | remember us talking about something like that. Now that | think about it, it's actually
kind of amazing!

| mean, if computers can handle any type of information, then you could do all kinds of
things if you just created an amazing enough program!

Yeah. It's just as you say. Things that weren't even conceivable in the past are gradually
becoming reality today.

One good example is the facial-recognition software used in some modern security
applications. These programs convert human facial features (such as the distance between
the eyes, the position and size of the mouth and nose, and so on) into numerical values and
use them for calculations. Some programs can then differentiate among human faces by
using this information.

| see. It feels a bit like science fiction that computers are actually able to tell people’s faces
apart. It might even be a bit scary. But on the other hand, it could be used for fighting
crime.

It seems like it might be a lot of fun to create a really cool program. | wonder what |
would have it do. Maybe stock market or horse race predictions . .. ? Some program that
would automatically make me a lot of money. . ..

Ah! Let's put your personal desires aside for now. But thinking about what you want to
make your computer do and what people would find useful are two very important aspects
of creating a program.

204 CHAPTER S5 PROGRAMS



THANKS FOR TODAY.
I LEARNED A LOT.

—

SURE, DON'T
WORRY
ABOLUT IT.

UM... BY THE WAY...
I ASKED MOM ABOUT WHEN
WE WERE KIDS...

WELL YOU ALWAYS
BEAT YUU IN SHOGI...

AND THEN YOU'D
SAY SOMETHING

LIKE...

YOU'RE WEAK.
I'M BORED.

EVEN IF HE
( ‘ STARTED CRYING...

YOU WERE PRETTY
RUTHLESS.

]

OF BAD ABOLUT IT...

EVEN THOUGH IT'S
IN THE PAST NOW, U
1 DO FEEL KIND

PROGRAM BASICS 205



W-WELL, I 1... I NEVER STOPPED
SUPPOSE IT WAS YOUR MOM SURE TO CONSIDER THE
LIKE THAT, B'BUT RE" RE"’ REMEMBERG FEELIN®GS OF THE

A A LOT OF SMALL PEOPLE WHO LOST
’ HAHAHAHA!

BUT LOSING TO
THE CPU MADE
ME UNDERSTAND.

WHAT IT
FEELS LIKE
TO LOSE

IT'S ROUGH,
HUH?

}l THAT YOUR TWISTED \jAND TO THEN GROW UP

PERSONALITY STEMS INTO THE GLOOMY AND
| FROM LOSING SO TWISTED KID YOU ARE
\  BADLY TO ME ALL TODAY, CREATING THAT

THOSE TIMES?! SHOGI GAME ONLY TO

TRY TO RID YOURSELF
OF YOUR HUMILIATION...

(i

I CANT TELL IF
YOU'RE APOLOGIZING,

SYMPATHIZING WITH ME,
OR INSULTING ME...
.\

Sy AT LEAST CHOOSE ONEY/

FEEN
i IT'S A TRAGEDY
BORN ALL BECAUSE
I WAS TOO SMART!!
I'M SO SORRY!!!




AHEM.

BUT IT'S A FACT
THAT I LOST.

50 DID YOU
ACTUALLY RID
YOURSELF OF THAT
HUMILIATION WE
TALKED ABOUT?

50 NOW
WE'RE EVEN!

EVEN THOUGH WHAT YOU'RE
SAYING NOW 1S WORSE THAN
ANYTHING YOU COULD HAVE
POS5IBLY SAID BEFORE?!

IT'S ALL WATER UNDER
THE BRIDGE! MY OLD
RECKLESS REMARKS,

' A/ EVERYTHING—GONE!
L YOU GLOOMY, TWISTED \
LITTLE BOY, YOU!!
\\\\
HUH? THE

SHOOTING STAR...2
WHAT'S THAT?

?\

HM, NO MATTER.
THE NEXT LESSON
WILL BE THE LAST.

YOU'RE NOT
ACTUALLY PLANNING
ON FORGETTING [T,
ARE YoUz?!

/!
g FPLEASE BRING
THE SHOOTING
STAR WITH YOU.




WHERE ARE PROGRAMS STORED?

Programs for small devices that use microcomputers are usually stored in ROM. In per-
sonal computers, only the BIOS (the Basic Input/Output System) is stored in ROM, which
in turn is used to load the operating system (0S) from an external device (such as a hard
drive) into RAM. Programs are also loaded into RAM before execution.

At the dawn of the CPU era some decades ago, miniature 0S-like systems called
machine code monitors were used when developing assembly code line by line.

Nowadays, even assembly programming is done on personal computers. Each CPU
maker provides development tools to allow programmers to more easily develop assem-
bly language programs for their CPUs. You can create your program using these tools on
your computer, attach a ROM writer to the system to embed your program into ROM, and
finally integrate the ROM into your target system.

A more recently developed method allows programmers to transfer the program
from a computer to the device’s non-volatile memory. This saves a lot of time because
you can check how the device performs without having to rewrite the ROM every time.

PROGRAM

PROGRAMS ARE STORED IN ROM
(NON-VOLATILE MEMORY)!

RAM

It's also worth mentioning that the method of rewriting a program on CPU ROM
without detaching it from the system is called on-board programming.

WHAT HAPPENS BEFORE A PROGRAM 1S EXECUTED?

Let’s talk a bit about what happens when you load a program you've written into ROM.
What does the CPU do as soon as you turn on the power?

Simply turning on the power doesn't actually do anything, as there is a significant risk
that the system will not perform as expected before the voltage has climbed to a certain
level. To ensure that the CPU will operate properly, the circuitry on the CPU board must
keep the reset pin low until the power supply voltage stabilizes and the CPU's clock gen-
erator starts functioning normally.

The clock generator normally starts operating before the power supply voltage
stabilizes, so when the power supply voltage reaches the correct level, the CPU board’s
reset circuit sets the reset pin to high, and the CPU can begin executing instructions. The
voltage needed for this is generally specified in the CPU’s documentation.

At this point, all the preparations are done for loading the first line of the program.
After releasing the reset state, the first thing the CPU does is load a reset vector.

The reset vector is usually written to the first or last part of the memory the CPU
manages, and it tells the CPU where to find the first instruction of the program to run
after a reset. For a PC, this would be the BIOS.

208 CHAPTER 5 PROGRAMS



- RESET
FIRST CHECK  VECTOR
THE RESET / /I X
VECTOR! =) % ]

THE ADDRESS IN
THERE (X) IS THE
FIRST INSTRUCTION
OF THE PROGRAM.

/'/\U\/
ADDRESS SPACE

The CPU will then run the instruction at the address specified by the reset vec-
tor and proceed normally from that point. It would execute the program the instruction
belongs to, perform calculations, and process data in accordance with the program flow.
If the reset pin were to become active for any reason, the CPU would instantly cease all
activity, no matter what it was currently working on, and return to its initial state.

A reset is actually a type of interrupt, like the ones we learned about in earlier
chapters. Although we learned previously that interrupts can stop a CPU from running
its current set of instructions and make it run instructions at another address, we haven't
learned how the CPU knows which address to jump to. Each type of interrupt has an
address associated with it, and the data structure that stores the addresses to execute
depending on which type of interrupt occurs is called the interrupt vector table (IVT). The
reset vector is at a set location in memory, and it is the first value in the interrupt vector
table. That's how it works at a very high level, but IVTs vary from CPU to CPU, so the
location of the reset vector will depend on the CPU’s specifications.

