
Hah! All the cpu 
can do is simple 
calculations?

Wait a second... 
Don’t jump to 
conclusions.

I don’t know 
why I was 

ever worried!

Ayumi is a world-class shogi (Japanese 

chess) player who can’t be beaten—that is, 

until she loses to a powerful computer 

called the Shooting Star. Ayumi vows to 

find out everything she can about her new 

nemesis. Lucky for her, Yuu Kano, the genius 

programmer behind the Shooting Star, is 

willing to teach her all about the inner 

workings of the microprocessor—the 

“brain” inside all computers, phones, and 

gadgets. 

Follow along with Ayumi in the Manga 
Guide to Microprocessors and 

you’ll learn about:

⭑	How the CPU processes information 

and makes decisions
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⭑	How computers perform arithmetic 

operations and store information

⭑	logic gates and how they’re used in 

integrated circuits

⭑	the Key components of modern 

computers, including registers, 

GPUs, and RAM

⭑	Assembly language and how it differs 

from high-level programming languages

Whether you’re a computer science student 

or just want to understand the power of 

microprocessors, you’ll find what you 

need to know in The Manga Guide to 
Microprocessors.





Praise for the Manga Guide series

“Highly recommended.”
—choice magazine on the manga guide to databases

“The Manga Guides definitely have a place on my bookshelf.”
—smithsonian magazine

“The art is charming and the humor engaging. A fun and fairly painless lesson on what 
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theories . . . excellent primers for serious study of physics 
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and its story so endearing that I recommend that every 
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—american journal of physics on the manga guide to physics

“This is really what a good math text should be like. Unlike 
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just present the material as a dry series of pointless-
seeming formulas. It presents statistics as something fun 
and something enlightening.”
—good math, bad math on the manga guide to statistics

“A single tortured cry will escape the lips of every thirty-
something biochem major who sees The Manga Guide to 
Molecular Biology: ‘Why, oh why couldn’t this have been 
written when I was in college?’”
—the san francisco examiner

Wow!



“A lot of fun to read. The interactions between the characters are lighthearted, and the 
whole setting has a sort of quirkiness about it that makes you keep reading just for the joy 
of it.”
—hackaday on the manga guide to electricity

“The Manga Guide to Databases was the most enjoyable tech book I’ve ever read.”
—rikki kite, linux pro magazine

“The Manga Guide to Electricity makes accessible a very intimidating subject, letting the 
reader have fun while still delivering the goods.”
—geekdad

“If you want to introduce a subject that kids wouldn’t normally be very interested in, give it 
an amusing storyline and wrap it in cartoons.”
—make on the manga guide to statistics

“A clever blend that makes relativity easier to think about—even if you’re no Einstein.”
—stardate, university of texas, on the manga guide to relativity

“This book does exactly what it is supposed to: offer a fun, interesting way to learn calculus 
concepts that would otherwise be extremely bland to memorize.”
—daily tech on the manga guide to calculus

“Scientifically solid . . . entertainingly bizarre.”
—chad orzel, scienceblogs, on the manga guide to relativity

“Makes it possible for a 10-year-old to develop a decent working knowledge of a subject 
that sends most college students running for the hills.”
—skepticblog on the manga guide to molecular biology

“The Manga Guide to the Universe does an excellent job of addressing some of the biggest 
science questions out there, exploring both the history of cosmology and the main riddles 
that still challenge physicists today.”
—about.com

“The Manga Guide to Calculus is an entertaining comic with colorful characters and a fun 
strategy to teach its readers calculus.”
—dr. dobb’s 
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Preface

Ever since the 1950s, when computers saw their debut in markets all over the world, inter-
est in information technology (IT) has seen a steady rise. The core that supports this tech-
nology is a semiconductor known as the CPU, or central processing unit. Since the start of 
the 21st century, advancements in circuit design theory and manufacturing technology have 
led to rapid progress in both processing speed and chip size, allowing us to embed them in 
most of the electronics we use on a daily basis. In addition to personal computers, smart-
phones, and tablets, you’ll even find CPUs in things like air conditioners, refrigerators, wash-
ing machines, and other major appliances, just to name a few.

It’s worth noting that the CPUs found in modern PCs are extremely powerful, and 
many of their applications are outside the scope of this book. We also will not delve into 
computer architecture which has had a research boom in recent years. Instead, I think that 
the best way to give insight into what CPUs are—and, by extension, how programs work—is 
to go back and analyze how the first CPUs worked and examine the concepts and principles 
by which they were designed.

Let me share an allegory with you. It’s been quite some time since we first started 
taking automobiles for granted in our daily lives, but despite their ubiquity, very few people 
today can explain how an engine works or how the energy generated by the engine gets 
translated into forward momentum for the car. In the 1950s, you had to answer engine 
design questions on your driver’s license examination, but no such questions remain in 
today’s tests. Essentially, this means that to learn things about the internals of a car engine 
today, you really have to be an incredibly curious person.

In that vein, my wish is that this book will not only act as a platform to teach readers a 
range of different topics but also to sate their curiosity on the subject by having them learn 
some of the deeper principles of the CPUs that have so nonchalantly permeated our daily 
lives.

In regards to the publication of this book, I would like to thank Sawako Sawada of Office 
sawa, who thought up the fun story, and Takashi Tonagi for the illustration work.

Michio Shibuya
November 2014
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What Does the CPU Do?

Ayumi



Wow,  
Ayumi...

Strong as 
ever, I see.

Phew!

Hmm, twenty wins 
in a row...

Bang! 

Bang! 

Clack
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Good job!

I bet our booth will 
be the most popular 
one at the festival!

And it’s all thanks 
to you, Ayumi! 
Marry meeee!

I’m a good 
sport, but that 
might be a bit 

much...

That’s my girl! Now wear 
this for the next game!

Take a 
break already. 

You’re ridiculous. 

Well, you’re 
unbeatable whether 
I’m here cheering 

or not. 

See you 
around!

...

Unbeatable, 
huh?

Crowd 
pull

er

Ra
tt

le

Hug!

Ayumi



She’s right! 
I am strong!

Or actually, 
everyone else 
is so weak it’s 
boring me to 

tears....
Knock 

knock

Excuse me.

Do you...  
have time 

for a game?

Oh, sure!

I’d love to!

I see... 
well then...



FUHAHAHAHAHAHA!  
Behold! Unleashed from  
The Chasm of darkness!

The Shooting Star!!

What’s he so 
excited about?!  
It’s just a black 

computer!!

Just my luck... 
a real weirdo.

What? It’s 
just a shogi 

board...?

Indeed...

I’d actually like you 
to play against my 
computer, not me.

Thu
nk



Er, you want me, 
a real shogi player, 

to play your 
video game?

Heh...  
It’s not just a 

computer game.

This laptop, the 
Shooting Star, is 

running a program 
of my own design.

And...  
it’s stronger 

than you!

Welll... I don’t really 
get what you’re saying, 
but it’s obvious you’re 
looking down on me.

I just have to win, right? 
I hope you’re ready to 

be destroyed...

I’m a 
busy person, 
you know...

Crash

Fu
ry

Rumble  
Crack



I lost...? 
 

How is that possible??

No way! 

Is this some kind 
of prank?

Even the 
national champion 
Ayumi Katsuragi...

stands no chance 
against my 

Shooting Star!

Be swallowed in 
its dark depths and 
taste utter defeat! 

FUHAHAHAHAHAHAHAHAHA!



I... I can’t 
believe it...

I lost to 
someone 
like this...?

Like what?

I can’t believe someone as intelligent 
and wonderful as me could lose to 
someone as weird and lame as you!!

A wonderful 
person indeed...

Oh, but wait 
a sec.

It’s not like I 
lost to you. 

I just played a 
computer game.

So I didn’t 
really lose!

You coward! 
How about you fight 
me yourself instead!
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Ayumi Katsuragi! 
Know when you 

are beaten!

It’s true that it 
wasn’t me who 

beat you.

it also means 
that yours truly, 

Yuu Kano, the genius 
programmer who 

brought that CPU to 
life, possesses an 

equal—

No! An even 
more impressive 

intellect!

huh?

But that also means 
your intellect was 

no match for the CPU, 
the Shooting Star’s 

intellect!

And that’s a fact!

CPU?

﻿  9



Isn’t a CPU 
some kind of 

computer chip? 

Like this?
But why would you 
say that the CPU is 
your computer’s 

intellect?

What does 
a CPU do 
anyway?

Heh, that would 
take some time 

to explain.

But if you insist, 
you could convince 
me, the Yuu Kano, by 
asking really nicely.

If you don’t hurry up and 
tell me, this shooting star 
might come crashing down 

at any minute!

Such 
barbarism!!

Even if I did tell 
you, it would take 
quite some time...  

are you sure you’re 
up for this?

I already asked. 
Just get on 

with it!

Leave the computer 
alone first!

Only meteorites 

crash to earth!

Don’t wave 

it around 
like that!
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Computers Can Process Any 
Type of Information

Let’s take 
our time and 

start from the 
beginning.

Well then. First off, the 
word computer comes 

from the word compute.

The first computers 
were just computing 
machines, like modern 

calculators. 

E-even I can do math! 
I’ll have you know 
I’m really good at 
mental arithmetic! 

Whoa, take 
it easy!

It’s true that humans 
can do math too...

But We  
can all agree it’s 

much more practical 
to do large 

calculations on 
calculators, right?

Ngh... yeah... 
so computers...

are really good at 
doing calculations 

really fast.

Yup, but modern 
computers are...

much more 
than just 

calculators!

9 times 9 
is 81!

Hmm...



All kinds of information is 
being digitized now. Things 

like music, photographs, and 
video can be represented 

using just 1s and 0s.

When we translate any type 
of data into digital form 
(that is, represent it with 

1s and 0s), it becomes a lot 
easier to process using 

a computer. 

Oh, I’ve heard of that before. 
Like digital TV and  
digital cameras, 

right?

Only 1s and 0s!

I guess that means 
computers in general 

live in the digital world, 
where only 1s and 0s 

are allowed...

But what’s 
so great 

about that?

Well, digitizing 
information made a 
lot of new things 

possible.

Digital technology 
is really important 
to many aspects of 

modern life.
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So you mean all of 
these things are 
thanks to digital 

technology?

Surfing the web, 
looking at news and 

videos...

Buying digital music and 
transferring it to my 

MP3 player!

Transfer!

Editing and 

processing!

Editing photos taken 
with my digital camera 
on my computer and 

emailing them...

Email

Digital 

camera

That’s right! All 
these things use 

digital technology.

And, at the core of all 
this technology, the CPU 

is acting as the brain.

There’s that word 
again! So what does 
the CPU actually do?

Oh! 

Computers Can Process Any Type of Information  13



The CPU Is the Core of Each Computer

CPU is short for Central 
Processing Unit. is in charge of the 

computer’s operations!

Whaaaaaaaat! Operations?!!
what are 

operations?

Operations 
are computer 
calculations,

calculations using 
only 1s and 0s.

It’s also worth mentioning 
that CPUs perform two kinds 

of operations.

which means that 
the CPU...
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The Operations of the CPU*

Arithmetic Operations

The only arithmetic 
operations that computers 
can perform are addition 

and subtraction.

Logic operations deal with 
comparing pairs of 1s or 0s in a 

few simple ways.

Plus

Minus

Logic Operations

Hah! All it can 
do is simple 

calculations?
I don’t know 

why I was 
ever worried!

Wait a second...  
don’t jump to 
conclusions.

* In addition to these operational units, modern CPUs also contain FPUs (Floating Point Units) 
that can handle multiplication and division. But this book just sticks to the basics.

Here 
comes the 
important 

part!

For a computer 
to work...

You need more 
components than 

just the CPU!

What?! 
There’s more??

And Or
Not

The CPU Is the Core of Each Computer  15
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Of course! If Santa 
Claus gave you a CPU 
for Christmas after 

promising you a 
computer...

Wouldn’t you be a 
little confused?

With a Santa that 
worthless, I’d put shogi 
pieces in his mouth and 

punch both cheeks.

You have a pretty 
twisted mind, do 
you know that?

The Five Components 
of a Modern Computer

Here’s a quick 
overview of the most 
important parts of a 

computer.

Let’s call these the  
computer’s five primary 

systems. As you can see, the 
CPU contains both the control 

unit and the arithmetic unit.

Control 
unit

Arithmetic 
unit

Input 
device

Memory 
system

Output 
device

Control flow Primary memory

Data flow Secondary memory

Uh, that’s a lot of 
stuff... seems kind 

of difficult...

I’ll go through 
the five systems 
one by one, so 
don’t worry.

The computer’s five primary systems

Data is exchanged through 
the input/output system. 

Fist
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First off, input devices 
are systems for 

supplying the computer 
with instructions and 

input data.

The keyboard 
and mouse for 

your home 
computer are 

great examples.

Output devices, on the 
other hand, are systems 
that translate internal 
data into an external 

representation.

Monitors and printers 
are good examples of 
home computer output 

devices.

I guess it’s true that I 
input information using 

my keyboard and access 
information by looking at 

my monitor.

Furthermore, we talked 
about the arithmetic unit 

before, which is the system 
that performs operations 

(or calculations).

The name is 
kind of self-
explanatory. 

But here comes an 
extremely important 

point!

For the arithmetic unit 
to work, it needs to 
cooperate with both 

the memory system and 
the control unit.

The memory 
system? 

The control 
unit?

what do they do?



First off, the memory 
system is responsible 

for storing and 
retrieving data.

Memory comes 
in two flavors: 

primary memory and 
secondary memory.

When learning about 
the CPU, we’re mainly 

concerned with 
primary memory.

It looks 
like this.

Memory... why is that 
so important?

It’s because when the CPU 
performs operations, it 

always needs to operate on 
some type of information 

stored in memory.

Operate on 
memory?

* The CPU may use either registers or cache memory.

Primary memory

When we say “memory,” 

we generally mean 

primary memory.
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Yes, both the data 
that’s operated on and 
the computer program 
are stored in memory. 
Operations use these 

as input.

Depending on  
the operation, data may 

be retrieved from memory 
for input, or the result 
of the operation may be 

returned back into memory 
for storage.*

Control 
unit

Arithmetic 
unit

input data

Program 
(instructions)

output data

Primary 
Memory

Retrieving and returning... 
The CPU really exchanges 

information!

By the way,  
I’ve heard that word 

program before,  
but what is it?

* The CPU may use either registers or cache memory.

To put it simply...

Programs are 
instructions that 
people give the 

computer.

Instructions about 
what data to use, and 

which operations 
to run and in what 

order.

All those 
instructions 

are written in 
programs.

I see. Programs 
are directions that 
tell the computer 

what to do.

Program 
(instructions)

Please do 

it like this.

Human Computer

Okay!
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Control unit

Input
Memory

Arithmetic 
unit

Output

There’s one system 
we haven’t talked 

about yet! 

The control unit 
tells the other four 

systems what to do! It 
gives out instructions 

and controls the 
computer.

That seems pretty arrogant! 
So it’s like some kind of 
overseer that gives out 
orders left and right?

Yeah, that’s right. Also, like 
I said before, programs 
are stored in memory.

The control unit 
reads the program 
instructions from 

memory and interprets 
them.

It gives orders to all 
the other systems, telling 
them how to process the 
program’s instructions.

Get data from 
over there!

Then add these two!

And then save that sum 
over there!

Program 

read from 

memory
Instructio

n

Instruction

Controls everything
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Oh, I see! So the 
control unit is 

necessary because it 
makes sure that...

the program’s 
instructions are 

processed!

Exactly. Now we’ve 
gone over all 

five systems, but...

Yeah! Now I know what 
all the things in the 

diagram are! 

And the arrows 
between them illustrate 

data exchange and 
instruction flow, 

right?

To understand 
how the CPU 

works, data and 
instruction flow 

seem really 
important...

FUHAHAHAHA! 
It pleases me 
that you are 
grasping the 

basics!!

Well then! 
Let us move 
on to the 

next topic!!

Wow, he’s all kinds 
of energetic...

He must really 
like CPUs.