INTERRUPT VECTOR
IF WE TAKE A LOOK AT TABLE

THE INTERRUPT VECTOR ST RV L I
TABLE, WE CAN SEE

THAT WE SHOULD... INTERRUPT B ,
EXECUTE X IF WE GET [ =
AN A INTERRUPT!

EXECUTE Y IF WE GET
A B INTERRUPT!

—

WHAT HAPPENS BEFORE A PROGRAM 15 EXECUTED? 209






MICROCONTROLLERS




( What Are Microcontrollers? J

/

AHH™

WHAT WONDERFUL
WEATHER!

NRNGH

LEARNING
BENEATH AN

BAD AT ALL.

BUT TO THINK
A SHUT-IN LIKE
YOU STUDIES AT
THE PARK.

WELL,
1 sUPPOSE

IT'S NOT FAR
FROM HOME.

OPEN SKY ISN'T

..HEH, IN ANY
CASE, THIS WILL
BE OUR LAST

TODAY'S THEME 15
MICROCONTROLLERS!

MICROCONTROLLERS?

ARE THOSE LIKE SOME
KIND OF MINI MIND 4

CONTROL ROBOTS?!

WHY WoULP YOoU
JUMP TO THAT
CONCLUSIONZ!

212 CHAPTER 6 MICROCONTROLLERS



MICROCONTROLLERS ARE IN
ALL KINDS OF PRODUCTS

*MICRO”

+

“CONTROLLER”

(THERE ARE ALSO
MICROCOMPUTERSD

AS THEIR NAME SUGGESTS,
MICROCONTROLLERS ARE
SMALL CONTROLLER CHIPS.

oooooooooooooooooo
ooooooooooooooooo

IMNOT SURE T Nl | o ARE THEY
JUST THE NAME. AR o
sl compuTers?

WHAT DO THEY
CONTROL
EXACTLY?

MICROCONTROLLER

HERE, TAKE A
LOOK AT THIS.

THERE ARE ALSO LONGER
MICROCONTROLLERS, SUCH AS

CONTROLLERS ARE
... THE ONE SEEN ON PAGE 4.

SINGLE INTEGRATED
CIRCUITS (IC2), LIKE
THIS ONE.




MICROCONTROLLERS
CAN BE FOUND IN ALL
SORTS OF HOUSEHOLD
ELECTRONICS!

IT'S NOT UNCOMMON
FOR ONE DEVICE
TO CONTAIN MORE

THAN ONE.

MICROCONTROLLERS
ARE IN ALL SORTS
OF THINGS, THEN.

THE FUNCTION OF A

MICROCONTROLLER

AND THE \
COMPONENTS OF THESE
MICROCONTROLLERS..

214 CHAPTER &6 MICROCONTROLLERS

T T T 7777




MICROCONTROLLER

MEMORY FUNCTION
(ROM OR RAM)

o7

CPU FUNCTION

o7

I/0 CONTROL FUNCTION

WOULDN'T YOU KNOW!
MICROCONTROLLERS CONTAIN
MEMORY (ROM OR RAM),

A CPU, AND 1/0 CIRCUITS, ALL
INTEGRATED INTO ONE CHIP!

ALL INSIDE ONE IC!

WHEN EMBEDDED

IN PRODUCTS, THEY'RE
SOMETIMES REFERRED
TO AS EMBEDDED

_CONTROLLERS.

WHOA! IT'S A LOT OF
DIFFERENT SYSTEMS
ALL IN ONE!

HEH HEH HEH,
ISN'T IT GREAT?

..........
...........
0

A SINGLE
MICROCONTROLLER CAN GET
PROGRAMS FROM MEMORY,

EXECUTE THEM, AND DEAL

WITH INPUT, JUST LIKE ANY
OTHER COMPUTER.




HMM, SO

MICROCONTROLLERS
ARE THE INTEGRATED
CIRCUITS THAT CONTROL
MACHINES, THEN.

DOES THAT MEAN
THEY'RE EVEN
MORE USEFUL THAN
A COMPUTER'S
cPu?!

WELL, THAT
MIGHT BE SO.

BUT MICROCONTROLLER
CPUs AND COMPUTER
CPUs ARE COMPLETELY
DIFFERENT!

XX R
0
O
v

BOOO
OO0
oo 0 e
GO0

o2 \ EXAMPLE FUNCTION OF A ,

MICROCONTROLLER CPU

TEMPERATURE

CONTROL TIMER CONTROL

TO MAINTAIN TO ACTIVATE
70°C, FOR AT 6 PM, FOR
EXAMPLE... EXAMPLE... -prorenet

216 CHAPTER &6 MICROCONTROLLERS

A RICE COOKER MIGHT HAVE
A MICROCONTROLLER THAT
TAKES CARE OF FUNCTIONS
LIKE TEMPERATURE CONTROL
OR TIMER CONTROL...

AH, I SUPPOSE
THAT'S TRUE...

BUT IT CAN'T DO ALL THE
COMPLEX OPERATIONS A
COMPUTER'S CPU CAN.




SO A
MICROCONTROLLER
IS WHAT HELPS ME
KEEP THE TIME WHEN
COOKING RICE...

BUT WHAT IF.2

AND RICE
PORRIDGE, EGGS,
AND OTHER
THINGS I MAKE IN
A RICE COOKER,

- AS WELL.

THERE ARE NO
BUTS HERE!

BUT 1 SUPPOSE
IT CAN'T HELP ME
WHEN I WANT TO
SEND EMAILS OR
PLAY A MOVIE,
THOUGH.

IT'S IMPOSSIBLE
NO MATTER HOW
YOU LOOK AT IT!

N RELar,
\,\\"‘6\\,\'(\*'66 che A‘SLy
MICROCONTROLLERS GP\VP\ 7
ARE LIMITED IN
THEIR POSSIBLE

APPLICATIONS... R
[ 2
) X
!fff 1‘?‘1
K, e
f;!f 111}
ffj’ 11\

HIGH-POWERED MICROCONTROLLERS
AND EXPENSIVE MICROCONTROLLERS
ALSO EXIST.

BUT THAT MEANS
THEY'RE ALSO MUCH
CHEAPER THAN
COMPUTER CPUs.

WHAT ARE MICROCONTROLLERS? 217



AND BECAUSE ALL i s Ll UH-HUH, I THINK I GET
THIS FUNCTIONALITY 1S g5 THE MAIN FEATURES OF
LOCALIZED ON ONE MICROCONTROLLERS
INTEGRATED CIRCUIT... NOW.

EVEN THOUGH THEY'RE
JUST ONE SMALL 1IC,
THEY STILL CONTROL

MANY TYPES OF

DEVICES.

—

WE ALSO CALL
THEM ONE-CHIP
MICROCONTROLLERS.

4

THEY COULDPN'T HAVE
IN THE FIRST PLACE/

AND HAVE NOTHING TO DO
WITH MIND CONTROL!

DIpP YOU sERIOUSLY
THINK THAT WAS
PO55/BLEZ/

™~

218 CHAPTER &6 MICROCONTROLLERS




ARCHITECTURE OF A

MICROCONTROLLER

FINALLY, LET'S TAKE
A LOOK AT THE
ARCHITECTURE OF A
MICROCONTROLLER.

1 RECOMMEND
COMPARING THIS TO
THE ARCHITECTURE

SRR OVERVIEW OF A

>

MICROCONTROLLER
) ¥ RAM ROM
QQ 3
ALU—(Q,Z.Q— > N N N
[
= m
= ‘c_) g\\-
o W 4 <1~
m N~ Ve
N
O
A EXTERNAL
g DEVICES SUCH
S AS SWITCHES,
LEDﬁI
MOTORS,
a3 AND OTHER
o)y} THINGS
o CONNECTED
=N N TO THE
W N AW “\ CONTROLLER
1/0
CONTROLLER <1>

OOH™! THE MEMORY
CONTROLLER (RAM AND ROM),
CPU, AND I/O CONTROLLER ARE
ALL THERE...

INTEGRATED INTO THE
MICROCONTROLLER!

IT'S REALLY
IMPORTANT TO NOTE THAT
A MICROCONTROLLER CAN BE
CONNECTED TO ALL SORTS
OF EXTERNAL DEVICES,
DEPENDING ON WHAT IT'S
USED FOR!




HISTORY OF THE MICROCONTROLLER

Microcontrollers have a very interesting history. The very first electronic calculator used
an ALU made with electron vacuum tubes. It was very large by today’s standards, taking
up an entire room the size of a volleyball court. This was around the time of World War I,
in the 1940s. England and other countries were in the middle of developing electronic
calculating machines to decipher the codes that the German army was using. Unlike
modern computers, these were not developed in an open international marketplace
but instead in top-secret military research laboratories. Because of this, it's not clear
whether the American ENIAC computer, presented to the world in 1946, was truly the
first computer or not.

The first transistor was invented in 1947, displacing electron vacuum tube calcula-
tors with semiconductor-based technology. And with the invention of the integrated
circuit in 1958, the miniaturization of electronic calculators progressed significantly.

Even so, the 16-hit minicomputer seen in Chapter 4, which used four 745181 chips,
was not developed until 1972. Removing all external devices, it had a width of 60 cm, a
height of 30 cm, and a depth of 45 cm. It could handle an address space of 16KW (kilo-
words, where 16 bits of data is equal to 1 word), which is what we would call 32KB today.
(Compare this to modern SD cards, which are able to store 32GB of data or, in terms of
memory size, about a million times more data.)

In the second half of the 1970s, Intel introduced its one-chip CPU as a mass-
produced commodity. This product instantly dominated the market, lowering costs
across the board.

The one-chip CPU also heralded a new age from 1976 onward in which amateur
electronics enthusiasts could afford learning kits (for example, the Altair 8800 micro-
computer). With these, they could learn how to program in machine language with the
one-chip CPU as a base.

This is also around the time when the term personal computer, or PC, came into
popular use, since you could finally have one of these technical marvels for yourself.

220 CHAPTER &6 MICROCONTROLLERS



But progress did not stop there! One-board controllers that fit the CPU, memory,
and I/0 controllers onto a board about the size of an A4 sheet of paper were developed.
Eventually, these components fit onto a single IC chip that could be used to control all
sorts of devices.

Because these ICs had CPUs that were inseparable from their ROM or RAM memory
and integrated /0 ports, they could store programs, perform calculations, and handle
input and output. These ICs were called microcontrollers since they were comparatively
small and controlled other devices

After this, there was a desire for larger memory, which stimulated a demand for
larger computers, as well. But the small-scale devices that use integrated one-chip
microcontrollers are still in very high demand today and are used in everything from
household electronics to toys.

And so microcontrollers contain everything from a CPU to memory to I/0 controllers.

NOW, COMPUTERS

5T HAD AND THEN IN THE FORM OF
20 Wir;/gé USING TRANSISTORS MICROCONTROLLERS
N VACUUM N MADE FROM ARE IN EVERYTHING
YBES..- e SEM/- FROM RICE COOKERS
CONDUCTORS., \..TO AUTOMOBILES!

WHAT ARE MICROCONTROLLERS? 221



WHAT ARE D5P5?

We should take this opportunity to talk a bit about DSPs, as well.

DSP? Yet another strange acronym. So, what are they?

DSPs, much like CPUs, are ICs that perform operations. But compared to CPUs, they're
extremely fast.

MULTIPLIER-
ACCUMULATE
OPERATION
CIRCUIT

Their “brain” is made up of what is called a multiplier-accumulate operation circuit.
This essentially means DSPs are really good at doing multiplication and addition at
the same time!

222 CHAPTER & MICROCONTROLLERS



Whoa! So what's that good for? | suppose it has to be good for something.

Yeah. It turns out you have to do a lot of multiplication and addition when processing digital
signals, especially for audio recordings. In fact, that's what DSP is short for—digital signal
processor.

Audio . .. so...when I'm talking on my cell phone, for example? | suppose my analog voice
has to be converted to digital form somehow for it to be transmitted to my friend on the
other end of the line.

That's correct! Most modern mobile phones have DSPs. They're also being used more
often for digital filtering in audio devices and for the operations required to improve acous-
tic effects.

Wow, so they're all around us, these DSPs!

Currently, development for a one-chip DSP with large RAM at the level of a microcontroller
is underway.

| see. So they're good at doing multiplication and addition at the same time, which is useful
for digital signal processing.

While CPUs are really important, | get the sense that DSPs are, too. I'll make sure to
remember them!

WHAT ARE DSPs? 223



D5SPs AND MULTIPLIER-ACCUMULATE OPERATIONS

During the development of the CPU, there was a growing need for increasing the pro-
cessing speed of calculations—in particular, division and multiplication were a lot slower
than desired.

As we've seen, the CPU's ALU was mostly geared toward performing addition and
subtraction at this time. Using these older ALUs, you had to repeatedly perform addition
to multiply two numbers and repeatedly perform subtraction to divide two numbers. At
the time, computers were becoming more popular in scientific applications, which meant
that demand for high-performance multiplication was very high. This is when develop-
ment of the circuits that were capable of floating-point multiplication really took off, and
the result was the digital signal processor, or DSP.

To process digital signals, DSPs perform fast Fourier transforms (FFTs) on them.
This requires a lot of simultaneous additions and multiplications. To perform these multi-
plications and additions efficiently, DSP ICs have a multiplier-accumulator circuit.

Shortly after DSPs were developed, mobile phones started to use digital trans-
missions, and digital voice signal processing and filtering became more common. The
transmission stream could also be compressed, and the receivers started using systems
with DSPs at their core to convert the raw voice data using vocoders (a voice encoder/
decoder).

Later, microcontroller-like DSPs with larger RAM molded into the chip started to
show up, making voice data processing even faster.

MICROCONTROLLERS IN INDUSTRIAL MACHINES

CPUs, microcontrollers, and DSPs are in many of the devices we use in our daily lives.
Some examples include today’s wall clocks, alarm clocks, and even wristwatches, all
of which are likely to contain a one-chip microcontroller. Other household devices like
refrigerators, air conditioners, and washing machines are likely to contain more than
one. And the remote controls used to send commands to these devices also contain a
microcontroller IC.