Hmm

Output Input

Con-

trol  

Uni
t

Memory

Arith-
metic  
Unit

HA

HA
HA

HA
HA

HA

HA

The Five Components of a Modern Computer  21



ALUs: The CPU’s Core

You’re catching 
on pretty quickly, 

it seems.

So let’s talk a bit 
about ALUs.

ALUs? Not CPUs? 
What’s the difference?

Well, ALUs are what 
perform operations 

inside the CPU.

ALUs are the 
arithmetic unit’s 

principal components.

Control Unit

Arithmetic Unit 
(ALU)

Oh! That seems like 
it’s super important!

Yes, ALU is short for 
Arithmetic Logic Unit.

It performs the 
arithmetic and logic 

operations we talked 
about before.
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And this is what ALUs 
look like.

Command 
input/

opcode

Output

Status 
output

Input A Input B

F S

Y

Uh... Why is it shaped 
like a bowl or a V 

or whatever?

simple! It has the two inputs, A 
and B, which it combines 

using an operation...

to produce some 
output Y.

Oh, I see. So if we wanted to, 
for example, calculate 5 - 3 = 2, 
we would have 5 and 3 as inputs 

and get a 2 as output, right?

Exactly!

Subtraction
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So the command input 
F is what we want the 

ALU to do...

Input

Command 
input/

opcode

Output

Status 
output

Input

like addition or 
subtraction, for example.

And the status output 
S tells us how the 

operation went.

This could be 
information on 

whether our output 
value was positive or 
negative, for example.

So in the case of 5 – 3 = 2, 
since the result of the 

calculation is 2, the status 
output should say it’s a 
positive value, right?

But why does anyone 
need to know whether 
the output was positive 

or negative?

That’s a good question. As 
a matter of fact, the status 
output can be used to make 
decisions based on whether 
the output satisfies some 

given condition.

Decisions? 
Conditions? 

F S

Command  
input  

Subtraction
Positive 
value

Status 
output
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CPUs Process Operations and Make Decisions

Let’s use a 
concrete 
example.

Let’s assume that this 
computer controls an ATM.

I use ATMs 
sometimes.

When withdrawing cash, 
the computer has to check 

the customer’s account 
balance as well.

Let’s say the 5 – 3 in this 
case means, “An account 
balance of $500 minus a 

withdrawal of $300.”

Oh! I see 
what you 

mean.

So that’s why the 
status output is 

so useful!

Cash Deposit

Account  
History

Account 
balance

Account 
statement
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Because what happens after 
the subtraction is done will be 
completely different depending 

on whether the result was 
positive or negative.

If the result is positive, that 
means you have enough money 

in your account, so the ATM will 
give the money to you.

But if the result is 
negative, that means you 
tried to withdraw more 

money than what was 
available...

And you’ll get a message 
saying that you have an 

insufficient balance so you 
can’t withdraw that amount.

The operation result was positive.

Please take your money.

The operation result was negative.

Insufficient 
balance

That’s it! In other words, 
the status output will tell 

you if you have enough 
money in your account to 

make a withdrawal.

The CPU will make a decision 
based on whether the 

result of the subtraction 
was positive or negative 
and change its behavior 

accordingly.

So depressing...

Ack...
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That’s how the CPU is able 
to process operations as 
well as make decisions!

Okay! So if you give 
the CPU a program, 
it will be able to 

process instructions 
and make decisions.

And by repeating that 
process, computers are 

able to perform all kinds 
of tasks, right?

Yes, computers are able to 
perform certain tasks faster 
than humans, process amounts 
of information far too great 
for humans to comprehend, 
and surpass humans in many 

different skills.

Like shogi, 
for example... 
no offense...

I see! I feel like I 
understand the CPU 
a bit better now.

Hmm, but I bet 
there’s a lot I still 

don’t know.

Oh?

Heh 
heh 
heh

Operatio
n

Decision
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I gotta study more!

Of course, I was a 
little frustrated that 

I lost at shogi...

No, I was super 
frustrated! I’m probably 

so mad I won’t be able to 
sleep tonight!!!

But I see the CPU 
that beat me as  

my rival!

And I want to learn 
everything I can about 

my new rival!

Well, I have to admit I find 
it pretty fun to explain 

computers to other 
people...

I... I mean, I suppose I find 
it amusing to educate the 
ignorant masses from 

time to time. FUHAHAHAHAHA!

Oh, I see! I think 
I finally get 

why you’re so 
enthusiastic about 

explaining this 
to me!

...?

Ugaaa      !
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You don’t have any 
friends, right? 

I’m right, aren’t I?

You’re just happy to finally have 
someone to talk to, right? I 

understand that it’s fun to hole 
up and write programs all by 

your lonesome, but it’s important 
to talk to people, too...

Are you  
pitying me?!

It’s okay—this is a 
great opportunity 
for you! Teach me 

about CPUs!

Or I should say...  
If you don’t,  

you aren’t getting 
this back...

Don’t take it 
hostage!!

I’ll take that as a yes! 
Let’s get studying!

Hey! Don’t put 
words in my mouth!! 
I’ve got a life too!

Hehehe... 
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What Is Information Anyway?

Information technology (IT) became an everyday phrase back in the 20th century. The 
term is frequently heard when people talk about the internet and other computer tech-
nology, but it’s worth noting that this term predates the use of computers. 

First off, what does the word information actually mean?To put it simply, information 
is everything in our environment that can be registered with any of our five senses.

Everything that occurs in nature or in paintings, photographs, music, novels, news, 
radio, TV broadcasts, and so on is an example of information. Most of these things have 
been around for a lot longer than our society has had access to electricity. As information 
spreads throughout society, it affects our lives.

Every day, people and organizations value useful information while trying to filter 
out everything else. Information that is not important is called noise, and important 
information is called signal. Finding ways to maximize the signal-to-noise ratio—that is, 
the amount of signal in an output compared to the amount of noise—without accidentally 
losing necessary information is important.

One type of information that historically has been important both to people and 
organizations is information about food—what’s safe or healthy to eat, how to find or 
grow it, and how far away it is or how much it costs to buy. Related information, such as 
climate and weather forecasts, is also vital. Obviously, information like this was valued 
long before the rise of the internet. For example, merchants like Bunzaemon Kinokuniya 
from Japan’s Edo period specialized in products such as citrus and salmon and thrived 
because they valued this type of information. Indeed, the value of information has been 
respected for as long as people have needed to eat.

However, the digital age has affected many aspects of life. How has it affected our 
access to information? Well, thanks to the digitization of data, we are now able to process 
diverse data like text, audio, images, and video using the same methods. It can all be 
transmitted the same way (over the internet, for example) and stored in the same media 
(on hard drives, for example).

Everything that I can perceive is information!

The five 

senses
Nature

Vision, hearing, touch,  

taste, and smell

Art
News
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Computers that are connected to the same network can exchange digitized informa-
tion. By using computers to match and analyze large sets of data instead of analyzing 
each instance or type of data individually, people can discover otherwise hidden trends or 
implications of the information.

Like the storage of data, information transmission has made incredible advances, 
thanks to important discoveries in electronics and electrical engineering. Commercial 
applications of this technology in devices such as telephones, radio, and television have 
played a role in accelerating this development. Today, almost all of Japan enjoys digital 
television, which uses digital transmission and compression technologies. CPUs play a 
central part in these applications by performing countless operations and coordinating 
the transfer of information.

The Difference Between Analog and Digital Information

We have been talking about digitizing data into 1s and 0s so that information can be 
processed by a CPU. But before they are digitized, text, audio, video, and so on exist as 
analog data.

What is the difference between these two types of data? An example that illustrates 
the difference is thermometers. Analog thermometers contain a liquid that expands as 
it heats up, such as mercury or alcohol, in a gradated capillary tube that is marked with 
lines indicating the temperature. To determine the temperature, we look at the level of 
the liquid in the tube and compare it to the markings on the tube. We say that the analog 
thermometer has a continuous output because the temperature reading can fall any-
where between the marks on the tube.  

Digital thermometers use a sensor to convert temperature into voltage* and then 
estimate the corresponding temperature. Because the temperature is represented numeri-
cally, the temperature changes in steps (that is, the values “ jump”). For instance, if the 
initial temperature reading is 21.8 degrees Celsius and then the temperature increases, 
the next possible reading is 21.9 degrees Celsius. Because 0.1 is the smallest quantity 
that can be shown by this thermometer, changes in temperature can only be represented 
in steps of 0.1 and the value could never be between 21.8 and 21.9 degrees. Thus, digital 
output is said to be discrete.

*  Voltage is a way of measuring electric currents and is expressed in volts.

Different types  
of information

In the past, 
different media 

were used 
for each. 

Storage!

The  
internet

Exchanging data!

Another devicecomputer
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The word digital comes from the act of counting off numbers using our fingers—or 
digits. This tends to lead people to believe that digital computers can only work with data 
comprised of integers (whole numbers), which is not necessarily true.

In the digital world, everything is expressed in 1s and 0s. Indeed, they are not 
even what the CPU works with. Note that these are not actually numbers in this context. 
Instead, a 1 and a 0 are merely symbols. The CPU consists of transistors that transmit or 
inhibit electrical signals and consequently output either low or high voltages. It is these 
voltages that we represent as 1 or 0. A high voltage is represented with a 1, since the 
transistor’s state is “on,” and a low voltage, or an “off” transistor, is represented with a 0. 
In text, you could illustrate this by using the symbols  and . The 1s and 0s are called 
primitives, meaning they are basic data types. Computers can work with decimal numbers 
as long as the value has a finite number of digits. Values such as these are also digital. 
The important thing to remember is that for any digital number, you can never add or 
remove a quantity smaller than the smallest possible value expressible. 

Let’s compare some analog data and its digitized version to better understand how 
they are alike and how they differ by looking at the figure on the next page. The first pair 
of images shows audio data, and the second pair shows image data.

As you can see, every time we translate analog data into digital data, some informa-
tion is lost. But as you’ve undoubtedly experienced, most modern digitization processes 
are so good that humans can’t tell the difference between the original and the digital 
copy, even when they are presented side by side.

To store and transmit digital data of a quality such that our senses can’t detect any 
loss of information, we use special compression techniques. These techniques always 
involve trade-offs among how much space is used, how much information is lost during 
compression, and how much processing time is needed to compress and decompress 
the data.

Analog

Even small changes are visible.

Attention!

Hmm, it’s 
a bit less 
than 22°C,  
I think...

Digital

A discrete value is expressed in 
a certain number of digits.

Beep!

I see...

After 21.8°C comes 
21.9°C. There are no 
values in between.
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When heavily compressing audio or video data, we often use lossy techniques that 
change and simplify the data in such a way that we usually do not notice a difference. 
While this approach saves a lot of space, as the name implies, reconstructing the original 
data perfectly is impossible since vital information is missing. Other techniques—most 
notably all text compression techniques—use lossless compression, which guarantees that 
the original data can be completely reconstructed.

In any case, with the appropriate arithmetic and logic operations, as long as the data 
is digital, a CPU can use any compression technique on any form of information. Although 
digitizing data can involve the loss of some information, a major advantage of digital data 
over analog data is that it allows us to control noise when transmitting the data.

Audio Waveform

Graphic or Video

Analog Data

Analog Data

Digital Data

Digital Data

As long as the information is 
made up of 1s and 0s, I’ll keep 

applying operations!

When color information is translated into digital form, it is split into 
three base component colors, most often red, green, and blue (known 
as RGB). These colors are combined to create a composite color on a 
screen. Each component color can be represented by a number, with 
larger numbers indicating there’s more of that color. 
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Digital Operations

And

Or
Not



Okay!  
Today is 
my treat!

But that also means 
you have to teach me 

about CPUs!

Wow... you’re 
pretty pushy...

I don’t know why I 
agreed to meet you 

after school.

After 
school...?!

Does that mean you’re 
not a shut-in anymore? 

So you’re an ex-
hikikomori* now??

Could you 
please set your 
crazy-switch to 
off for once?! 

The Reciprocal States of 1 and 0

I am a bit 
hungry 

though... 

The Computer’s World Is Binary

* Hikikomori are people who withdraw 
from society, refusing to leave their 

homes for months or even years.
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The Reciprocal States of 1 and 0

Okay, let me start 
off with a question!

Last time, you said, 
“computers live in a world 
of 1s and 0s,” but that was 

all pretty abstract.

what do you 
mean by 1s and 0s 

anyway?

Good question... You can 
think of 1s and 0s as two 
reciprocal states that 

are opposites.

They’re more like 
indicators than 
numbers, really.

Two reciprocal 
states...

You mean like 
light and dark, 

life and death, or 
on and off?

Precisely!

To put it another way, the 
voltages in computer circuits 
generally fall into two bands. 
High voltages are close to the 

supply voltage, and low voltages 
are close to ground. *

Time

Voltage changes with time

Low

High

Vo
lt

a
g

e

* Ground is the 
reference point for 

voltage and is equivalent 
to zero Volts.
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I see!  
If it’s just two 

voltages, it’s all 
pretty clear then.

The voltage is 
either low (0) or 
high (1). It’s really 

simple!

Yeah.

All computers use 
these two values (0 and 1, 
or low and high*) when 
performing operations.

Decimal vs. Binary 
Number Systems

* In this book, we’ll treat low as 0 and high as 1, but it’s 
possible to do it the other way around as well. It’s up 
to the system designer as to which assignment to use.

Hmm... but what can you 
really do with just 

1s and 0s?

Wouldn’t you 
only be able to 
do very simple 
calculations?

Hehehe! Narrow-minded, 
foolish human!

Computers and humans 
think in different ways!

Humans use the decimal 
number system, which 

uses the ten digits 
from 0 to 9.

But computers express all 
numbers in binary using 

only 1s and 0s.

Binary  
(or base 2)

Decimal  
(or base 10)



Decimal Binary

Comparing decimal 
and binary

As you can see, 
you don’t need more 

than 1s and 0s!!

Wow, It really is 
only 1s and 0s! But 

the number of digits 
increases really fast 

in binary...

By the way, a binary digit  
(a 1 or a 0) is also called a 

bit in computer terminology. 
That’s really important, so 

don’t forget it!

A four-digit binary number 
is four bits.

So to express the 
decimal number 9, we 
would need four bits 

(1001), right?

Come now, are you 
prepared to dive 

into the world of 
1s and 0s?!

swish

Ah, sure!

I wonder if 
he’s always 
this hyper...

Another 
digit!

Another 
digit!

Another 
digit!

Another 
digit!
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Expressing Numbers in Binary

Well then, let’s learn the basics of binary, or base 2, math! Let’s start by thinking about the 
decimal, or base 10, system that we use every day. For example, the number 356 is divided 
up, and then each digit is multiplied by successive powers of ten to get the final value. 

Hundreds Tens Ones*

Okay! It’s really easy if I think of the digits like different coin denominations: 356 yen is just 
three 100-yen coins (102), five 10-yen coins (101), and six 1-yen coins (100) added together.

That’s right. The next step is to apply that same logic to binary. We just swap the 10 in our 
decimal calculations for a 2 in the binary case to get the appropriate factors for each digit. 
Take a look at the following illustration. 

* Any number to the power of zero is equal to one. For example, 100 = 1, and 20 = 1.
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Uh-huh! I don’t think anyone uses coins like this, though. But if someone did, I would just 
take either 1 or 0 of each of the 8-yen, 4-yen, 2-yen, and 1-yen coins, right?

So the binary 1011 translates to 8 + 0 + 2 + 1 = 11 in decimal. As soon as you under-
stand the basic principle, it’s easy!

So, it’s the same reasoning with binary, right? We would use 2−1, 2−2, 2−3 and so on as we 
add more digits after the decimal point. So the factors would be one-half (0.5), one-fourth 
(0.25), one-eighth (0.125), and so on. It seems a bit cumbersome, but I think I get it.

By the way, this calculation also works for fractional expressions. Take a look at this.

In decimal, each digit after the decimal point has factors using negative powers. One-
tenth (0.1) is 10−1, one-hundredth (0.01) is 10−2, and so on.

(Decimal)

ones twosfoursEights

one-hundredthsone-tenthsOnes
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Fixed-Point and Floating-Point Fractions

Next up, I’ll teach you a really important concept. In computers, there are two ways to 
store fractions—either fixed point or floating point. 