Automated robots and conveyor belts in large-scale industry also have to be con-
trolled in some fashion and therefore require either a CPU or DSP.

MANY DEVICES IN OUR HOMES HAVE MICROCONTROLLERS,
AND THEY EVEN HAVE INDUSTRIAL USES...

224 CHAPTER &6 MICROCONTROLLERS



Up until now, we've had single-chip CPUs as well as microcontrollers that contain a
CPU, memory, and I/0 controllers all in one. The amount we can pack into a single chip is
determined by tradeoffs among our capacity to produce semiconductors, their production
cost, and the market’s demand and margins.

Advancements in IC production technology have led to the development of FPGAs
(field-programmable gate arrays). Using an FPGA, you can create any logical circuit you
desire and bring it into reality with hardware. The basic structure can contain lookup tables
of anywhere from several thousand to several million units in a single IC. These tables can
be prepared beforehand by the IC maker and provided as is.

The initial state of the IC consists of a lookup table memory section and logic blocks
that can be wired together in different ways, resulting in many possible applications. The
raw IC is then configured by the user with specialized tools to write the modeled design
into the circuit, creating the desired IC. Development is normally done on a computer, but
the specialized tools needed can also be stored on a USB, making the creation of even
large-scale logic circuits an easy task.

In the past, CPUs were different from FPGAs, but in recent years, FPGAs contain-
ing CPU functionality have started to appear. There are two ways to make an FPGA into a
CPU. The first is to simply create an existing CPU design in the wiring of your logic circuit
using the development tools provided, and the other is to embed a CPU in one part of the
gate array as a separate IC.

In either case, the CPU as a single IC is becoming gradually less common over time.
But even though we have DSPs, there is still a need to control tasks other than multiply-
accumulate operations, and as such, the principles underlying the CPU will remain impor-
tant concepts no matter how ICs continue to develop.

5 OF USEFUL ICs... BUT KNOWING -,

y He
MANY T 5 15 THE MOST IMP, Bas
A ad A:e\f\ow p CPU WORK ORTANT THing, <>
o

MICROCONTROLLERS IN INDUSTRIAL MACHINES 225






EPILOGUE




OH, THAT REMINDS
ME... I PROMISED TO
RETURN THIS AFTER
WE WERE DONE,

I GUESS THIS MARKS
THE END OF OUR
LESSONS.

CONGRATULATIONS
ARE IN ORDER
SINCE YOU MADE
IT ALL THIS WAY.

HERE YOU GO,
ONE HOSTAGE
LAPTOP.

\ PN
\

THE ENTIRE REASON
I STARTED LEARNING
ABOUT CPUs WAS
BECAUSE 1 LOST

TO THIS THING.
: BUT THE
SHOOTING

STAR ISN'T JUST
STRONG.

-
I\'
|

L |

ITS ESPECIALLY
STRONG
AGAINST YOU.

1 HATE TO
ADMIT IT, BUT THIS
LITTLE GUY IS

228 EPILOGUE



WELL, youm
U;'bn’nAsTAzg YOU KNOW HOW ONE OF
: THE UPPERCLASSMEN
IN YOUR CLUB LIKES TO
POST YOUR PLAY DATA/

ON THE WEB?

THEY EVEN
INCLUDED PERSONAL
INFORMATION IN THE
PLAY RECORDS ON
YOUR BLOG...

IN THE INTEREST OF
PROTECTING THE STUDENT'S
PRIVACY, I HAVE RUN
HER FACE THROUGH A
MOSAIC FILTER.

IMALMOST
CERTAIN I KNOW
WHO THAT 15/

INCLUDING PICTURES

WHEN I KNEW I WAS
GOING HOME, 1T GOT
NOSTALGIC AND LOOKED
UP YOUR NAME...

AND FOUND
ALL KINDS OF
INFORMATION
RIGHT AWAY.

OF YOUR VICTORY IN
THE NATIONALS AND
RECORDS OF YOUR

PLAY STYLE. g

EPILOGUE 229



LIKE A STALKER BIDING HIS |,

TIME, WATCHING HIS PREY...

THE ABUSE OF PERSONAL
PRIVACY IN THIS DIGITAL
SOCIETY EVEN CROSSES v

INTERNATIONAL BORDERS...!

WHO ARE YOU CALLING
A STALKERZ/

AND THEN I SAW

YOUR BORED FACE

IN MORE THAN ONE

VICTORY PHOTO...

SEEING THAT, I COULD
NO LONGER-

YOUR TRAUMA OF REPEATEDLY
LOSING TO ME WAS REVIVED,
AND BEFORE YOU KNEW [T,
YOU WERE DEVELOPING A
PROGRAM DESIGNED TO BEAT
ME, AND ONLY ME, IS THAT ITZ/

230 EPILOGUE

]

GIVE ME A BREAK
ALREADY/

<
TN [T—



WELL, ANYWAY,
LET ME
RETURN THIS.

I STILL FEEL BAD ABOUT
LOSING TO IT, BUT IT'S

BEEN EDUCATIONAL IN

MORE THAN ONE WAY.

YOU DON'T
HAVE TO GIVE
IT BACK.

THE SHOOTING
STAR 1S ESPECIALLY
STRONG AGAINST
You.

THAT MEANS IT WILL
BE DOING THE MOST
GOO0D IN YOUR HANDS.

USE IT TO KEEP
BOREDOM AT BAY WHILE
YOU AIM TO REACH THE
COMPANY OF STRONGER
PLAYERS.

I PLANNED TO GIVE IT
TO YOU FROM THE VERY
START, TO BE HONEST.




«««««« S THIS 1S THE LETHAL
INSTRUMENT YOU DESIONED
TO RID YOURSELF OF
YOUR GRUDGE AND
RESENTMENT...

BUT IT'S ALSO A
PRESENT FOR ME...2

SO THAT
MEANS...

WELL, 1 SUPPOSE
YOU COULD INTERPRET
IT THAT WAY.

BUT DON'T BOTHER
THANKING ME FOR IT.
AFTER ALL, I HAVE LOADS
OF LAPTOPS LIKE THAT.

AND DEVELOPING -
THE PROGRAM WAS HM?Z WHAT 15
AN EXCELLENT WAY
TO KILL SOME TIME,

FUHAHARAH!

IF YOU'RE
GOING TO
COMPLAIN...

232 EPILOGUE



I'M REALLY HAPPY...

THANK YOU!

T'LL TREASURE IT!!

AH, NO, I MEAN
T'LL TAKE ANYTHING
I CAN GET!

AHEM, LET ME JUST
BOOT IT UP, OKAY!

EPILOGUE 233



I FEEL LIKE IM
REMEMBERING
SOMETHING...

I HAD SNUCK OFF TO

WATCH SHOOTING STARS
IN THIS PARK WITH SOME
BOY WHO WAS MOVING

FAR AWAY...

.50 YOU FINALLY
REMEMBER.

234 EPILOGUE

AND I WISHED
UPON THOSE
STARS THAT...

I WOULD INHERIT
A TRUCKLOAD
OF MONEY
SOMEDAY.

WHAT'S WITH THAT
GREED OF YOURSZ!
AND WHY WouLp
YOU EVEN BRING
THAT UPZ/

A SHOOTING STAR
WALLPAPER...?




WELL YOU KNOW,
THERE WAS A
METEOR SHOWER
THAT NIGHT AND...

LIKE WHAT?

I WISHED FOR A
LOT OF OTHER
STUFF AS WELL!

=

MY FAVORITE FRIEND
YUU 15 MOVING
TOMORROW, AND

== — T s «-..w,
INSTEAD OF "3

HAVING TO ENDURE
MISSING HIM...

Y

4
A
{ \\

I WIsH I cOULD
FORGET AIM FOR

A WHILE...

/

EPILOGUE 235



I-I-IT DPOESN'T
MATTER ONE BIT/!

.....

3

A-ANYWAY
T \ WHAT DID YOU WELL,
EVERXTHING/A| WISH FOR?! YOU SEE...
I \ LLLA

THAT I'D GET A LOT I YOU KEEP
PRAYING TO THE
BETTER AT SHOGI, STARS FOR THAT,  [AND BESIDES,

! ' IT’S NOT LIKE 1
OF COURSE... YEAH! YOU'RE ONLY GOING LOET 70 Yo~

TO GET WORSE
! ILOST TO
YOU KNOW. THE cPUll

WE'RE BACK TO
WHERE WE STARTEDY

236 EPILOGUE



WELL, IF YOU'RE NOT
SATISFIED WITH THAT, THEN
YOU'LL JUST HAVE TO BEAT
ME ONE ON ONE.

IF YOU CAN...
wlor/

THERE YOU GO AGAIN!

YOU JUST PON’T KNOW
WHEN TO GIVE UP, ‘
po you, AyumizY




I 6OT A PROTECTIVE
CASE FOR THE

SHOOTING STAR! I CAN'T DECIPE IF

YOU'RE TAKING GooPpP
OR BAD CARE OF ITV

NOW IT WON'T BREAK
IF I FLIP OUT AND
HIT IT WHEN I LOSE!




AFTERWORD

Up to this point, we have only talked about very old and primitive CPUs. The ones we have
shown could only really be used for things like toys or simple AC remote controls. They are
too simple to be used in most modern microcomputers or CPUs today. Currently, the speed
of progress is so fast that everything | say here will quickly become obsolete. But even so, |
wrote this book in an attempt to help anyone who might want to learn some lasting basics—
even in these fast-changing times.

In other words, | would like to emphasize that this book has concentrated on the very
basic principles governing CPUs, forgoing any information relating to general computer
architecture. But even so, | would like to leave you with a small impression of the current
state of progress.

It is unfortunately quite hard to illustrate modern complex circuits in the type of dia-
grams we used at the start of the book to show the different parts of the CPU, so I'm going
to have to talk in very superficial terms here.

There are many techniques used to make modern CPUs execute programs more
quickly. An older one of these techniques is the prefetch instruction. Instead of trying to
get the next instruction after the current one has finished processing, prefetching tries to
extract the next instruction from memory before the current one has completed to shorten
any wait times that might otherwise occur.

Since the CPU is a lot faster than main memory, it makes a lot of sense to let prefetch
decode the next instructions and store them in a cache in preparation for the next calcula-
tion. Repeating this prefetching process of reading and decoding instructions ahead of time
can lead to continuous execution speed increases across the board.

There is another instruction called pipelining in which the instruction cycle is broken
into several dependent steps. These steps are usually fetch, decode, execute, access mem-
ory, and finally write back to register/memory. The goal here is to keep all parts of the CPU
busy at all times by executing these steps in parallel. So while one instruction might be run-
ning its execute step, another instruction would be running its decode step, and yet another
instruction would be fetching.

CPU researchers found some tendencies toward inefficiencies when using certain
instruction and operand combinations. Attempts to remove these inefficiencies by simplify-
ing the instruction set led to the development of the RISC (reduced instruction set computer)
architecture. Processors that use this instruction set are called RISC processors.



240 AFTERWORD

Many worried that reducing the instruction set would make complex calculations
require more instructions and therefore slow down execution. In reality, however, many
applications saw a performance boost on the RISC architecture. It turns out that reducing
the instruction set’s complexity leads to simplifications in the hardware design that allow for
higher single instruction execution clock speeds.

Because of this, RISC processors have started to be used in many different areas.
Processors that don't use RISC principles have been dubbed CISC (complex instruction set
computer), riffing off the RISC name. This acronym was created purely as an antonym of
RISCs, and there is no particular architecture associated with the CISC name.

Recent Intel and other CPU chips contain not just one but many cores, which are
distributed between different processes on the system. This is something that falls in the
domain of computer architecture, so as | mentioned at the start of the book, this is not
something | will explain in much detail.

However, there is no requirement that all complex calculations must be performed in
order. It is fine for the CPU to split up different parts of a task and run the individual parts
on separate cores simultaneously, exchanging data between cores only when absolutely
necessary. Letting the CPU multitask like this can improve execution speed a great deal.
Using the CPU in such a way, however, poses problems not only for the hardware but also
for the OS, memory access, and code execution scheduling.



A

absolute (direct) addressing,
169,172
accumulators, 104-105, 110
bit shifts, 143
defined, 186
addition circuits, 62
carry look-ahead adder
circuits, 68-69
full adder circuits, 66-67
half adder circuits, 63-65
ripple carry adder circuits,
67-68
ADD mnemonic, 163, 166, 192
address assignment, 89-91
address bus, 92, 96-97, 99
addressing modes, 165, 168
absolute addressing, 169, 172
effective addressing, 169
indirect addressing,
170-171, 174
relative addressing, 173
address modification, 174-175
address pointers, 91, 92
address references, 167
address registers, 108
address space (memory space)
control of, 90, 119-120
external devices, 121
size of, 96-97
ALUs (arithmetic logic units),
22-24
745181 example, 177
and binary arithmetic, 47
and bus width, 95
AND gate (logic intersection gate),
51-55
applications, 198
arithmetic operations, 15,
in binary, 44-47
as instructions, 142-144,
179-180

INDEX

arithmetic shifts, 149-151
arithmetic unit, 16-19, 22-24
assembly languages, 193, 198
characteristics of, 194,
196-197
smaller-scale software
development, 198
asynchronous counters, 82
ATMs, 25-26, 113-114

B

base 2 system. See binary
number (base 2) system
base 10 (decimal number)
system, 38-41
base registers, 175, 186
Basic Input/Output System
(BIOS), 120, 208
billion floating-point operations
per second (GFLOPS), 138
binary number (base 2) system
addition and subtraction in,
L4-47
vs. decimal, 38-41
sign bits, 147-148
BIOS (Basic Input/Output
System), 120, 208
bits, 39, 97
bit shifts, 143
arithmetic shifts, 149-151
circular shifts, 152
left shifting, 146
logical shifts, 145-146, 149
overflow, 150-151
right shifting, 145-146
block, 133
borrow flag, 187
branches, 113
branch instructions, 155-157
conditional jumps, 161
in programs, 200-203
bundled signal pathways, 94-95

buses
address bus, 92, 96-97, 99
bundled signal pathways,
94-95
bus width, 95-97
control bus, 99
data bus, 92, 95, 99
external bus, 92-93, 96
internal data bus, 92-93
bytes, 97