When using extremely small values like 0.00000000000000 . . . 001 or very large 
values like 1000000000000000 . . . , it’s a lot more practical to use floating-point 
fractions.

Hmm . . . why is that? What’s the difference?

Well, for example, instead of writing a billion in decimal as 1,000,000,000, you could write 
it as 109 to save some space, right? And if you had a number like 1,230,000,000, you could 
represent it as 1.23 × 109 instead. We call this form scientific notation or standard form, 
where the n in 10n is called the exponent and the 1.23 is called the significand. Floating-
point numbers use scientific notation when storing values. 

In contrast, fixed-point numbers express values the way we’re used to, with a decimal 
point. When expressing integers with this method, you can imagine the decimal point being 
at the far right of the number. Here’s a comparison of the two.

Fixed point Floating point

decimal 
point
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Oh, okay. So if you’re using fixed-point fractions to express really large or really small 
numbers, the number of digits you need increases by a lot. But if you’re using floating-
point, only the exponent gets bigger or smaller while the number of digits stays the same. 
Yeah, that’s really useful!

That’s right. That last example was in decimal, but since computers use binary, the prin-
ciple becomes even more relevant. The most common variant used is this one.

I used the decimal 1.69 just to make it easier to understand. The number would be in 
binary in a computer. The important part here is that this significand always has to be 
greater than 1 and less than 2.

An example 
significand

Significand

Exponent

Base

Hm . . . so this representation makes it easy for computers to handle extremely small and 
extremely large numbers. They’re also easy to use in calculations, right?

Yes! And it’s also important to understand that the speed with which you can calculate 
using floating-point numbers is critical to CPU performance. Gaming systems that process 
real-time, high-fidelity graphics also use floating-point arithmetic extensively. (See “CPU 
Performance Is Measured in FLOPS” on page 137 for a more detailed explanation.)

Generally, scientific calculations require an accuracy of only around 15 digits, but in 
some cases, 30 are used. Some modern encoding algorithms even use integers of up to 
300 digits! 

Ugh . . . I don’t think I could do those calculations in my head. I hate to lose to computers, 
but I hope they’re at least advancing some fields of science!

An example of floating-point representation inside a computer 
(using a base 10 number as the significand for illustration)
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Addition and Subtraction in Binary

It’s finally time to talk about binary arithmetic. Let’s start by thinking about addition. First 
off, adding two bits works like this!

Okay, that’s easy! The last equation, 1 + 1 = 10, means that we carried the 1 to the next 
place value and the first digit became 0, right?

Yeah. If you understand how to add one bit to another, you should be able to understand 
calculations with more digits, as well. For example, when adding the binary numbers 
(1011)

2
 + (1101)

2
,* you just need to start from the right and work your way to the left, 

carrying digits as you go. Take a look here.

Uh-huh, I just have to be careful with the carries, right? Binary addition is pretty simple! 
Or, it might just be my genius shining through. 

0 + 0 = 0,  0 + 1 = 1,  1 + 0 = 1,  1 + 1 = 10

Carry

Don’t 
forget 

to carry 
the 1s!

Hey! Okay then, let’s take a look at subtraction next. When doing subtraction, it is impor-
tant to learn how to create negative values using a technique called two’s complement.

Adding the two’s complement (a number that corresponds to the negative version of 
a number) of a binary number A to another binary number B is the same as subtracting A 
from B!! What do you think—pretty cool, right? 

Carried to 
the next place 

value 

* ()
2
 means the number is in binary representation, and ()

10
 means it’s in decimal representation.
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Ahh . . . I’m sorry to stop you when you’re on a roll, but I didn’t understand that at all. 
What are you talking about?

Let’s start out slow in decimal. First off, let’s agree that subtracting 15 is the same as add-
ing −15. But what would you do if you weren’t allowed to use the minus sign at all? Is there 
some other number that we can use to represent the number −15?

I . . . I have no idea. Stop putting on airs and just teach me already! 

Where did your genius go? Well, have a look at these two equations then.

Whaaa . . . ? You’re right, 0 and 00 are the same! But what happens to the 1 in the equa-
tion B result of 100? 

Hah! Since we’re doing two-digit math at the moment, we don’t care about digits that carry 
over beyond those two. Just pretend you can’t see them! We call those overflow, and we 
just ignore them.

What kind of twisted reasoning is that? Is that even allowed? 

Equation A Equation B

Ignore!

Looking at just the final two digits of these equations, we see that the result of equa-
tion A is 0 and the result of equation B is 00. We could therefore say that for the last two 
digits, the results of 15 + (-15) and 15 + 85 are the same!
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Heh heh heh! Surprised? In situations like this, we say that 85 is the ten’s complement of 
15. In other words, we say that a number’s complement in some base is the smallest num-
ber you have to add to the original number to make the number’s digits overflow. As the 
name suggests, you can think of the numbers as “complementing” each other to reach the 
next digit. And this complement corresponds to the original value’s negative form. So in 
this case, 85 is essentially equal to -15.

Let’s take another example. When calculating 9647 – 1200 = 8447, we might 
as well calculate 9647 + 8800 = 18447 and ignore the carry. That’s because in 
the result we see that the lower four digits are the same. Therefore, we can use 
8800 as the ten’s complement of 1200 during addition to get the same result as 
we would get using subtraction.

As you can see, when you add two binary numbers and ignore the overflow, the two 
numbers are complementary if the result equals 0. To subtract a number, simply add its 
complement instead.

Okay, but finding the complement seems kinda hard. . . .

Don’t worry, there is a really easy way to find a two’s complement. Just follow these steps.

It’s not far-fetched—it’s awesome! It’s logical!! Let me show you how to do it in binary.  

Uhh . . . this is getting pretty hard to grasp! So using complements, we can perform sub-
traction by adding instead. I suppose that might be useful. So what happens if we try this 
far-fetched solution with binary numbers? 

Add the two numbers: 
if the result is 
0 (ignoring the 

overflow), it means 
the numbers are 
complementary.

Ignore!
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Sweet! I tried finding the complement of that last example. Using this method, it was easy.

Computers (actually the ALUs) use these two steps all the time for arithmetic operations 
(addition and subtraction). The only difference is that most ALUs perform subtraction by 
adding the first number and the inverted second number. Then, they add 1 to that sum. 
The order of operations is different, but the end result is the same, right?

And since computer calculations only deal with 1s and 0s, this method is both really 
simple and incredibly fast at the same time.

I see. So there are some merits to binary, I suppose!

By the way... Don’t 
french fries kinda 

look like 1s and 
onion rings kinda 

look like 0s?

This must be like... 
binary in the fried-

food world!

Let’s find the two’s complement to do subtraction!

Step 1: Invert all the digits of the first number from 1 to 0 and vice versa. (This is also 
called finding the one’s complement.)

Step 2: Add 1 to this inverted version of the number, and you’ll end up with the two’s 
complement!

...

Flip 
all the 
digits!

Add 1!

Complement

A great 
discovery!
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Integrated Circuits Contain 
Logic Gates

Well then, let’s 
get into today’s 

main topic.

First off,  
have a careful 
look at these!!

Don’t bring bugs 
into restaurants!!

They’re 
not bugs!

This is an extremely important 
electronic component called 

an integrated circuit (IC).

They’re inside many 
different electronics...

Even CPUs are just 
very advanced and 

complicated integrated 
circuits.

Long time, no see!

What Are Logic Operations?
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Even so, this bug... 
this IC... sure has a lot 

of silvery legs...

They’re called pins, and 
they are the paths in and 

out of the circuit.

Digital electronic  
signals transmitted as 1s 

and 0s (high and low voltage) 
pass through these pins as 

input and output.

Oh, so they’re 
not just 

decorations 
then.

And here’s the 
important part!

Lo and behold! Inside, the circuit 
performs logic operations on 

the 1s and 0s on the input pins and 
produces the appropriate 1s and 0s 

on the output pins!!

Logic operations...? 
That seems 
even more 

complicated than 
those arithmetic 

operations... 

No, I’ve decided to 
think logically, 
so that’ll make 
understanding 
them a breeze!! 

...I think?

There’s no need to 
get so defensive 
about it. logic 

operations are really 
simple and easy to 

understand.

Wow       !!

Logic 
operations!

Pin
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First, I want you to get 
the general idea. The 

inside of an integrated 
circuit looks something 

like this...

This is a 74LS08 
integrated circuit.

A diagram of the  
inside of this chip

scritch 

Hmm. Yeah, I can 
see that there are 
four symbols that 

look the same, 
and they seem to 
be connected to 
three pins each...

Now let’s focus 
on one of those 

symbols.

Pins

Attention!

Input A

Input B
Output

Looking closely,  
you can see that they 
each have two inputs 

and one output. We call 
each of these pins a 

logic gate.

I see, 
so that means...

The Three Basic Logic Gates: 
AND, OR, and NOT

scritch

Pins



Each logic gate 
is like a magic 
box where you 

get some output 
if you put things 
into the inputs!

And the inputs 
and outputs are, 

of course,  
1s and 0s.

Yeah, that’s 
right.

The Three Basic Logic Gates: 
AND, OR, and NOT

Let me use your 
magic box 

analogy as we 
get into the 
specifics.

The most basic 
logic gates are these:  

the AND gate, the OR gate, 
and the NOT gate.

Memorize all of 
them together!!

All of them?? 
Is this a 

bootcamp?!

Don’t worry, 
these gates’ rules are 

really simple.

Just think 
of it like an 
oral exam!

Each input and 
the output can 

either be 1 or 0.

Output ZLogic gate

Input A

Input B
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Let’s assume that the 
inputs are represented 

by two interviewers 
who can give either a 

pass or a fail...

And that 1 means a 
pass and 0 means a 

fail in this case.

sounds 
stressful...

So if both don’t give 
a pass, the result 

will be a fail...

In the case of an AND gate, the 
output will only be a 1 (pass) if 
both inputs are 1s (passes). If 

either input or both are 0 (fail), 
the output will also  

be a 0 (fail).

For an OR gate, if 
at least one of the 
inputs is a 1 (pass), 
the output will be 

a 1 (pass).

So if even a single 
input gives a pass, it 
means you passed. 

what a relief...

Truth Tables and 
Venn Diagrams

Fail

Pass

inputs
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The NOT gate will flip 
the input. So an input of 

1 (pass) will give the 
output 0 (fail).

Really?? So it 
always completely 

disregards the 
interviewer’s 

opinion?!

…well yeah, it’s 
just how logic 

gates work.

But the important part is 
that you understand that 

even with the same input, AND 
and OR gates can produce 

different outputs.

I’m still shocked by that 
last NOT gate. I wonder 

how the interviewer 
must be feeling...

Truth Tables and 
Venn Diagrams

But there are even more 
patterns, right? Like where 

both inputs are 0s (fail), 
the output would still 

have to be a 0 (fail), right? 
Just thinking about it is 
making me depressed...

Hah! I have something 
I want to show you!

A truth table spanning 
all possible patterns!! 
It’s a table containing 

all possible input/output 
combinations!

Whip—
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This is it!  
Burn it into  
your mind!!!

Oooh! You can see all the 
input and output possibilities. 

that’s super useful!!

Also, when thinking 
about logic gates, 
Venn diagrams are 

really handy.

Oh, I remember 
those from 
junior high.

Yes, but the important 
thing here is that these 
Venn diagrams illustrate 

two states.

Assuming  
the world consists 

only of regions 
without color (0) 
or with color (1)...

...then using Venn 
diagrams, we can 
visualize the 1s 

and 0s. Nice!

That’s right. 
Let’s use this 

to take a 
look at the 
three logic 
gates again 
all at once, 
shall we?

If A and B are both 1, 
the output is 1.

If A is 0 and B is 1, 
the output is 0.

If A is 1 and B is 0, 
the output is 0.

If both A and B are 0, 
the output is 0.

OutputInput

Truth table for 
the AND gate

The area inside the 
rectangle is a world 

of only 1s and 0s.

In this example, there 
is color (1) only where 

A and B intersect.

SWAT—
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A Summary of the AND, OR, and NOT Gates

Let’s summarize the first three basic gates. Let’s look at the symbols, truth tables, and 
Venn diagrams as sets!

AND gate (Logic intersection gate)

Symbol

AND gates output 1 only when both inputs are 1, and they are sometimes expressed 
in equation form as Z = A · B. The symbols used to represent AND are those for logical 
intersections: × or Ç.

Inputs Output

Truth table Venn diagram

OR gate (Logic union gate)

OR gates output 1 when either input or both is 1, and they are sometimes expressed 
in equation form as Z = A + B. The symbols used to represent OR are those for logical 
unions: + or È.

Symbol Truth table Venn diagram

Inputs Output
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NOT gate (Logic negation gate)

NOT gates output 0 only when the input is 1, and they are sometimes expressed in 
equation form as Z = A−. The symbol used to represent NOT is the one for logical negation 
(complement): −.

This white circle 
indicates that 0 and 1 
should be flipped!

Good. Be extra careful about this though! In the examples here, we showed AND and OR 
gates having only the two inputs A and B, but it’s not uncommon for these gates to have 
three or more inputs.

Ohh! So you can also write them as A × B, A + B, or A−. I think I understand all these 
forms now.

So these input and output lines are called signals and can either be a 1 or 0. That’s easy to 
remember. 

In these cases, we require that all inputs of the AND gate be 1 for the output to be 1. 
In the case of OR gates, we require that at least one input be 1 for the output to be 1.

Symbol Truth table Venn diagram

Input Output

Sometimes 
more than 

three!

Signal 
pathways 
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Other Basic Gates: NAND, NOR, and XOR

Okay, let’s take a 
look at NAND, NOR, 

and XOR* gates next.

WHAT?!

* XOR is written as EOR or EXOR in some cases.

You just said that AND, OR, 
and NOT were the three 

basic gates...

Are you just going to 
take that back? Liar! 
There’s even more 

of them?!

Stop whining 
and calm 
down!!  

You should know 
about NAND, NOR, 

and XOR, too.

And the 
reason is...

Something 
you’ll realize 

after you learn 
about them!!!

Even more 
zealous than 

usual!

Let’s do it! 

Tottering 
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A Summary of the NAND, NOR, and XOR Gates

Okay, let’s talk about the other basic gates. These gates are really just combinations of 
AND, OR, and NOT gates!

NAND gate (Logic intersection complement gate)

The NAND gate is an AND gate wired to a NOT gate. The NAND gate’s output is therefore 
the output of an AND gate run through a NOT (negation) gate. It’s sometimes written 
as the equation Z = A B× .

NOR gate (Logic union complement gate)

Symbol Truth table Venn diagram

Symbol Truth table Venn diagram

Inputs Output

Inputs Output

The same!
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The NOR gate is an OR gate wired to a NOT gate. The NOR gate’s output is therefore the 
output of an OR gate run through a NOT (negation) gate. It’s sometimes written as the 
equation Z = A B+ .

XOR gate (Exclusive logic union gate)

The XOR gate outputs 1 only when the inputs A and B are different. This gate is some-
times written as the equation Z = A Å B.

The XOR gate’s function is shown in the schematic above, where you see a combina-
tion of AND, OR, and NOT gates. The X in XOR stands for exclusive.

Oho! You were right. These gates really are just combinations of the three basic gates. 

Symbol Truth table Venn diagram

Inputs Output

The same!

The same!
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De Morgan’s Laws

This might be kind of off topic, but don’t you feel a certain fascination whenever you hear 
the word theorem or law? It’s so charming and cool, I can’t help but feel my heart throb 
wistfully every time. . . . Well, let me tell you about an important theorem: De Morgan’s 
indispensable laws for logic operations. Here it is! 

Aah, I might have eaten a little too much today. But fast food can be really good some-
times, don’t you think?

Stop ignoring me! Well, I suppose formulas like this can look complicated at first glance. . . . 
Let’s start with the important part. This law basically just says a NAND gate is the same 
as using an OR gate on each input’s complement, and a NOR gate is the same as using an 
AND gate on each input’s complement. Does that make it clearer? 

Oh

De Morgan’s Theorem



What Are Logic Operations?  61

Yeah! I can see that the left and right sides have big differences in how they use × (AND) 
and + (OR). So according to De Morgan’s law you can swap AND for OR operators and vice 
versa by using complements.

That’s it! It also means that we can use De Morgan’s laws to show our circuits in different 
ways. Using this technique, it’s easy to simplify schematics when necessary. Here are some 
conversions using De Morgan’s laws.

But they’re completely different! Is there really no problem even though the left and right 
side look nothing alike?

I see. . . . Then you won’t mind if I just rewrite all of them? This is a law I like! 

Yeah, the expressions might be different, but their functions are the same. Since logic gates 
(digital gates) only work with 1s and 0s, everything stays logically the same even if you 
switch out all the gates. We’re just leveraging that particular feature of the math.

Both of these are NAND gates!

Both of these are NOR gates!
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The Addition Circuit

Heh, it seems I’ve 
finally mastered 

all the gate 
symbols...

Look! Revel in my skill!

*Snort*

Hey, that’s rude! 

Sorry 
about that.

But if you’re 
really satisfied with 

scribbles like those, then 
I suppose you’re still far 
from understanding the 

subtleties of logic gates.

Logic gates aren’t good for 
anything unless you make a circuit 

that actually does something useful!!

Wha-what do you mean?!

Tada!

Point!

Scribb
le

Scribble

Circuits That Perform Arithmetic



Here is a circuit that 
actually does something 

worthwhile!

Take a good look at 
the magnificence of this 

half adder circuit!!

!!

This is a very 
old, rudimentary 

circuit but... 

a useful one 
that performs 

addition.

It does feel a bit 
magnificent, all wired up 
like that... I see it’s using 

AND and XOR gates!

But I don’t see 
how it can add 

numbers...

I-I will let you 
explain it to me!

If you want me 
to tell you, just 

say so...

Thunder!
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The Half Adder

Let me explain what the half adder I showed you is all about (though I suspect you won’t 
need that much explanation at this point). First off, do you remember single-bit addition?

If we bundle all of these together, it kind of starts to look like a truth table, doesn’t it? 
Let’s treat the two bits as inputs A and B, and let’s standardize our output to two digits. So, 
an output of 1 looks like 01.

Well then, do you notice anything? Pay special attention to the gray area.

Wh—what? Could it be . . . ? The lower digit output... it looks just like an XOR gate’s truth 
table (see page 59)! XOR produces an output of 1 only if the inputs are different, right?

0 + 0 = 0,  0 + 1 = 1,  1 + 0 = 1,  1 + 1 = 10

The lower digit

output

(The digit is 
carried.)
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That’s correct. This time, look only at the upper output digit.

Hmm, that looks just like the truth table for an AND gate (see page 55)! An AND gate’s 
output is 1 only when both inputs are 1. . . .

That must mean that by combining an XOR and an AND gate, we can get two outputs 
(one for the upper digit and one for the lower digit) and perform single-bit addition!

As soon as you get that part, it seems really easy, right? The lower digit comes from output 
S, and the upper digit comes from output C. In this case, S stands for sum, and C for carry.

This is how we can get two outputs from two inputs with the same half adder circuit. And 
this is also how we can add two bits together!

Half Adder

The upper digit

output

(The digit is 
carried.)

output 
S

input

output 
C

input

(Carry)

(The value 
of A + B)
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The Full Adder and Ripple Carry Adder

After learning how the half adder works, it seems really simple! Hmm . . . but, there’s still 
something that bothers me about it.

In that circuit, there’s an output for the carry, but there’s no input for the carry from 
the previous digit. That means you can only ever add two single digits, right? That doesn’t 
seem very useful. In fact, only being able to add two single digits seems pretty useless!

Heh, an acute observation, for sure. It’s true that the half adder cannot deal with carries 
from previous digits and can therefore only ever add two single bits. That’s why half adders 
are just that: “half an adder.” It’s no use putting it down for something it can’t help. 

I’m not dissing anyone! Why am I the bad guy all of a sudden?!

Don’t underestimate the half adder though! By using two half adders, you can make a full 
adder. In addition to having the inputs A and B, you can use an additional input for the 
carry in this circuit.

Take a look at this next schematic. We call this circuit with three inputs and two out-
puts a full adder. We’ll put each half adder into its own box to make the diagram a bit easier 
to understand.

Think of water ripples

C A
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You were right—it’s using two half adders! Two halves really make a whole. I guess C
in
 is the 

carry input and C
out

 is the carry output then.

That’s right. And by connecting one half adder and several full adders, we can add any 
number of bits! We call a circuit like this a ripple carry adder.

In this example, we’re using four adders, so we can add four digits. We’ve also put the 
individual adders into their own boxes. During subtraction, we would deal with the inverse 
carry instead (borrow).

Uh-huh. So each adder’s carry output goes into the next adder’s carry input. This is how 
the carry flows so that we’re able to do the calculation properly.

Full adder

Ripple carry adder

Three 
inputs

Half adder Half adder

Full adderFull adderFull adder

The carries are propagated.

Half adder
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The Carry Look-Ahead Adder

But even then . . . that ripple carry adder kind of makes me feel like there’s something 
familiar with how it moves the carry after each step in the calculation. It’s really similar to 
how we humans do calculations with pen and paper by moving the carry from each lower 
place value to the next higher place value.

Yeah. But that’s actually a big problem—it takes a lot of time to keep moving the carry from 
one calculation to the next.

In ripple carry adders, the more digits there are, the slower the calculation speed will 
be because of the larger propagation delay. 

Yeah, that seems a bit slow. . . . Addition and subtraction are pretty common, too, so I sup-
pose they’re not something you want to be doing slowly. Hmm. So what do we do about it?!

Propagation delay in a ripple carry adder

I’m so bored...

Upper digit

Still  
nothing...

Okay, 
roger 
that! 

Here! A 
carry!

Heh heh heh. To fix this problem, someone came up with what is known as a carry look-
ahead adder.
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The carry look-ahead adder basically delegates the carry calculations to a completely 
different circuit that serves its results to each digit’s adder. Using this method, the upper 
digits can do their calculations right away, without having to wait! 

Eeeh, is that even possible? So does that mean there’s some other dedicated circuit that 
decides whether or not there’s a carry?

Yeah. It determines whether there is a carry in either direction during addition and sub-
traction. The downside is that the circuit is a lot bigger, but calculation times are drastically 
reduced.

Hmm. So it’s reducing calculation times with all kinds of smart tricks then. When we first 
talked about making a circuit for addition, I was imagining something pretty small, but the 
final product is quite impressive. 

Upper digit
The circuit that deals 

 with carries  
(Look-ahead-carry unit) 

They don’t have to wait for the carry!



70 C hapter 2  Digital Operations

Circuits with Memory 
Are a Necessity!

Now, let’s get 
into today’s 
last topic.

Let’s talk about 
circuits with 

memory.

Okay... this memory has 
to be the same memory 
we talked about last 

time, right?

Back then, you 
showed me 

these things... 

Hmm, yeah. It’s true 
that when we say 

“memory,” we usually 
mean primary memory 

like this.

But there’s 
actually memory 

storage inside the 
CPU as well.

And this storage is called 
registers!!

Data and 
program 

instructions, 
along with other 

things used in 
operations

Memory!

RegistersMemory!

Circuits That Remember

(See page 18.)
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Registers? 
Never heard 

of ‘em.

What are those 
things?

A simple analogy 
for registers might 
be something like a 
disposable notepad.

When performing 
operations, 

registers are 
used to store 

temporary  
values!

This kind of memory 
is more short-term 
than other types of 

memory. 

So there are many 
types of memory, 
each made for a 

specific task.

Well, the important thing with 
all of them is that by using 
them, we are able to use a 

previous memory (the state) 
in future operations.

That is, previous memories 
can affect future 

calculation outputs!!

Could you...  
say that again in 
plain language, 

please?
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Okay, then. 
Imagine...

That you are about 
to buy a drink from a 

vending machine.

Yay! I’ll have a coke!!

Hey, we’re talking 
hypothetically here!

To buy a 130-yen cola, you 
have to put in a 100-yen coin 

and then a 50-yen coin... 
after that, the machine 
should display a total 

of 150 yen, right?

That just means that the 
machine remembers the sum 

of the 100 yen you put in 
before and the 50 yen you 

inserted just now.

What do you think? 
Do you understand how 
the previous memory 

of 100 yen affected the 
end result of 150 yen?

Ah, it seems very obvious 
now. The reason why it’s 
able to show the sum 

of 150 yen is that it has 
memory.

Fully 
motivated!!
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If it didn’t have 
any memory...

What a rip-off! 
I’d have no choice 
but to destroy it!!

Calm down. 
Violence solves 

nothing!

They compare current 
memory to past memory.

I sold 3 apples today, and 
I sold 2 apples yesterday. 

This means I sold more 
today than yesterday.

This is why computers,  
such as the one in the vending 
machine, need to have memory 

circuits to be useful.

They use results from previous 
calculations and new data as 
input to other calculations.

I sold 6 apples 
yesterday, and 
I sold 3 today. 

I’ve sold 9 in total.

Many program 
instructions are 

like this.

I see. I guess it 
makes sense that 

memory circuits are 
important then.

...Now that that’s 
settled, I think 
I’ll go and have 
another cola.

She got thirsty? 
The power of 
suggestion...

Apple Yay!

Not that I recall...

Didn’t I 

jus
t put i

n 

100 yen??

Wha-at!!
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Flip-Flop: The Basics of Memory Circuits

Ngh. I can’t even imagine a circuit that has memory. Even human memory is really compli-
cated, you know. . . .

Yeah. You have to think really simply. Computers can only use 1s and 0s, right? That means 
that to a computer, memory means somehow storing the states of 1s and 0s.

I’ve already explained that these 1s and 0s actually correspond to different voltage 
levels (low and high) (see page 37). This means that to save a 1, we would have to create 
something that can retain that state over a longer period of time, as in the graph below. 
We call storing data like this latching.

I see. But it’s probably not very useful if it just stays in that state forever. What if I want it 
to go back to 0 later on or I want to overwrite the memory with something else? Wouldn’t 
it make sense to be able to store whatever I want, whenever I want?

Yeah, that’s right! For example, if you turn on a room’s light switch, it would stay on until 
someone turns it off again, and then it would stay off until someone turns it on again. It 
would be great if we could create some kind of trigger condition to freely swap the 1 and 0 
states, just as we do with the light switch.

That is, we would like to be able to store 1s and 0s indefinitely while still being able to 
flip each bit individually whenever we want. This is exactly what memory circuits do!

State remains 1

Time

So this 
is a latch 

then!
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Um, that sounds a bit selfish, doesn’t it? I want to store 1s and 0s, but I also want to be 
able to flip them at will.

It is selfish, but flip-flop circuits are a basic component of any memory circuit.

Flip-flop . . . that’s a cute name, but how are they useful? 

They’re super useful!! They grant us the ability to change states. First, take a look at the 
picture below. To make it easier to understand, I’ve put the flip-flop in its own box. Using 
one of these, we can store one bit of data.

Yes. Pay special attention to the Q output! This is the output that will stay either 1 or 0. Q 
will always be the inverse of Q−. So, if Q is 1, then Q− will be 0. Q− can be very useful to have 
when designing a circuit, but we’re going to ignore it for now.

Uh-huh. Then how does it work? Tell me what’s inside that box!

All in good time. First off, there are several types of flip-flops. Both the function and circuit 
depend on the type. Out of these types, I’ll teach you about RS flip-flops, D flip-flops, and 
T flip-flops.

Okay. There are inputs. . . . And two outputs Q and Q− . . .

The reason why there are no concrete symbols for the inputs is that they change 
depending on the type of flip-flop we use.

In
p
ut

s

Important!

O
ut

p
ut

s
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The RS Flip-Flop

Okay, I guess RS flip-flops come first. So the box has two input signals, R and S. Rice . . . 
sushi . . . rice and sushi?!

Um, no. R means reset and S means set. The reset and set inputs are the two main fea-
tures of this type of circuit.

I might be jumping to the main point too quickly here, but setting S to 1 will set Q to 
1 and setting R to 1 will reset Q to 0. Once Q has changed state, removing the input signal 
won’t change it back. It will keep that state until the countersignal (S for R and vice versa) is 
sent. As soon as that happens it will, of course, flip the saved state back.

Yeah. It might seem a bit complicated here, but the circuit looks like the figure on the next 
page. In accordance with De Morgan’s laws (see page 60), it can be created using either 
NAND gates or NOR gates.

Whoa. It looks a bit weird. . . . There are two NAND gates (or NOR gates), but they’re all 
tangled up in figure eights. 

Yep! The two circuits are interconnected, with the output of one acting as one of the inputs 
of the other.

Hmm, so that means that it remembers which of the two got set to 1 last? If S got set 
to 1 most recently, then the latch remembers 1, and if R was the last 1, it remembers 0! 
Is that it?

They’re also sometimes 
called RS latches.

You can also flip the 
R and S and call them 

SR flip-flops.
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It’s thanks to this figure eight that the circuit is able to retain either a 1 or a 0. We call this 
a latch. You could say this figure eight is the most important characteristic of a memory 
circuit!

Hmm, even so, it’s pretty complex. If I look back and forth between the schematic and the 
truth table, I get the feeling I kind of get it, but still. . . . 

Let’s see, the part of the truth table that says “does not change” means that output Q 
either stays a 1 or a 0 indefinitely, right? But what does the “not allowed” on the bottom 
mean? What’s not allowed?!

Oh, I see. So just follow the traffic, er, circuit rules, right?  

Ah, yeah. That just means that you are not allowed to trigger both set and reset at the 
same time. Remember that since the circuit is active-low, this means that both inputs can’t 
be 0 at the same time. If you were to set both to 0, this would make both Q and Q− output 1 
until you changed one of them back—but the outputs are always supposed to be either 0 
and 1, or 1 and 0. It’s not allowed to invalidate the rules we set for this logic circuit.

RS flip-flop

FunctionOutputsInputs

Does not  
change

Retains its  
current output

Set

Not allowed

Reset

Note that S and  
R have negation 

symbols! This is called 
active-low, and it means 
they are activated when 

the input voltage is  
low (0) instead of  

high (1).
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The D Flip-Flop and the Clock

Let’s see. The next one is the D flip-flop. The inputs are D and . . . what’s this triangle next 
to the C?! It looks like that piece of cloth Japanese ghosts wear on their headbands!! 

That observation is pretty far removed from the computer world. But I suppose it’s a bit 
cryptic and warrants an explanation. First off, it’s easiest to think of the D as standing for 
data. That triangle is the symbol for a rising edge, and the C stands for clock.

That’s right! Computers need some kind of fixed-interval digital signal to synchronize all 
the operational states in their circuits. That’s what the clock does!

Just like a normal clock measuring time, it flips between high and low voltage (1 
and 0) in fixed intervals. It has nothing to do with the circuit’s input or output though— 
it’s completely separate.

Um . . . Rising edge?? And the clock—is that just a normal clock?

An edge is when a signal 
transitions between two levels 

(0 and 1, for example).

A clock

Time
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Hmm. It really reminds me of a clock . . . tick-tock, tick-tock. . . . Just like we plan our days 
with the help of clocks, I guess circuits need them, too.

Yeah. When a circuit needs to take some action, the clock can sometimes act as its cue. 
Inside the clock, what is known as the rising edge acts as that action signal. Have a look!

Ohh! Those arrows are at even intervals on the clock graph.

When the clock goes from low to high (0 to 1), we see a rising edge, and when it goes back 
from high to low (1 to 0), we see a falling edge.

Oho, I think I get it. So the rising and falling edges are like ringing bells on the clock, right? 
When the bell rings, it acts as a signal to take action, like at the start and end of class, for 
example.

That’s just it! That’s a pretty good analogy coming from you.

When the clock goes 
from high to low

Falling edge

When the clock goes 
from low to high

Rising edge
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Okay, let’s get back to the problem. In a D flip-flop, every time a rising edge passes, the 
D input 1 or 0 is copied directly to the Q output.