C

CAD (computer-aided design)
programs, 85
carry flag (C-flag), 160, 187
carry input and output, 67
carry look-ahead adder circuits,
68-69
central processing units. See
CPUs (central processing
units)
C-flag (carry flag), 160, 187
circular shifts (rotating shifts), 152
CISC (complex instruction set
computer) architecture, 239
clock frequency, 133-134
clock generators, 134-135, 208
clocks, 78-80, 133
degree of accuracy, 134
frequency of, 133-134
clock speed, 133-134
command input, 24
compiling, 197, 198
complements
in binary arithmetic, 44-47,
147-148
in logic operations, 60-61
and relative addressing, 173
complex instruction set computer
(CISC) architecture, 239
compression, 32-33



computer-aided design (CAD)
programs, 85
computers
components of, 16
information processing,
11-13
operations of, 14-15
condensers, 134
conditional branches, 161
conditional jumps, 161, 202
conditional skips, 161
condition evaluation, 113
branch instructions and, 161,
200-203
status flags, 158-160,
187-188
continuous output, 31
control (instruction) flow, 16, 21
control bus, 99
control signals
/0 signals, 100
R/W signals, 98-99
control unit, 16, 19-21
counters
asynchronous counters, 82
program counter, 107-108,
112-114, 187
synchronous counters, 82
C++ programming language, 198
C programming language,
197,198
CPUs (central processing units)
accumulators, 104-105
addresses, 89-91
address space, 90, 96-97,
119121
ALUs, 22-24
architecture, 106-107
arithmetic unit, 16-19
buses, 92-97
clock, 133-135
compression, 33
control signals, 98-100
control unit, 16, 20-21
current technologies, 238-239
decision making, 25-27
information processing, 11-13

24Z INDEX

instruction processing cycle,
107-114

interaction with other
components, 16

interrupts, 122-129, 135-137

/0 ports, 132-133

memory classifications, 132

memory devices, 115-118

memory system. See memory
system

vs. microcontrollers, 216-217

operands and opcodes,
102-103

operation processing, 14-15,
18-19, 25-27

performance of, 138

pre-execution process,
208-209

program counter, 107-108,
112-114

registers, 103-105

reset signals, 136-137

stack and stack pointer,
126-127

crystal oscillators, 134

D

data bus, 92, 95, 99
data flow, 16, 21
data transfer operations, 153
decimal number (base 10)
system, 38-41
De Morgan’'s laws, 60-61
destination operand, 164
D flip-flops, 78-80
digital information and
operations, 12-13, 204.
See also addition circuits;
logic operations; memory
circuits
addition and subtraction in
binary, 44-47
vs. analog, 31-33
binary vs. decimal system,
38-41
fixed- and floating-point
numbers, 42-43

mobile phones, 224
reciprocal states, 37-38
direct (absolute) addressing,
169,172
discrete output, 31
DSPs (digital signal processors),
222-224

£

effective addressing, 169
electron vacuum tubes, 220
embedded controllers, 215.
See also microcontrollers
ENIAC computer, 220
exclusive logic union gate
(XOR gate), 57, 59
exponents, 42
external bus, 92-93, 96
external devices
address space, 121
external bus, 93
I/0 ports and signals, 100,
121, 132-133, 154
microcontrollers and, 219
synchronization, 124

F

facial-recognition software, 204
falling edge, 79
fast Fourier transforms (FFTs), 224
fetching, 111
field-programmable gate arrays
(FPGAs), 85, 225
fixed-point numbers, 42-43
flip-flop circuits, 74-75
D flip-flops, 78-80
RS flip-flops, 76-77
T flip-flops, 81-83
floating-point numbers, 42-43,
137-138, 151, 224
FLOPS (floating-point operations
per second), 137-138
FPGAs (field-programmable gate
arrays), 85, 225
FPUs (floating point units), 15
frequency dividers, 135
full adder circuits, 66-67



G

GFLOPS (billion floating-point
operations per second), 138
GPUs (graphics processing
units), 133
ground, 37
GT flag, 187

H

half adder circuits, 63-65
hard disk drives (HDDs), 115-118
hardware description language
(HDL), 85
high-level languages, 193
characteristics of, 194-197
large-scale software
development, 198

I

ICs (integrated circuits), 48-50.
See also microcontrollers
addition circuits, 62-69
architecture, 178
De Morgan’'s laws, 60-61
DSPs, 222-224
function table, 179
logic gates, 50-59
memory circuits, 70-83
modern circuit design, 85
pins, 49-50, 177
immediate value processing, 166
index registers, 175, 186
indirect addressing, 170-171, 174
information, 30-31. See also
digital information and
operations
analog, 31-33
compression of, 32-33
processing of, 11-13
signal-to-noise ratio, 30
transmission of, 31, 185
information technology (IT), 30
input devices, 16-17
input/output (I/0) instructions, 154
input/output (I/0) ports, 100,
121,132-133
input/output (I/0) signals, 100

input/output (I/0) space, 117, 121
instruction (control) flow, 16, 21
instruction decoders, 109, 186
instruction registers, 105,
109, 186
instructions. See operations and
instructions
integrated circuits. See ICs
(integrated circuits);
microcontrollers
internal data bus, 92-93
interrupt flag, 188
interrupt masks, 128, 187
interrupts, 122-125
non-maskable, 129
priority of, 128-129
resets, 209
stack and stack pointer,
126-127
timer, 129, 135-136
interrupt signals, 136
interrupt vector table (IVT), 209
I/0 (input/output) instructions, 154
I/0 (input/output) ports, 100,
121, 132-133
I/0 (input/output) signals, 100
I/0 (input/output) space, 117, 121
IT (information technology), 30
IVT (interrupt vector table), 209

J

Java, 198
jump instructions, 155-157, 161

L

large-scale software
development, 198
latching, 74, 77
LDA mnemonic, 167, 192
left shifting, 146
load/store (L/S) signals, 98-99
logical shifts, 145-146, 149
logic gates, 50-51
addition circuits, 62-69
AND, 51-55
De Morgan’'s laws, 60-61
NAND, 57-58

NOR, 57-59
NOT, 51, 53, 56
OR, 51-52, 55
XOR, 57, 59
logic intersection complement
gate (NAND gate), 57-58
logic intersection gate (AND gate),
51-55
logic negation gate (NOT gate),
51, 53, 56
logic operations, 15, 33, 179,
181. See also logic gates
De Morgan's laws, 60-61
instructions for, 143
integrated circuits, 48-50
logic union complement gate
(NOR gate), 57-59
logic union gate (OR gate),
51-52, 55
loops, 113
lossless compression, 33
lossy compression, 33
L/S (load/store) signals, 98-99
LT flag, 187