It might be easier to understand by looking at the timing diagram below. A timing 
diagram is a good way to see how signals change their state over time.

Mmmh. It’s a bit complicated, but I think I get it now that I’ve looked over the timing 
diagram. In any case, the main characteristic of the D flip-flop seems to be that it acts in 
sync with the clock’s rising edges! Hmm, it seems like clocks are super important both to 
modern man and circuits.

The important lesson here is that the D input can change as much as it wants, 
but Q won’t change until a rising edge arrives!

Copy!
Clock
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The T Flip-Flop and Counters

So the last one is the T flip-flop. Wait, it has only one input! Did you forget to draw 
the rest?

Fuhahaha! Like I would ever forget! The T flip-flop has only one input, as you can see, and 
is pretty simple. Whenever the input T changes from 0 to 1, or 1 to 0, the output stored in 
Q flips state. It looks something like this time chart. 

Oh, this was super easy to understand! It’s a memory circuit even though it has only one 
input.

There are T 
flip-flops that 
activate just on 
falling edges 
instead (1 to 0).

Output Q

Input T

FlipFlipFlip
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By the way, flipping between 1 and 0 is called toggling. The T in T flip-flop actually stands 
for toggle! Also, by connecting several T flip-flops, as in the following schematic, you can 
make a circuit that can count—a counter circuit.

Several T flip-flops toggled by the falling 
edge of an input signal can act as a counter. 

Looking at the time chart, do you see that each output signal has half as many toggles as 
its input signal? This means that the period of the output signals is twice as long as the 
period of the input signals. I’ve put all three of the flip-flops in the schematic above into 
this time chart so you can see all of their individual outputs next to each other when they 
are connected.  

If you look at each column in this graph individually, you should see that the digits from 
Q

2
, Q

1
, and Q

0
 form binary numbers! Isn’t it cool that every time we have a falling edge on 

the input of the first T flip-flop, this binary number increases by 1? It’s counting!

Umm, but why do we say that the circuit can count?

Counter circuits

The first flip-flop will toggle its output state every time the input on the far left 
changes from high to low. Consequently, the second flip-flop will toggle its output when-
ever the first flip-flop’s output changes from high to low. All following outputs will keep 
toggling in this pattern. If the input signal is connected to a clock, then each flip-flop in 
the series will toggle every 2(n − 1) clock cycles if n is the flip-flop’s position in the series. Put 
another way, the period of each flip-flop’s output signal will be 2n of the original signal’s 
period. 

Counters that work this way are called asynchronous counters, since not all flip-flops 
are connected to the same clock but, instead, each flip-flop’s clock after the first is the out-
put signal of the flip-flop that came before. In contrast, there is a circuit commonly found 
in CPUs called a synchronous counter. As the name here implies, all flip-flops in this type 
of counter trigger on the signal from the same clock, meaning they all toggle at the same 
time, in parallel. It’s worth mentioning that I’ve simplified these descriptions to make them 
easier to understand.

Input
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Wow, you’re right! Q
2
 corresponds to the 22 digit, Q

1
 to 21, and Q

0
 to 20, right?

If you look at Q
2
, Q

1
, and Q

0
 in order, the first column forms 000 (the number 0), the 

second one 001 (1), the third 010 (2), and the fourth 011 (3) in binary. So using this tech-
nique, you can actually make the circuit count! That’s a really smart design.

Yeah. In this example, we used three flip-flops, so that lets us express 23 (8) numbers, 
meaning we can count from zero to seven.

You can actually make counters from other types of flip-flops, like D flip-flops, for 
example. Using some other tricks, you can also make circuits that count down, if you want.

Yeah, well that’s it for flip-flops. Just don’t forget what I said at the start: flip-flops are the 
foundation of any memory circuit!

This means that both primary memory and CPU registers use flip-flops at their core. 
And flip-flops are also the basis of any counter circuit, just like what we just talked about.

Haha, so they’re the base for a lot of different devices, basically. And even though they have 
a cute name, they’re super useful circuits we can’t do without!

Oh, that seems like it could be really useful for a lot of things.
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Thanks for today! 
I learned a lot!

Heh, well the things 
we talked about 

today are still just 
the basics.

Don’t forget 
them, though.

Don’t worry!! There’s no 
way that someone with 
my exceptional memory 
and intelligence would 

forget anything!

Exceptional 
memory, huh...

So that means that 
you remember every 

shogi opponent 
you’ve ever 
played then?

Wellllll, you 
know, it’s like, 

see...

It’s not like the heroine 
of the story remembers 

every slimeball she’s 
slain, right...?

...you fell right into 
that one, wow......

I-I can’t help it if I 
don’t remember!!!!
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Modern Circuit Design: CAD and FPGA

Multipurpose integrated circuit design is surprisingly similar to software development 
these days. It’s usually accomplished using a hardware description language (HDL) to 
define the operation of a circuit. 

In the past, circuits were drawn using logical circuit symbols, much like the ones we 
have shown in this book, but these symbols are now used mostly for very simple circuits. 
The development of computer-aided design (CAD) programs allows people to design com-
plicated circuits with relative ease.

But, it’s important to learn the basics. It can be useful to know these symbols if 
you’re trying to figure out how data flows through a digital circuit or when you’re trying 
to understand a particular feature of some schematic.

At the dawn of CPU development, it was common to create reference circuits con-
sisting of many AND, OR, and NOT gates. These were then used when iterating, proto-
typing, and evaluating new generations of CPUs and other ICs.

By doing this, it was possible to test each function of the advanced circuit individually 
and even hardwire the circuits together to try to work out problems in the design if some 
error was detected.

Nowadays, reference circuits like these are rarely used in development. Instead 
much more flexible field-programmable gate array (FPGA) circuits are preferred.

FPGAs consist of a series of logic blocks that can be wired together in different ways 
depending on the programming. Some of these blocks contain lookup tables to map 
the 4–6 bits of input to output in a format that’s similar to a truth table. The number of 
lookup tables in an FPGA can range anywhere from a few hundred to more than several 
million, depending on the FPGA model.

And of course, it’s possible to reprogram all of the tables whenever needed. In this 
way, the same FPGA circuit can be used to perform the functions of many different types 
of ICs. You can simulate the function of a CPU using an FPGA if you want to, but it’s a 
lot cheaper and easier to mass-produce a dedicated circuit instead. Even so, since the 
price of FPGAs is dropping and development costs for new ICs are high, if the life span or 
projected sales of a particular IC are not high enough, it might be more cost-effective to 
simply use an FPGA.

FPGAs can, just as the name suggests, be reprogrammed 
“in the field” to change the function of the IC completely. 

They are indispensable to circuit designers.

Clac
k

Clac
k

Awesome, 
I’m going 
to tailor 
this to my 

needs!





3

CPU Architecture

Ayumi



All About Memory and the CPU

Really...  
to think we’d be 
hanging out even 

on Saturdays...

Well, I want 
to learn about 
CPUs over the 
weekend, too!

And I want to 
try this cafe!

Their cakes look 
really good.

And it’d be kind 
of embarrassing 

to go alone... 

I see... you 
don’t have any 

friends...

I do! I have 
like a hundred 

friends!!!

Sounds like 
someone’s 

overcompensating...



Memory Has Assigned Addresses

Well then...

Do you know what 
addresses are?

Of course I do!  
Like I wouldn’t know 

where my friends live!!

Uh, I wasn’t 
talking 

about mailing 
addresses.

You see, locations 
in memory...

...are called 
addresses.

I remember 
memory.

Data and programs are 
stored in memory, and 
memory communicates 

those things to the CPU, 
right?

Lie 

CPU Memory
Operation 

output data

Programs
Data for 

operations
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That’s right.

Programs and 
data are saved 

to memory in an 
organized way.

Everything is 
assigned a unique 

address depending 
on where it is 

stored.

You’re right!! 
Everything 

has a unique 
address and is 
neatly sorted 

in order.

You should also 
remember that 

the CPU...

has full 
control over 
this address 

space, which can 
also be called 
memory space. 

Address space 
(Memory space)

Uh-huh. So the CPU 
controls the memory 

space...

And if it can read and 
write wherever it 

wants...

Data for 
use in 

operations

Data

Data

Data

Data

Programs  Instruction

Instruction

Instruction

Instruction

Instruction

TypeAddress

Data

Data

Data

Data

Instruction

Instruction

Instruction

Instruction

Instruction

TypeAddress

Inside memory



okay!

All About Memory and the CPU  91

Doesn’t that make the 
CPU look kind of like 

a bad guy?

You have a 
pretty dark 
imagination.

But why do 
data need 

addresses?

How is  
assigning 

them numbers 
useful?

Heh... don’t 
you see?

Addresses make it  
possible to find data 

just by pointing to the 
correct number.

Actually, this is how 
the CPU accesses all 
data and programs 
(or stores them, 
for that matter)...

By pointing to 
an address!

Oh, it just 
sends the 

number along!

I guess using 
numbers is pretty 
practical and easy 

to understand.

But it seems so 
mechanical and 
cold... devoid 
of humanity...

Well, it is 
a machine, 
you know.

Data

Instruction

Instruction

TypeAddress

I claim dominion over this memory...

Address space 
(memory space)

Heh heh heh...

Memory

Address 
pointerCPU

Number 83, 
please!

Instruction

Instruction

Instruction

Data

Data

Data
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Data Passes Through the Bus

Well since we 
already talked 

about addresses, 
let’s also talk 

a bit about 
the bus.

The bus...?
Yeah, it actually 
comes from the 
word omnibus.

But the kind of  
bus we’re talking about 
is a path that transmits 
data inside a computer.

And, as shown in this 
picture, we call the 
bus that transports 

address pointers 
the address bus.

Appropriately, we also call 
the bus that transports data—

wait for it—the data bus.

I see. So they’re kind 
of like two routes 

with completely 
different purposes.

Yeah, and there are 
also external buses 

and the internal 
data bus.

memory
dataData 

Data bus

Address bus

A numberA number



Oh, just 
like the 

name says.

And inside the internal 
bus, there are switches 

that can change the 
flow of data, just like 

in this picture... 

These switches 
are called 

multiplexers (MUX).

These switches make 
it possible to simplify 

the CPU’s internal 
data buses.

They’re super 
useful!

Oooh, they’re really 
like bus routes 

after all!

And they’re  
designed to make 
everything as easy 
as possible. I can 
appreciate that!

The external 
bus connects 

the CPU to memory 
and external 

devices. The most 
common one is the 

Universal Serial  
Bus (USB).

The internal data 
bus is a bus that 
passes internally 
through the CPU. 

A path from B to YA path from A to Y

Multiplexer 
(MUX)

Memory

External 
bus

Internal 

data bus

CPU
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Bus Width and Bits

Let’s talk a bit more about buses. I said that buses are for transporting data, but to be 
more exact, they’re actually bundled signal pathways.

Uh-huh. So that means that the number of pathways equals the number of bits. With four 
pathways, we can send and receive 16 (24) different numbers from 0000 (0 in decimal) to 
1111 (15 in decimal).

Ah, signal pathways, I remember those from before. They’re lines that transmit 1s and 0s, 
right?

That’s right! And, the number of pathways determines how many values those pathways 
can represent. For example, if you have four pathways, and each can be a 0 or a 1, then 
those pathways can be used to send or receive a four-digit (four-bit) binary number.

4 bits

16 wide

With 4 bits...

(20)	O nes 

(21) 	 Twos 

(22) 	 Fours 

(28) 	E ights

Four signal 
pathways
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Heh heh heh, good guess. You’re correct! We call the number of signal pathways (or bits) 
the bus width. A wider bus width gives the CPU faster processing capabilities.

For example, the ALU in the following diagram can process four-bit operations. This 
means that the data bus serving this ALU also has to be four bits wide.

Haha! So that just means that the CPU’s performance is determined in part by the width of 
the data bus. And the wider the data bus, the better the CPU’s performance!

We chose 4 bits to make the diagram simpler, but most modern ALUs work with 64 bits. 
It makes sense to use a bus with a bus width that matches the ALU’s data width, which 
means buses end up being 64 bits wide more often than not. In general, the 64-bit CPUs 
that you hear so much about have 64-bit ALUs and 64-bit data buses.

Hah! I think I might have figured out something important! Doesn’t that mean that the 
more signal pathways you have, the better? If you can express larger numbers, that also 
has to mean you can process more data.

It’s worthwhile to point out that the data bus doesn’t necessarily have to have 
the same width as the working bit length of the CPU. For example, in 1982, 
you could find 16-bit CPUs with 16-bit ALUs using an 8-bit wide data bus. 
This simply meant that you had to send data over the bus two times before 
the CPU could start doing any work.

64 

64-bit 
bus width

64-bit CPU

64-bit data 
width ALUs

4-bit 
output

4-bit 
inputs
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You should try to remember these things about data bus width.

By looking at the width of the external bus between the CPU and memory, you can see 
how many bits can be sent between these two systems at once. By looking at the width of 
the internal data bus, you can see how many bits can be processed at the same time in a 
single operation.

Yeah. On the other hand, if we have an address bus width of 32 bits, that would give us 232, 
or 4,294,967,296, different addresses. We can say that the size of our address space for 32 
bits is roughly 4.3 gigabytes.

The address space size . . . ? Does that mean how many addresses there are? Then if 
the address bus has a width of 4 bits, wouldn’t that give us 24, so a total of 16 different 
addresses?

That’s it for now about data buses. Let’s talk a bit about the address bus. By looking at the 
address bus width, you can see how large your system memory is. We call this the address 
space size.

Okay! So data bus width is super important. Gotcha!

For an address 
bus width of 

32 bits, we have 
232, or roughly 
4.3GB, different 

addresses.

A
dd

r
e
ss

 
b
u
s
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And the size of the address bus directly relates to memory capacity (see “Memory Capacity 
and Bus Width” below).

Hmm, so address bus width is also really important. Does that mean it should be as large 
as possible?

Is that greed or naive honesty I detect? Well I suppose it’s true that the bigger the buses, 
the better.

Memory Capacity and Bus Width

Let’s think a bit about the relationship between memory capacity and bus width by 
looking at a simple example. As shown in the diagram, one byte corresponds to one 
address. One byte is eight bits. A byte is a unit commonly used to describe the size 
of data.

If instead our address space (address bus width) was 12 bits, then we would 
have 212, or 4,096 addresses. Each address fills 1 byte, so that means our memory 
capacity is 4,096 bytes, or roughly 4 kilobytes (KB).

An 8-bit data bus that 
sends 8 bits at a time

8 bits = 1 byte

Address
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R/W Signals and I/O Signals

Next up, I’ll explain a bit about control signals. Do you happen to know what R/W stands for?

Red and white . . . is it something related to festivities . . . ? Santa? 

Ah. Well, it sure seems festive inside that head of yours. It actually stands for two really 
important terms related to the CPU—read and write.

Read means to extract data that has previously been stored somewhere. Write means 
to save data to some place. We also sometimes use the words load and store instead.

What Is the Difference Between 
Read/Write and Load/Store?

Read/write is the term we use when speaking from the 
hardware perspective, and load/store is the term we use 
when speaking from the software perspective.

R/W is an electrical operation in the memory, and the 
memory doesn’t care where the data is going or where we 
want to save something.

In contrast, a load operation reads some particular 
data to store it in a register. Conversely, a store opera-
tion grabs some register data and writes it to memory. 
So these operations deal with data flow.

Output

In
pu

tWrite
Rea

d
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Ah, in that case, I think I kind of get it. The CPU deals with memory and data, right? It 
reads data to use for operations and then writes the result of those operations to memory.

Yes! It seems you’re really getting the hang of it. So the CPU issues read and write instruc-
tions to the memory—instructions such as “Fetch some data” or “Save some data.” We call 
these R/W instruction signals.

We’ve talked about the address bus and data buses, but there is one more really 
important bus—the control bus! And it’s this bus that is conveying these control signals 
from the CPU.

Hmm. So if, for example, I wanted the data in number 83, I would send 83 on the address 
bus and read on the control bus, like in the picture! And the data I wanted would then 
arrive on the data bus.

Yeah, that’s it. You seem to be getting it now, so let’s move on to the next topic. Have you 
heard of I/O before?

Maybe . . . ice cream and oreos? Hee!

Memory

Control bus

Add ress  bus

Data Bus
CPU
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Ah, you’re just choosing words at random now, huh? I/O stands for input/output.

Input is data traveling from the outside world into the computer. Conversely, output is 
data traveling from the computer to the outside world.

Yeah, I know. The keyboard and mouse are two input devices, and the monitor and printer 
are two output devices, right? Input and output!

Yeah. To control external devices like this, we use I/O control signals. You should also 
remember the term I/O port. Just as the word port suggests, ports are the gateway we use 
when communicating data to external devices.

The CPU is connected to external devices like keyboards* through these I/O ports! 
Have a look at the image below.

Port . . . Yeah, it really feels like there are unknown seas at the end of the map! But these 
ports don’t connect to other lands; they just connect to other devices.

Yeah. And additionally, we have an address port and a data port between the CPU and 
memory, which in turn connect to the address bus and data bus, respectively.**

** The address port, data port, R/W control, and I/O control are shown in the helpful CPU overview diagram 
on page 106.

There is actually 
a USB controller 

between USB devices 
(such as mice and 
keyboards) and 

the I/O port.

* Other external devices, such as the display, are not necessarily in direct communication with the CPU, 
however. 

Keyboard

I/O port

Connected directly!

CPU
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Instructions Are Made of Operands and Opcodes

By the way, I have 
one question...

When you first 
showed me memory, 
there were these 

instructions.

What are they? 
They seem 

awfully full of 
themselves.

It’s been bothering 
me for ages! Hurry 

up and tell me 
already!!

She says while 
giving me 

instructions, 
all high and 

mighty!!

Uhh, yeah... Instructions are 
parts of programs written 

by humans that the CPU 
executes.

Program

You could say 
that programs 
are chains of 
instructions.

Oh, so it’s kinda like 
how cake recipes say: 
“Break some eggs.”

“Mix the eggs with 
sugar.” Programs are 
a chain of instructions 

like that?

Instructions

These

Instruction

Instruction

Instruction

Instructions

Instructions
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Yeah. Although the 
instructions we’re 

talking about actually 
look like this.

The opcode (short for 
operation code) is what to Do, 
and the operand is what the 

CPU operates on.

And there are lots 
of instructions 
other than just 
“add these two.”

Uh-huh! But the 
important part is that 
instructions tell the 
CPU what to do and 
what to operate on, 

right?

Yes, but be careful! 
Operands might also 
be an address instead 

of a value.*

* The accumulators and registers we’re going 
to talk about next can also be operands.

Accumulators and Other Registers Are 
Used in Operations

operand operand

Oh

Jump

Store this

Compare 

these two

Lots of opcodes

The operand is an address! 
Add the data at address 30 
to the data at address 31.

2 + 3

opcode



A-ha, so it’s like 
this then.

A number

Instructions (the 
program) themselves 
also reside at some 

address...

And the operands 
the instruction 

operates on also 
reside at their own 

addresses.

It’s not that 
hard after all!

Managing all of 
them by number... 
It’s so rational 
and economical!

Weren’t you 
just complaining 
about the lack 
of humanity?!

Accumulators and Other Registers Are 
Used in Operations

Okay, we just talked 
about the “adding” 

instruction...

But to execute an 
instruction...

You always 
need 

registers!!!!

OpcodeOperands

Number Y 

Address

Instruction

Fu

Swat!

Number Z



104 C hapter 3 C PU Architecture

Um, registers were those 
small memory circuits 
inside the CPU, right? 

Like a 
notepad!

Yeah, that’s right. 
Let’s have a look at 
these two types of 

registers first.

Accumulators are like 
notepads that are only 
used for calculations.

General-purpose 
registers can be used 

for calculations 
or anything else 

you want.

Both of these types 
will be used anytime 

operations are 
processed!

Hm...What do 
you mean?

For example, when executing the 
instruction to add the data at 

address X and the data at address Y, 
this is what actually happens.

Just remember that 
data is saved to 
registers here.

Notes

Anything

Used for all kinds 
of things, as the 
name suggests

General-purpose 
register Addition

Used for 
calculations and 
increasing values

Accumulator
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After saving the data 
stored at address X 
(2) in the accumulator 
register and saving 
the data stored at 
address Y (3) in a 
general-purpose 

register, Perform an 
addition of the two.

Accumulator

Then automatically store the 
result of the operation (5) to the 

accumulator register again.

Ooooh, yeah, 
I see a lot of 

registers being 
used here!

It seems a bit 
roundabout, but I 

guess that’s just how 
the CPU works!

There are many 
other types of 

registers as well.

For example, the 
instruction register is 

used to temporarily store 
program instructions read 

from memory.

It executes the 
instruction after 
decoding* it, huh...

So there are lots 
of different registers 

for all kinds of 
purposes then!

I’d better register 
what I’ve learned 
on the back of 
this receipt!!

That’s a note 
you’ll lose 

pretty quickly.

General- 
purpose 
register

Accum- 
ulator

address Yaddress X

Memory

Instructions 
(program)

Instruction 
register

Inside the CPU

Instruction

* see page 109.



Classic CPU Architecture

Then let’s 
finally get 

into some CPU 
architecture.

Behold! The 
architecture of 
a classic CPU!!

* All buses are simplified in this diagram and are drawn only as single lines.

fwip!!
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control

Timer 
interrupt 
control
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decoder

Instruction 
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Address 
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Accumulator 
(internal shift 
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Program counter 
 

Stack pointer 
 

Temp register

Internal 
RAM

Overview of a Classic CPU

CPU Instruction Processing 
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Hey, look! A tea 
leaf is standing 
up in my coffee! 

That’s good luck!!

Don’t change 
the subject!!

The Instruction Cycle

Uhh... so many 
words I don’t 
understand...

What’s this 
program 

counter, for 
example?

Since it has 
program in its 
name, it seems 

important...

So, is my intuition that 
the program counter 
is important right or 

wrong?!

Aren’t I the 
teacher here?? 

Why is she 
quizzing me?!

Yeah, I guess it’s true 
that the program 

counter (PC for short) 
is really important.

Every CPU has one, 
and it holds the 

address of the next 
instruction to be 

executed.

Stack pointer

TEMP register

Umm..

Huh?

Program counter

This!
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The address 
of the next 

instruction to 
be executed...?

So that means 
that this guy is 
always thinking 
one step ahead!!

That’s exactly 
how any shogi 
player has to 

think!

Next up is 
the seventh 
instruction.

Yeah, I guess. 
Although it’s not a 
person, you know.

And after the 
operation* is executed, 

the address of the 
next instruction 
contained in the 

program counter...

is then  
temporarily 

transferred to the 
address register 
and forwarded 

to memory.

So it’s called the 
address register 
because it stores 

addresses, eh?

That’s so 
simple!!

I don’t want 
to hear that 
from you.

* You can also perform calculations on memory addresses. 

Mr. Program 
Counter

Memory

The 
instruction’s 

address 
pointer

Number 
seven

Address register

Address

Calculation

Number  
seven...

Program counter

CPU internals
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Let’s move on.

The memory 
then sends the 

instruction located 
at that address 
back to the CPU.

It is then temporarily 
stored in the instruction 
register and decoded by 
the instruction decoder. I suppose the 

decoder is pretty 
self-explanatory.

But why is decoding 
necessary at all? 

Can’t the CPU just use 
what was sent from 
memory right away?

No.

Instructions must  
be decoded because the 

instruction code stored in 
memory is not the same as 
the machine code the CPU 

understands.

Instruction 
decoder

The instruction retrieved from memory 
needs to be broken down before 
it can be used in an operation. The 

decoder translates from instruction-
level language to hardware-friendly 

machine code format.

The instruction  
decoder puts the 

instructions read from 
memory into a form that 
can be used in operation 

execution.

Oh wow, it seems 
a lot of different 

processes are 
necessary...

CPU internals

Memory

Instruction 
(program)

Instruction 
register

Instruction

Decoding!

Instruction 
decoder
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And, as soon as the 
instruction has been 
decoded... Behold!!

The operands and opcode 
are revealed!!

Oooh! So this ties in 
to what you taught 

me before! 

Operations are 
performed on 

the ALU using the 
accumulator, 

right?

That’s 
right.

And finally, the result 
is stored in either a 
register or memory.

And if it’s stored 
in memory, we also 

need to specify what 
address to store it at.

operand

...to something

Instruction code 
(opcode)

Do something...

Memory

Store!

Operational 
result data

Accumulator

Data

CPU internals

Tada                !
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Ha! So that 
marks the end 
of processing 

one instruction... 
right?

Yeah, to tie it 
together... let’s have a look 

at all the steps 
necessary for the 

CPU to process 
one instruction.

As soon as 
one instruction is 
over, it has to get 

the next one...  
The poor thing...

But before that, it should 
celebrate the completion of 
the previous instruction! Raise 

your glasses and toast!

...do I need to 
remind you that 

I’m trying to 
teach you stuff?

Go to 
the next 

instruction

Write the result 
of the instruction

Execute the 
instruction

Decode the 
instruction

Read the  
instruction  

(also called fetch)

CPU instruction processing
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The Instruction We Process Changes 
Depending on the Program Counter

Hmm, about that CPU overview diagram from before, though (see page 106). . . . There 
are still a lot of words there I don’t know. It all feels a bit hazy now.

Well, there’s no rush. Take another look after the next lesson. But for now, let’s look at the 
program counter (PC).

Ooh, that guy who’s always one step ahea— no, I mean the guy who remembers the 
address to the next instruction! That reminds me, didn’t we talk about counters before? 
The circuits that count?

After the seventh instruction is done, we go to the eighth, and then the ninth, and 
so on. . . . Is that how the saved address keeps changing?

Basically, yes. And by the way, the instruction register gets saved at the same time as the 
counter changes, like in the image below.

HAAH!!

15

87

Instruction 8 is 
in the instruction 

register.

Instruction 7 is 
in the instruction 

register.

countCount      
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But be careful! Instruction number eight doesn’t necessarily follow instruction number 
seven here.

The program counter stores the address of the instruction to be executed next. After 
7, it might jump to number 15 or return to number 3.

Eeeeeh, why?! Why would the address return and jump around like that?

Hah! This is important, so pay attention. The reason it can jump around like this is that a 
program might contain conditionals such as branches and loops!

When the program encounters one of these conditionals, the address of the instruc-
tion to be executed next might jump. It might be easier to understand this by looking at a 
diagram.

Ah! It’s like the ATM example we talked about a while back! It decided that the balance 
was insufficient, so the outcome changed. And the ATM might throw you back to the main 
screen if your PIN code is wrong.

Imagining a loop

Execution

Condition

R
e
t
u
r
n
!

Execution

Imagining a branch

ExecutionExecution

Branch!
Condition

Execution
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Yeah, the ATM is a great example! And to accomplish these branches and loops, we only 
have to rewrite the address inside the program counter to the address we want to jump to.

I see. So by rewriting the address in the program counter, we can change which instruction 
to execute! This way, the program is able to proceed appropriately.

It’s also good to know that the bit width of the program counter (the bit width of the 
addresses in the PC) is the same as both the address bus bit and the address space bit 
width. If you think calmly about that for a bit, you should realize that they have to have 
the same bit width.

I see. It seems obvious, but it feels really nice to see the relationship between the different 
things we’ve talked about so far!

By the way, the program counter only knows what the next step is, right? Shogi 
players have to read reeeally far into the future, so maybe the program counter and 
shogi players are slightly different after all!

Slightly? You’re joking, right?!

The address 
we want to 

jump to!

Virtual Memory

Most computer programmers don’t have to care about the CPU address bit length of 
the programs they write for any modern operating system (such as Windows). It is the 
operating system that decides how it will actually interact with the physical memory, and it 
exposes this through something called virtual memory. The hardware that maps this virtual 
memory to its physical counterparts is known as the memory management unit (MMU).
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This might be a 
bit sudden, but I’d 
like you to try to 

remember...

I said 
something like 
this on the day 
of the cultural 

festival... 

Memory 
comes in two 

flavors...

There is main memory  
and secondary memory, but 

when learning about the 
CPU, the main memory, also 

called primary memory, is a 
lot more important.

Uh, sure, 
but why...?

Well, it turns out 
that secondary 
memory is also 

really important!!

The most representative 
type of secondary memory 
is the Hard Disk Drive (HDD), 
sometimes just called a 
hard disk!! Almost every 

computer has one!

Can you 
please stop 

changing 
your mind?!

When we say “memory,” 
we generally mean 
primary memory.

Primary memory

All Kinds of Memory Devices
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A Comparison Between HDD and Memory

Umm, I’m shocked by this new information. So what does this small box-looking thingy . . . 
this hard drive (secondary memory) . . . do?

The easiest way to answer that is to compare it to primary memory. Let’s start with the 
first big difference! When you turn your computer off, everything in primary memory dis-
appears! But any data stored on your hard drive does not. 

This is why the operating system running your computer (for example Windows), all 
your programs, and any data you might have created or downloaded (text, video, and so 
on) are stored on your hard drive.

Eeeeeee!! That’s amazing!! But didn’t you say that all data and programs used for opera-
tions are stored in primary memory?

Yeah. Actually, when you turn on your computer’s power, certain parts of the data in your 
hard drive are copied to primary memory. Anyway, when you turn your computer off, all 
your data is safely stored on your hard drive. Take a look below.

On top of the desk 
(primary memory)

If the top of 
your desk is large,  
you can do a lot of 

things at once.

Intellect (CPU)

If you’re really 
smart, you can 
process things 

quickly.

Drawers 
(hard drive)

If your drawers 
are large, you can 

save a lot of things.

Music

Video

Text

Video 
playback

WritingWebsite

Software
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Let’s imagine how the CPU, memory, and hard drive interact. We could say your memory is 
like the top of your desk and your hard drive is like the drawers of that desk. You should be 
able to understand their roles better by using this analogy.

Oooh, they’re really different! If primary memory is large, it becomes easier to process 
large amounts of data at once! And if the hard drive is large, you can save and store a lot 
of data.

Now, let’s talk about the second difference between the two. The CPU can read directly 
from primary memory but not from the hard drive!

The CPU sends control signals to something called the hard disk interface located in 
a piece of memory called the I/O space. It is this hard disk interface that then controls the 
hard drive itself.

This might seem counterintuitive since we manipulate the data on the hard drive all the 
time when using our computers. But really it works like in the picture above.

That is, your CPU only works directly with the address space, which your hard drive is 
not part of!!

Aha. The only things that can interact with the CPU directly are the primary memory and 
I/O devices. So that’s why you placed so much emphasis on the importance of primary 
memory. . . .

The CPU cannot access memory 
addresses on the hard drive directly!

Managed

I/O space

HDD 
interface

Control 
signal



118 C hapter 3 C PU Architecture

Then let’s talk about the third and final difference: hard drives are a lot slower than pri-
mary memory!

There are lots of different types of memory inside any computer, but by compar-
ing each of their relative storage sizes and speeds, you end up with something like this 
pyramid.

That’s it. So, for example, registers have fast processing speeds but small memory sizes. A 
good comparison might be a small, handy notepad.

Yeah. Anyway, I think I understand the difference between primary memory and hard 
drives now. Even though they’re both memory devices, their uses are completely different. 

But that’s why we can play to their strengths, when appropriate.

An interesting example is that today’s computers, especially laptops, have started 
using solid state drives (SSDs) instead of mechanical hard disk drives (HDDs). SSDs store 
all data using semiconductor memory technology. This makes SSDs much faster and more 
resistant to shaking and other types of blunt force than mechanical disks.

Huh?! So memory close to the CPU is fast but small. As you get further away from the 
CPU, it gradually grows larger but slower!

Reg-
isters

Cache 
memory*

Primary memory

Disk cache*

Hard drive (Secondary memory)

* Cache memory is 
used to temporarily 

store frequently 
used data. This makes 
it easier to quickly 

access data you 
might want.

Memory storage size

Inside 
the CPU

Slow
P
r
o

c
e
ss

in
g

 s
p
ee

d

Fast
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Okay, let’s talk a bit about address space (memory space) again. Do you remember what I 
taught you before?