M

machine code monitors, 208
machine language, 142, 194
memory circuits
flip-flop circuits, 74-83
importance of, 71-73
registers, 70-71, 103-105
memory management units
(MMUs), 114
memory space. See address
space
memory system
addresses, 89-91
classifications of memory, 132
hard disk drives, 115-118
I/0 space, 121
primary memory, 16, 18-19,
70, 115, 116-118
RAM space, 119-121
ROM space, 119-121
secondary memory, 16,
18,115
solid state drives, 118

INDEX 243



MFLOPS (million floating-point
operations per second), 138
microcontrollers, 213
architecture of, 220
vs. CPUs, 216-217
DSPs, 222-224
function of, 214-215
history of, 220-221
in industrial machines,
224-225
million floating-point operations
per second (MFLOPS), 138
MIPS (million instructions per
second), 137
MMUs (memory management
units), 114
mnemonics, 163, 192, 196-198
mode pin, 177,179
modification registers, 175, 186
motherboards, 120
multiplexers (MUX), 93
multiplier-accumulate operation
circuits, 222, 224

N

NAND gate (logic intersection
complement gate), 57-58

negative flag (N-flag), 187

noise (information), 30, 33

non-maskable interrupts
(NMI), 129

non-volatile memory, 132, 208

NOR gate (logic union comple-
ment gate), 57-59

NOT gate (logic negation gate),
51, 53,56

number systems, 38-41

)

object code, 199
0DD flag, 187
on-board programming, 208
opcodes, 102-103, 110, 142,
162-163, 180
operands, 102-103, 110, 142
addressing modes, 165,
168-174
address modification, 174-175

244 INDEX

address references, 167
immediate value
processing, 166
number of, 163-164
types of, 162-165
operation execution speed, 137
operations and instructions,
14. See also arithmetic
operations; bit shifts; digital
information and operations;
logic operations
ALUs and, 22-24
branch instructions, 155-157,
161, 200-203
data transfer operations, 153
I/0 instructions, 154
jump instructions,
155-157, 161
memory and, 18-19, 70-71,
89-90, 103-105
processing and decision
making, 25-27
programs and, 19
skip instructions, 157
SLEEP instruction, 188
types of, 15
OR gate (logic union gate),
51-52, 55
output devices, 16-17
overflow, 45, 150-151
overflow flag (overflow bit;
0V-flag), 151, 187

P

parallel transmission, 185

PC (program counter), 107-108,
112-114, 187

personal computers (PCs), 220

pins, 49-50

pipelining, 238

prefetch instructions, 238

primary memory, 16, 18-19, 70,
115, 116-118

primitives, 32

processing speed, 118

program counter (PC), 107-108,
112-114, 187

programs, 19, 101, 192, 199
assembly languages, 192-194,
196-197
with conditions and jumps,
200-203
control unit and, 20-21
high-level languages,
194-197
large-scale software
development, 198
machine language, 194
pre-execution process,
208-209
vs. source code, 199
storage of, 208
propagation delay, 68
Python, 198

R

RAM (random access memory),
119-121, 132, 208
read-only memory (ROM),
119-121, 132, 208
read/write (R/W) signals, 98-99
read-write memory (RWM), 132
reduced instruction set com-
puter (RISC) architecture,
238-239
registers, 70-71, 83, 103-104
accumulators, 104-105, 110,
143,186
address registers, 108
base registers, 175, 186
index registers, 175, 186
instruction decoders, 109, 186
instruction registers, 105,
109, 186
program counter, 107-108,
112-114, 187
shift registers, 185
stack pointer, 126-127, 187
status registers, 160, 186
temp registers, 186
relative addressing, 173
repeating processes, 202
resets, 128-129
reset signals, 136-137



reset vector, 208-209

right shifting, 145-146

ripple carry adder circuits, 67-68

RISC (reduced instruction set
computer) architecture,
238-239

rising edge, 79

ROM (read-only memory),
119-121, 132, 208

rotating shifts (circular shifts), 152

RS flip-flops, 76-77

R/W (read/write) signals, 98-99

RWM (read-write memory), 132

S

SAM (sequential access
memory), 132
scientific notation (standard

form), 42
SD cards, 220
secondary memory, 16, 18, 115
select pins, 177, 179
semiconductors, 220
sequential access memory
(SAM), 132
serial transmission, 185
S-flag (sign flag), 160, 187
shift registers, 185
signal (information), 30
signals (I/0), 56
signal-to-noise ratio, 30
sign bits, 147-148
sign flag (S-flag), 160, 187
skip instructions, 157
SLEEP instruction, 188
solid state drives (SSDs), 118
source code, 198-199
source operand, 164
stack, 126-127
stack pointer (SP), 126-127, 187
STA mnemonic, 167, 192
standard form (scientific
notation), 42
state, 71, 74
status flags, 159-160,
187-188, 201

status output, 24-26
status registers, 160, 186
synchronization, 124
synchronous counters, 82

T

temp registers, 186
T flip-flops, 81-83
TFLOPS (trillion floating-point
operations per second), 138
thermometers, 31-32
timer interrupts, 129, 135-136
transistors, 220
trigger conditions, 74
trillion floating-point operations
per second (TFLOPS), 138
truth tables, 53-56, 58-59
two's complement
in binary arithmetic, 44-47
expressing negative numbers
in binary, 147-148
and relative addressing, 173

U
underflow, 151

Vv

variables, 195

Venn diagrams, 54-56, 58-59

virtual memory, 114

vocoders, 224

volatile memory, 132

voltage, 31
as binary states, 37-38
and reset process, 136-137
and turning on CPU, 208

X

XOR gate (exclusive logic union
gate), 57, 59
xx-register relative addresses, 173

pA
zero flag (Z-flag), 187

INDEX 245






ABOUT THE AUTHOR

Michio Shibuya graduated from the electrical engineering department of Toukai University
in 1971. Among other occupations, he has worked as an NMR researcher in a private
medical institution, has spent 12 years working as a MOS product designer and developer
for a foreign company, and has since pursued a career in IC design at technical depart-
ments of both domestic and foreign trading companies. Since May of 2007, Shibuya

has worked for the semiconductor trading company Sankyosha, first as a field applica-
tion engineer and currently as a special advisor. He is also the author of Learning Signal
Analysis and Number Analysis Using Excel, Learning Fourier Transforms Using Excel, The
Manga Guide to Fourier Transforms, The Manga Guide to Semiconductors, and Learning
Electrical Circuits Using the Circuit Simulator LTspice (all published by Ohmsha).



PRODUCTION TEAM FOR
THE JAPANESE EDITION

Production: Office sawa

Office sawa was established in 2006 and specializes in advertisement and
educational practical guides in medicine and computers. They also take pride in
their sales promotion materials, reference books, illustrations, and manga-themed
manuals.

Email: office-sawa@sn.main.jp
Scenario: Sawako Sawada

Illustrations: Takashi Tonagi



HOW THIS BOOK WAS MADE

The Manga Guide series is a co-publication of No Starch Press and Ohmsha, Ltd. of Tokyo,
Japan, one of Japan’s oldest and most respected scientific and technical book publishers.
Each title in the best-selling Manga Guide series is the product of the combined work of a
manga illustrator, scenario writer, and expert scientist or mathematician. Once each title
is translated into English, we rewrite and edit the translation as necessary and have an
expert review each volume. The result is the English version you hold in your hands.



MORE MANGA GUIDES

Find more Manga Guides at your favorite bookstore, and learn more about the series at

https://www.nostarch.com/manga/.

THE MANGA GUIDE TO
o rrcaw

e 70, Co.

LINEAR
ALGEBRA

el
s o
e !
€ e

MOLECULAR
BlOLOGY

Ry TaREMRA

THE MANGA GUIDE TO

REGRESSION
ANALYSIS

BIOCHEMISTRY

THE MANGA GUIDE TO

THE MANGA GUIDE" TO

RELATIVITY

THE MANGA GUIDE™ TO THE

UNIVERSE




UPDATES

Visit https://www.nostarch.com/microprocessors/ for updates, errata, and other information.

COLOPHON

The Manga Guide to Microprocessors is set in CCMeanwhile and Chevin.






A CARTOON GUIDE TO MICROPROCESSORS

WAIT A SECOND...
DON'T JUMP TO
CONCLUSIONS.

CAN DO IS SIMPLE
CALCULATIONS?

e
WHY I W
|||||||||IIIIIIII|' EVER WORRIED!

AYUMI 1S A WORLD-CLASS SHOGI (JAPANESE HOW COMPUTERS PERFORM ARITHMETIC
CHESS) PLAYER WHO CAN'T BE BEATEN—THAT 15, OPERATIONS AND STORE INFORMATION
UNTIL SHE LOSES TO A POWERFUL COMPUTER ,

CALLED THE SHOOTING STAR. AYUMI VOWS TO :'N(:E@éCRA@TAETDEQCNAZZZI‘?:w THEY'RE USED IN
FIND OUT EVERYTHING SHE CAN ABOUT HER NEW

NEMESIS. LUCKY FOR HER, YUU KANO, THE GENIUS THE KEY COMPONENTS OF MODERN
PROGRAMMER BEHIND THE SHOOTING STAR, 1S COMPUTERS, INCLUDING REGISTERS,
WILLING TO TEACH HER ALL ABOUT THE INNER GPUs, AND RAM

WORKINGS OF THE MICROPROCESSOR—THE
“BRAIN” INSIDE ALL COMPUTERS, PHONES, AND
GADGETS.

FOLLOW ALONG WITH AYUMI IN THE MANGA
OUIPE TO MICROPROCESSORS Mp MICROPROCESSORS, YOU'LL FIND WHAT YOU

YOU'LL LEARN ABOUT: NEED TO KNOW IN THE MANGA GUIPDE TO
* HOW THE CPU PROCESSES INFORMATION MICROPROCESSORS.
AND MAKES DECISIONS

ASSEMBLY LANGUAGE AND HOW IT DIFFERS
FROM HIGH-LEVEL PROGRAMMING LANGUAGES

WHETHER YOU'RE A COMPUTER SCIENCE STUDENT
OR JUST WANT TO UNDERSTAND THE POWER OF

FIND MORE MANGA GUIDES AT WWW.NOSTARCH.COM/MANGA SHELVE IN: COMPUTERS/HARDWARE

THE FINEST IN GEEK ENTERTAINMENT™ PRICE: $24.95 @335 con
www.nostarch.com

ISBN: 978-1-59327-817-5

| |I|H 52495
3

9 781593 278175




	Contents

	Preface
	Chapter 1: What Does the CPU Do?
	Computers Can Process Any Type of Information
	The CPU Is the Core of Each Computer
	The Five Components of a Modern Computer
	ALUs: The CPU’s Core
	CPUs Process Operations and Make Decisions
	What Is Information Anyway?
	The Difference Between Analog and Digital Information

	Chapter 2: Digital Operations
	The Computer's World Is Binary
	The Reciprocal States of 1 and 0
	Decimal vs. Binary Number systems
	Expressing Numbers in Binary
	Fixed-Point and Floating-Point Fractions
	Addition and Subtraction in Binary

	What Are Logical Operations?
	Integrated Circuits Contain Logic Gates
	The Three Basic Logic Gates: AND, OR, and NOT
	Truth Tables and Venn Diagrams
	A Summary of the AND, OR, and NOT Gates
	Other Basic Gates: NAND, NOR, and XOR
	A Summary of the NAND, NOR, and XOR Gates
	De Morgan’s laws

	Circuits That Perform Arithmetic
	The Addition Circuit
	The Half Adder
	The Full Adder and Ripple Carry Adder
	The Carry Look-ahead Adder

	Circuits That Remember
	Circuits with Memory Are a Necessity!
	Flip-flop: the Basics of Memory Circuits
	The RS Flip-flop
	The D Flip-flop and the Clock
	The T Flip-flop and Counters

	Modern Circuit Design: CAD and FPGA

	Chapter 3: CPU Architecture
	All About Memory and the CPU
	Memory Has Assigned Addresses
	Data Passes Through the Bus
	Bus Width and Bits
	R/W Signals and I/O Signals
	Instructions Are Made of Operands and Opcodes

	Accumulators and Other Registers Are Used in Operations
	CPU Instruction Processing 
	Classic CPU Architecture
	The Instruction Cycle
	The Instruction We Process Changes Depending on the Program Counter

	All Kinds of Memory Devices
	A Comparison Between HDD and Memory
	RAM Space, ROM Space, and I/O Space

	What Are Interrupts?
	Interrupts Are Useful
	The Stack and the Stack Pointer
	Interrupt Priority

	Memory Classifications
	I/O Ports and the GPU
	Clock Frequency and Degrees of Accuracy
	Clock Generators
	Timer Interrupts
	Reset Signals
	CPU Performance Is Measured in FLOPS

	Chapter 4: Operations
	Types of Operations
	There Are Many 
Types of Instructions
	Instructions for Arithmetic and Logic Operations
	What Are Bit Shifts?
	The Sign Bit Lets Us Express Negative Binary Numbers
	Logical Shifts and Arithmetic Shifts
	Circular Shifts (Rotating Shifts)
	Data Transfer Operations
	Input/Output Instructions
	Branch Instructions
	Condition Evaluation and Status Flags
	Putting Branches and Condition Evaluation Together

	Operand Types
	How Many Operands Do We Have?
	Operands Take Many Forms
	Immediate Value Processing
	Address References
	What Are Addressing Modes?
	Addressing Mode Overview

	The Structure of Operations in the ALU 
	A Look Inside the ALU

	Serial Transmission and Parallel Transmission
	An Overview of Some Basic Registers
	An Overview of Some Basic Status Flags
	The Sleep Instruction

	Chapter 5: Programs
	Assembly and High-Level Languages
	What are Assembly Languages?
	The Characteristics of Assembly Languages and High-level Languages
	The Difference Between Programs and Source Code

	Program Basics
	What Can You Make Using Conditions and Jumps?
	What Should We Make the Computer Do?

	Where are Programs Stored?
	What Happens Before a Program Is Executed?

	Chapter 6: Microcontrollers
	What Are Microcontrollers?
	Microcontrollers Are in All Kinds of Products
	The Function of a Microcontroller
	Architecture of a Microcontroller

	What Are DSPs?
	DSPs and Multiplier-Accumulate Operations
	Microcontrollers in Industrial Machines

	Epilogue
	Afterword
	Index