Yeah, no problem! It’s the dark space ruled by the CPU’s iron fist. . . . No, I mean . . . it’s the 
space directly managed by the CPU, right?

Hmm?  All the memory space outside of the CPU? That seems a bit convoluted. Are there 
other types of memory in there other than primary memory?

Yes. This is important. The address space is actually divided into two parts: RAM (memory 
you can read from and write to) and ROM (memory you can only read from). We say that 
we have RAM space and ROM space inside our memory space.

Indeed. But to be more exact, address space comprises all the memory space outside of the 
CPU that is controlled by the CPU. 

RAM Space, ROM Space, and I/O Space

Type Address
Instruction

Instruction

Instruction

Instruction

Instruction

Data

Data

Data

Data

Just a little bit...

I/O space

ROM 
space

RAM 
space

Address space 
(memory space)
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Huh? What’s this about rams and roms?! Okay, so RAM is our old friend the primary 
memory, right? We can read from and write to it, and its data disappears if you turn off 
the power. . . .

But what about ROM? So the data is intact even if you turn off the power and you 
can only read from it, and this is somehow part of the memory space? Umm, what is it, 
though?!

Yeah. We haven’t really talked about it yet, but there is ROM on something called the moth-
erboard inside the computer. This is where you can find the program the CPU runs when 
you start your computer. This program that runs before any others is called the BIOS.

I see. So if it couldn’t run this program, the computer would just be a very expensive 
box? That’s why the BIOS is put into a special part of read-only memory—so it won’t be 
forgotten!

You can both read 
from and write to it. 
The data disappears 
if you turn off the 

power.

You can only read 
from it. The data is 
saved even if you 

turn off the power.

What Is the BIOS?

The BIOS (Basic Input/Output System) is a program found 
in ROM that the computer runs when you first turn it on. 
The BIOS checks that all the devices in your computer 
are in working order after you turn on the power. It also 
launches your operating system from your hard disk.

Example: BIOS-ROMExample: Primary Memory

Whrr
r

The BIOS is the 
first step.
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In addition to the RAM space and ROM space, there is also a very tiny space called the  
I/O space.

Hoho! Go CPU! So that means that since external devices use the address space managed 
by the CPU, they are also managed by the CPU, right? In any case, I think I get that there 
are different types of spaces inside the address space!

I think I remember hearing you mention I/O earlier today. Ice cream and oreos . . . no . . . 
input/output, right? 

Yeah. The I/O ports live inside this I/O space. As I explained before, the CPU uses these I/O 
ports to talk to external devices directly (such as keyboards and mice). This is why your 
computer responds when you press a key on the keyboard.

* In some systems, the 
I/O space is not part of 

the address space.

Small

I/O space*

ROM space

RAM space

address 
Space

Keyboard

I/O port

Address 
space

CPU
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Interrupts Are Useful

Let’s wrap up today 
by talking about 

interrupts.

Interrupts...! 
Gah. I suppose the 

world is full 
of unpleasant 
interruptions.

But for computers, 
interrupts are a...

Really! Useful! 
feature!!

What do 
you mean?

Imagine you’re 
cooking 

something.

But if your 
phone rings, you 
temporarily stop 

cooking to answer it, 
right?

Yeah, I 
guess.

Just 

remembering it!!

Rage

Whip!

What Are Interrupts?
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While answering the 
phone will interrupt 
your previous task 

(cooking)...

that might be a 
good thing if the 

call happens to be 
important.

I see... 
I guess 

that’s true.

I don’t mind 
interruptions if they’re 

really important.

The call might be from a 
senior I gave up my train 

seat to who wants to give 
me his enormous inheritance, 

who knows?!

I’ve never seen 
thoughts as optimistic 
as this. She’s way past 

delusional!!

Well, uh, I guess 
what I want to say is 
that interrupts are 

really useful...

Since they let you 
advance multiple 
tasks efficiently.

Phone 
call

Task B

Cooking

Task A



So even if your CPU 
is busy with some 

calculation...

it will still respond* 
right away when you 
move the mouse or 
press keys on the 

keyboard. 

Ah! Yeah, I wouldn’t 
want to be ignored 
by my computer just 
because it was doing 
some calculations.

* We call the process of the computer 
keeping pace with signals from 

external devices synchronization.

Because of 
interrupts...

The computer can 
concentrate on 

that previous task.

Let’s assume the CPU had 
to monitor the keyboard 

periodically to check whether 
a key had been pressed...

If there were no interrupts... If there are interrupts...

Look! Doesn’t 
that seem 
wasteful?!

Whoa. There would 
be a world of 
difference in 
productivity...

Someone 
pressed a 

button!

Oh!

There’s no 
one here 

you know...

Keyboard

Did someone 
press a key?

Did someone 
press a key?

Did someone 
press a key?

Calculations 
are going 
slowly...



Also, after 
the interrupt 

is over...

It’s important that 
the CPU is able to 

easily return to the 
previous calculation.

So it has to 
save where 

the program 
counter was 

and all the data 
it was using 
somewhere.

Hmm, yeah 
that makes 

sense.

It would be  
pretty annoying if the 
ingredients I was using 
disappeared whenever I 

was interrupted.

And I wouldn’t like 
to forget where 

I was, either.

That’s 
right.

And that’s why...

I’d like to 
explain 

interrupts.

nex-

You’re going 
to explain them 

to me?!

Don’t interrupt me!!!

Number 77 and so on...

Just a small 

reminder!



126 C hapter 3 C PU Architecture

The Stack and the Stack Pointer

Okay, let’s get right into it. As I said, to be able to return to the task it was doing before the 
interrupt, the computer needs to take some memos before it starts a new task.

It uses something called the stack—a part of main memory reserved for bookkeeping—
to do this. The way it does this is pretty interesting—take a look.

Ooh, that’s a funny way to remember things! It’s kind of like a stack of books that you can 
keep piling up, but if you want to take one out, you always have to take one from the top. 
You can’t just take data from anywhere.

That’s exactly right. And a special register holds something called the stack pointer (SP for 
short) that points to the last stack address we worked with.

I see. While the program counter keeps track of the address for the next instruction, the 
stack pointer keeps track of the last address on the stack.

You push data 
to add it to the 

stack...

...And pop data 
to remove it 

from the stack.

But removes 
in the reverse 
order... 3, 2, 1

Stack

It saves 
in order... 

1, 2, 3

The address 
that the 

stack pointer 
remembers



What Are Interrupts?  127

When using stacks, it’s important to use the stack pointer correctly. Because . . .

With just one interrupt, everything is fine. But if you keep adding interrupts one after 
another, the stack will keep growing and eventually bad stuff will happen. . . .

Whoaaa! I’m not sure I’m getting what’s happening there.

When working with the CPU, interrupts can be really efficient. But if you don’t know how to 
work with the stack, you’re bound to make a program that runs into problems like this. And 
that’s all I have to say about that!!

So you were also like that once, right? You didn’t know how to work with the stack and 
something happened right? I’m right, aren’t I?!

Fuhahahah! I’m just talking hypothetically!

Ah! Have you ever made one of your programs go out of control like this?

Bugs or even just frequent interrupts that the stack has no coping mechanisms for can 
result in the stack pointer losing control over the program’s execution.

This usually means that the person or people who wrote the software didn’t properly 
understand the implications of using a stack...

The data that is saved during an interrupt consists of the 
accumulator, status registers, and the program counter.

Data from the 
main process

Data from 
interrupt B

Data 

Data from 
interrupt A

Stack 
pointer
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Interrupt Priority

Ahem. Let’s try to refocus and talk a bit about interrupt priority.

Let’s once again assume that you were interrupted with a phone call while cooking. 
Now let’s assume that you also hear the doorbell while on the phone. What would you do?

Eeeeh!? That’s just bad timing! I don’t think I could deal with that. I’d rather people would 
stop interrupting me all the time. . . .

Heh heh heh. Yeah, I thought so. This is when interrupt masks are really useful! By using 
an interrupt mask, you can avoid being interrupted at all. You know, like how you can hide 
your face behind a mask.

Yeah, wearing a mask can stop all kinds of things!

But you can’t let your guard down. You can still be forcefully interrupted by some things, 
even if you’re using a mask. We call these resets!

Resets are the interrupts with the absolute highest priority. They are special inter-
rupts that are not affected by masks.

Resets! The word does have a kind of “don’t argue with me” air about it. Just like when you 
press the reset button on your game console, it returns to its initial state, right? It really 
gives me this “let’s start over” vibe.

Ding 
dong!

Interrupt B: 
doorbell

Interrupt 
A: phone 

callMain task: 
cooking
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Yeah, that’s right. And whether it’s your computer or your console, both of them start at 
their initial state when you turn on the power, right? That’s because when you turn on the 
power, the first thing the system does is issue a reset.

Resets return programs to their initial state. Put another way, they return all the cir-
cuits to their initial state. Completely. This is why when we want the computer to wake up 
nicely—that is, when we want it to start in a functional state—we have to issue a reset.

It seems interrupts have all sorts of uses. 

There are also timer interrupts that issue an interrupt when they reach zero after counting 
down using a decrementing counter. (Think 3, 2, 1, interrupt now!) Using these, it’s pos-
sible to execute programs at regularly timed intervals.

Ah! That timer interrupt gave me an idea! There is a program that runs every day at 7 am 
that sounds a bell when I’m executing my sleep task. It’s issuing an interrupt right when I’m 
snoozing away peacefully!!

Ah. That’s just your alarm clock.

There are also some interrupts of the highest priority that the CPU will not mask even 
though these interrupts might not be resets.

We call these interrupt signals that go through masks non-maskable interrupts (NMI). 
They can have many uses depending on the system architecture, and they’re really conve-
nient in some cases.

Oooh, it felt a bit scary when you said it was forceful, but I guess a bit of force is necessary.
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Okay, that’s enough 
for today! Thanks!

By the way, 
you’re still taking 
good care of my 

Shooting Star, 
right?

It’s really 
important 

to me.

Shooting 
star...?

Oh, that black laptop? 
It’s fine.

I put it under 
one of my best 
shogi boards! 

That has to be 
one of the worst 
places to put it!!

Don’t worry, I’m joking! 
I put it in a safe place, 
and I’ll give it back as 
soon as you’re done 
teaching me about  

CPUs.

That’s okay then, 
but you’re really...

…If you’re that 
worried about 
it, want to come 
by tomorrow?

It’s not 

a stand!

Like 
this!



...wha-?
I mean, we went to that 

fast-food joint the other 
day and had cake today, so 
we’re really consuming a 

lot of calories!

And if we go out 
every day, it’ll 
get expensive! 
Tomorrow is 

Sunday, so if you 
want to come by... 

Very well. 
I shall take 
you up on 

that offer.

But you’ll have to clean every 
corner of your room before I 
arrive!! Don’t think I shall miss 
even a single mote of dust!!!

What do you think 
you’ll be doing?! 
You’re just coming 
over to teach me. 

That’s it!!

Are you 
a maid??

Bam
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Memory Classifications

ROM stands for read-only memory and is a type of memory that will not lose its data 
even if the power is turned off. As the name implies, you can only read from ROM. You 
can’t write to it.

In contrast, with RAM, which stands for random access memory, you can read from 
or write to any address in any order. You might think that ROM and RAM are opposites, 
but that isn’t necessarily the case.

As you can see in the image above, the opposite of RAM is actually SAM (sequential 
access memory), which was an older type of memory commonly found on magnetic tapes 
and drums. As the name suggests, it could only read memory addresses in order. In addi-
tion, the opposite of ROM is the now defunct RWM (read-write memory).

Memory that retains its data even when the power is turned off and allows this 
data to be accessed again when the power comes back on is called non-volatile memory. 
Memory that loses its data when the power is turned off is called volatile memory.

These terms are no longer commonly used, however, and have largely been replaced 
by RAM (instead of volatile memory) and ROM (instead of non-volatile memory).

I/O Ports and the GPU

If there were no connection between input/output devices and the CPU’s registers or 
ALU, the CPU would be unable to accept external input. External input doesn’t only come 
in the form of character input from the keyboard; it can be a mouse click or any electri-
cal signal. If we didn’t have some output, such as LEDs that light up when an operation is 
complete or some other signal, it would be very hard for us to interact with any com-
puter. In the same way we need feedback, the internal data bus needs input and output 
ports (I/O ports) to communicate with external devices such as memory and so on.

Can only be 
accessed 

sequentially

Can be accessed 
randomly

Can only 
read

Can read 
and write

Memory
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The most commonly used output device is the computer display. This is an example 
of a device that is not connected directly to the CPU. The display is instead connected to a 
special IC called the GPU (graphics processing unit), which generates and outputs images 
on demand. When the CPU needs to use the GPU, it has a special I/O port dedicated to 
GPU communication.

Smaller systems sometimes don’t have a GPU but are still attached to a color LCD 
(liquid crystal display). In these cases, the CPU communicates by sending any necessary 
data through an I/O port to an LCD controller. This LCD controller and its driver then 
output the image data to the display.

Clock Frequency and Degrees of Accuracy

Of course, you need electricity for the CPU to work. But you also need a clock frequency. 
A clock is a signal that alternates between high and low voltage at regular intervals. The 
clock frequency is how many times this signal alternates in one second.

The clock is like the heartbeat of the CPU. It is essential for updating the CPU’s 
internal circuits, such as the latching of the data inside the ALU and the block* advancing 
the program counter.

Clock frequency is measured in Hz (hertz), which is a measure of how many times 
the clock cycles in one second. So, a clock running at 40 MHz would be cycling 40 million 
times per second.

This clock speed is also a measure of the performance of the CPU. Everything that 
the CPU does, like instruction decoding and ALU operations, it does in synchronization 
with the clock. The CPU can execute one action per clock cycle, so the higher the clock 
frequency, the higher the clock speed and the faster the execution speed of the CPU.

*  Block is a term used to denote the group of things needed to realize some function.

Display

No direct 
connection

Keyboard
Exclusive 
I/O port

Directly connected!

I/O port
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The degree to which the clock speed matches the clock frequency is called the 
degree of accuracy. When using computers for communication applications, connecting 
two devices with clock frequencies that do not match can cause timing problems.

Clock Generators

We call circuits that generate clock signals clock generators. Most CPUs have internal 
clock generators, but it is also possible to connect externally generated clock signals 
to a CPU. The different components inside the CPU that make up the clock generator—
including the crystal oscillator, capacitors, and resistors—all contribute to the accuracy 
of a clock signal’s frequency. Some situations don’t require high accuracy, but if a CPU 
must be synchronized with other devices to exchange data, for example, then the accu-
racy of the clock signal’s frequency is a high priority.

What Are Crystal Oscillators?

Crystal oscillators are made from small artificial crystal shards 
that have been cut incredibly thin. If you attach two electrodes to 
a shard and apply a voltage, the crystal warps. By fluctuating the 
direction of the voltage, it is possible to create vibrations that give 
rise to a stable frequency. Consequently, you can generate oscilla-
tions at very precise time intervals.

Crystal oscillators are used in many kinds of devices in which 
precise time intervals need to be measured, such as computers, 
phones, and watches. The quartz in a quartz watch is actually a 
crystal oscillator.

By connecting clock generators to crystal oscillators and 
condensers (electronic components that store and release electri-
cal charge), it’s possible to create an alternating signal.

We get a higher number of clock 
cycles over the same amount of time!

Fast 
clock 
speed

Low voltage

High voltage

The flow of time

One clock 
cycle

Slow 
clock 
speed
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To achieve a high degree of accuracy, you can use an external clock signal instead 
of the clock signal from the CPU’s internal clock generator. External oscillators usually 
provide higher quality clock signals than internal clock generators. 

Timer Interrupts

By using the decrementing counter inside CPUs, we can initiate interrupts whenever the 
timer reaches zero. We call this a timer interrupt.

Timer interrupt block

Amount to 
count from

Multiplication 
factor

Latch signal

Initial value 
register

Select  
register

Timer 
interrupt

Decreasing  
timer

A Countdown  
3, 2, 1, 0

Timer basis 
clockPrescaler 

(frequency 
divider)

Lowers the 
frequency

Master 
clock

It is also possible to use the CPU’s base clock (or master clock) with a frequency 
divider.* Dividing the CPU’s base clock with a frequency divider allows you to increase 
the time required for a countdown timer to count to zero. Indeed, you can change the 
amount of time required for the timer to count down to zero from several seconds to 
several hundred seconds.

It is then possible to execute some program at given intervals by setting the initial 
value of the countdown timer to some value (for example, 100). To change the interrupt 
frequency, all you need to do is tell the CPU to rewrite the register where the “value to 
count down from” is stored. Changing this value from 100 to 50, for example, would 
double the interrupt frequency.

You can set a countdown timer to run even while other programs are running, and 
it will issue an interrupt when it has counted down to zero. There are many uses for this. 
For example, you can turn a light on and off at fixed intervals. Timer interrupts are more 
effective than other methods for doing this because they save valuable CPU time.

*  Frequency dividers change the period by lowering the frequency.
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How to Use Timer Interrupts

To use a timer interrupt, you must first configure it by writing a value into its 
control register. The value written to this register determines the clock source, 
whether the clock frequency is to be divided before counting and by how much, 
and other timer behavior.

Next, we write the initial value into the counter and set the timer to start on 
the reset signal. After it has started, the timer will interrupt the CPU every time it 
counts down to zero.

We then rig the timer to start on the reset signal (see the next page) and to 
cancel if commanded by the CPU to do so. After it has started, an interrupt signal 
will be sent from the timer block to the CPU control circuit every (master clock 
cycle) × (multiplication factor) × (value to count from) units of time.

Finally, let’s examine the timer interrupt component present in classic CPU architec-
tures, which can be seen in the image below. INT here is the signal that the CPU uses to 
send instructions to the timer interrupt block. RESET (timer reset) is the signal used to 
start the timer.

If you were to leave the reset input in an active state, the timer would stop and 
never start. If you then were to clear the timer reset, it would start counting down again 
and eventually issue an interrupt. After this, it would count down from the set value on 
every cycle of the multiplied master clock frequency, issuing an interrupt signal when it 
reached zero.

When it reached zero, it would once again latch to the value stored in the “value to 
count from” register and start over. By doing this over and over again, the component is 
able to produce interrupts at fixed intervals indefinitely.

Reset Signals

To reset means to set programs and internal circuits to their initial state. The program 
counter is set to zero, and temporary operational data is cleared. A reset signal is issued 
every time you start your computer. This is extremely important as it makes sure that 
any programs you run after the start-up process work correctly. 

Let’s take a closer look at the reset process. The reset signal is raised by setting an 
active state after a low voltage state. After you turn on the power, the voltage will fluctu-
ate a bit before finally settling down at a stable level. If the CPU were active during this 
period, all kinds of problems would result. This is why the reset signal is constantly active 

Timer 
interrupt 
control
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during this period, making the CPU unable to process anything. In other words, we pro-
tect the CPU by maintaining the reset state until the voltage has stabilized. Then, when 
the voltage has stabilized, we release the reset signal by raising the voltage.

If, for example, the CPU were to start acting in an unexpected manner, it is possible 
to initiate a forced reset by lowering the voltage below the necessary level (and therefore 
enabling the reset) and setting all programs and circuits to their initial state. Resets are 
an essential function needed to ensure that the computer will work as we expect it to.

CPU Performance Is Measured in FLOPS

CPU performance is determined by the CPU clock speed and its operation execution speed. 
The clock speed tells us how often the logic circuits in the ALU can perform calculations. 
And the operation execution speed tells us how quickly the CPU can perform calculations 
one after another.

Older CPU ALU blocks worked only with integer arithmetic. Back then, the CPU’s 
performance was measured by how many instructions it could handle in one second, or 
its MIPS (million instructions per second) value, rather than by how quickly it could per-
form calculation operations. As its name suggests, MIPS indicated how many millions of 
instructions the CPU could handle in one second.

These older CPUs were, of course, also able to work with floating-point values, but 
modern CPUs have specialized integrated hardware for just this purpose. This is why 
in more recent years the preferred measure of performance has become how many 
floating-point operations the CPU can handle in one second, or MFLOPS (million floating-
point operations per second). Once again, as its name suggests, this value indicates how 
many millions of floating-point operations with 15 significant digits the CPU can handle 
in one second.

It has stabilized, 
so we can release 

the reset.

The voltage is 
unstable, so we keep 

the reset active.

Reset 
input

Stable

Power 
voltage

Vo
lt

a
g

e

The state of the reset signal and 
voltage changes over time
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We sometimes use units other than MFLOPS, such as GFLOPS (gigaFLOPS) and 
TFLOPS (teraFLOPS). One GFLOPS is the processing of a billion floating-point operations 
with 15 significant digits in one second. One TFLOPS is the ability to process a whopping 
trillion floating-point operations with 15 significant digits in one second.

Kyaa~~~~!  

I’m so 

embarrassed...

You can see the 
performance of a 
CPU by looking at 
its FLOPS value!



4

Operations
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Thank you. 

Welcome! 
Please 

come in.

Aah... Yuu is in my house...

what am I saying?! Why 
am I even nervous?!!

Hmm...

Everything seems 
pretty clean. I was 
expecting it to be a 

lot messier...

I was hoping...

What are you 
upset about?!

wham

wham

My  
wonderful 
cleaning  

plan...

Types of Operations
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I can’t have you 
looking down 

on me.

The best shogi players 
keep things tidy! A well-

ordered space is essential 
for a well-ordered mind. 

I’m also really...

Hey mom! 
Sis brought a 

boy home!

Really? No wonder 
she spent all 

night cleaning!

There’s a 
first time for 

everything. 

Keeping your presence of 
mind in difficult situations 
is what makes a strong 

shogi player, too!!

Uh, I guess 
congratulations 
are in order for 
a night’s work 

well done...
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There Are Many  
Types of Instructions

Okay, today 
we’re going 

to talk about 
instructions.

Oh, I remember 
we talked about 

instructions 
before. These 
ones, right?

Programming 
instructions are really 
just strings of 1s and 
0s, sometimes called 

machine language.

Depending on the 
type of instruction, 
the length of the 

instruction (how many 
bytes long it is) and the 

number of operands 
might change.

CPUs only understand 
machine language.

Uh-huh...

So there are lots 
of different kinds 
of instructions, 

right?

I understand 
this!

The value 
or address 

to use

Operand

instruction

Opcode 

Jump

Store
Compare

types of opcodes

operand

...to something

Instruction code 
(opcode)

Do something...



That’s right! I’ve 
categorized 

different types of 
instructions here 

in this table. 1.	 Arithmetic instructions

2.	 Logic instructions

3.	 Bit shift instructions

1.	 Data transfer instructions

2.	 Input and output instructions

3.	 Branching instructions

4.	 Conditionals (comparison 
instructions and so on)

I’ll be going 
through these in 

order today.

Wow, there are 
that many...?

Well, you’ve already 
learned a lot, so 
I wouldn’t be that 

worried.

If you understand 
these instructions, 
then you’ll know 
what is happening 

inside the CPU.

I see...

Then give me a detailed 
explanation of all these 

instructions in under 
three seconds!!

Don’t give me 
impossible 

instructions 
like that!!!

Instructions that don’t 
deal with calculations

Instructions that deal 
with calculations

Instruction Types
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Instructions for Arithmetic 
and Logic Operations

Let’s start with 
these two.

Do you 
understand what I mean 
by arithmetic operation 

and logic operation 
instructions?

Things like addition 
are arithmetic, and 

things like “AND” are 
logic, right?

So, it’s basically what 
type of instruction 

they are!

Yeah, but to get a deep 
understanding of these 

things, we really need to 
look at what’s happening 

inside the ALU...

But let’s leave that 
piece of fun for later 
and continue with the 
other instructions.

What Are Bit Shifts?

Logic  
operations

AND (logic intersection)

OR (logic union)

NOT (logic negation)

Arithmetic  
operations

PLUS (Addition)

MINUS 
(Subtraction)
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What Are Bit Shifts?

So, next up are bit 
shift operations?

Well, I guess it has 
something to do with 
moving bits, but other 

than that...

Yeah, that’s right. 
Look at the next 

figure.

Logical right shift (Using two bits)

remove the bits 
on the right...

and add 0s 
to the left.

We move the rest of 
the bits two places 

to the right!

As you can see, bit shifting 
moves the bits left or right 

all at once!

Ooh!! Just like you said, 
they all moved! They were 

shifted together.

This operation is  
performed in the accumulator, 
the register where operational 
results are temporarily stored.

(Bit shift functionality 
resides in the accumulator.)

Bit shift 
function- 

ality

Accumulator
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Hmm, but...  
what do you use 

shifts for?

Heh, well, there are 
several uses.

One that’s fairly easy 
to understand is that they’re 

used to perform certain 
division and multiplication 

operations quickly.

Division? 
Multiplication? 

What do you mean?

That last example 
involved a right 

shift using 
two bits.

The result is 
actually equal to 100/4 

(100 divided by 22) of 
the original value!

Left shifting a binary number 
by N bits is equal to multiplying 

that number by 2N.

This really is 
useful! But this is 
only possible in 

binary, right?

Right shifting a binary number 
by N bits is equal to dividing 

that number by 2N.

Right shift by 
two bits

Decimal

(100/4)

Decimal

(Binary)
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The Sign Bit Lets Us Express 
Negative Binary Numbers

Uhh . . . I can see how 011 would make +3 just by thinking in simple binary. But why does 
101 equal –3? That doesn’t make any sense.

Remember complements? When expressing negative numbers in binary, we use the two’s 
complement.

Oh, now I see it! So to express the negative value of 3 (011), we get 101. With the impor-
tant part being the sign bit to the far left.

Before I explain bit shifts more, I want to talk briefly about sign bits.

Sign bits . . . ? What are those?

In a binary number, the sign bit is the bit to the far left, and it tells us if the number is 
positive or negative. If the left digit is 0, the number is positive, and if it’s 1, the number is 
negative. 

Look at the image below. The most significant bit, which is the leftmost bit, is the sign 
bit. The sign bit, along with the rest of the bits, determines what numerical value is being 
represented.

represents −3

represents +3

Sign bit

Examples

Number

Sign bit

Add 1.

Flip all 
the bits!

(0 means positive, 
and 1 means negative)
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Yes. Using three bits without a bit sign, we could express eight different numbers from 0 to 
7, but using three bits including one sign bit, the range changes to –4 to 3. We still get eight 
numbers though, as shown in the table below.

Doesn’t that mean that if I have some binary number—say 101—I could interpret that 
number as -3 if I assumed it was signed or as 5 if I assumed it was not signed?

They look the same, but the expressed values are completely different. . . . That’s just 
confusing, don’t you think?! What were they thinking??

Ah, it’s true that humans wouldn’t be able to tell the difference. Computers, however, have 
dedicated systems that keep track of this.* So don’t worry about it!

* Programs have a flag that changes depending on the calculation’s result to track changes to the sign. If 
the program monitors this flag, it’s possible to tell whether any unforeseen changes occur to the sign of a 
number. Not all CPUs support this feature, though, and if the CPU doesn’t, it’s up to the program to keep 
track of the sign bit.

Signed three-bit numbers

Sign bit

Two’s 
 complement

Number
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Logical Shifts and Arithmetic Shifts

Now let’s return to bit shifts. There are two types, logical shifts and arithmetic shifts. 
Essentially, the difference is whether we are using the sign bit we talked about before.

Oho! So logical shifts don’t have sign bits, but the arithmetic shifts do. I see where this is 
going.

The outcome of a logic operation is always either true or false, right? That means that 
concepts like sign bits or negative numbers wouldn’t exist. But since arithmetic operations 
deal with adding and subtracting numbers, those concepts would be necessary.

Mm, yes! That is an astute observation—you are correct.

Logical shifts are very simple, and we’ve already talked about them. Arithmetic shifts, 
on the other hand, are a bit tricky.

Has sign bit

Arithmetic shift

No sign bit

Logical shift

Shift 
operation

Should we fill  in the blanks with 1s or 0s?
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Look at the next figure. When performing arithmetic shifts, we fill in the blank spaces with 
1s if the sign bit is 1 and with 0s if the sign bit is 0. You have to pay attention to the sign 
bit, essentially.

Ohh! With logical shifts, you could just fill the blank spaces with 0s without a second 
thought, but with arithmetic shifts, you have to keep the sign bit in mind.

There is another really important thing, though. Please look at the next image. We shift a 
positive number (the sign bit is 0) to the left and . . . whoa! A 1 from the number value bits 
might end up becoming the most significant bit.

Oh my . . . that can’t be good. It would look like the number turned negative all of a sudden 
(since the sign bit is 1).

Yeah. While the operation was only supposed to multiply the value 2N, it ended up flipping 
the sign bit instead. We call this overflow, just like how water can overflow from a cup if 
you pour too much in. When this happens, it means that the calculation result used more 
digits than it was allowed and therefore “overflowed.”

Fill in with 1s

When shifting 
two bits to 
the right

Negative value

Lost

Sign 
bit

Fill in with 0

When shifting 
one bit to 
the right

Positive value

Lost

Sign 
bit

Arithmetic right shift
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A serious state of affairs, for sure! I guess this is an error? It’s not like you can pretend it 
didn’t happen . . . and you couldn’t continue the calculation like this.

Mhm. When overflow occurs, the overflow flag (overflow bit) of the status register is set. 
It makes sure to remember that an overflow occurred as a result of a calculation.

Hah! So another register is in charge of taking notes about any grave errors that might 
occur in the accumulator register. This way they won’t be missed!

Take note! Not all CPUs are 
guaranteed to have this feature.

Overflow and Underflow

Calculations using floating-point numbers (as opposed to the integer operations we’ve been 
talking about) can both overflow and underflow if the algorithm (the method of calculation) used 
produces a result that falls outside of the acceptable range of values.

For example, if the result of some calculation is a value that is so close to zero that it cannot 
accurately be expressed using the available bits (think 0.00000000000 . . . 1), it would generate 
an underflow.

The bit on the far left changed! 
(Overflow)

Fill in with 0s

When shifting 
three bits to 

the left

Sign 
bit

Arithmetic left shift
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Circular Shifts (Rotating Shifts)

Before we move on to the next subject, I would like to talk a bit about circular shifts 
(rotating shifts), which are important in cryptography.

The easiest way to think about it is as if the edges of the bit sequence in the accumu-
lator were glued together into a wheel that can rotate freely.

Oh. It’s like we stuck the two edges of the tape together. Spinnn!

Applying circular shifts has the following effect. Remember that the left edge (most signifi-
cant bit) and the right edge (least significant bit) are connected.

Data Transfer 
Operations

Rotates!

Right edge  
(least significant bit)

Left edge  
(most significant bit)

When shifting 
three bits to 

the right

...Appear on 
the left!

The bits at the 
right edge...

…appear on 
the right!

When shifting 
four bits to 

the left

The bits at 
the left 
edge...

Circular shift
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Data Transfer 
Operations

Okay, let’s talk 
a bit about some 
instructions that 

aren’t calculations.

Just what I was 
hoping for!

First off, we have 
the data transfer 

instruction. As you might 
guess, it’s an instruction 

that deals with the 
transfer of data.

I know this! 

They’re the 
instructions used when 
the CPU registers read 

and write data from 
memory, right?

CPU 
(registers)

Read

Write

Memory

Register A Register B

Yeah, but that’s not all. 
They’re also used to 

transfer data between 
registers in the CPU.
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Input/Output 
Instructions

Next up are 
input/output 
instructions.

These instructions are used 
when the CPU exchanges data*  

with external devices 
(I/O devices and so on).

Umm... I/O ports are 
used when working 
with input and output 

data, right? 

Yeah, You 
remembered!

Wellll, if you have my 
input capabilities, you 
don’t forget anything 

you’ve learned...

Riiiiight...  
let’s move on to the 

next instruction!
* There are two types of data transfer methods.  

See page 185 for more information.

Branch 
Instructions

External 
devices

I/O port

Input and 
output data

CPU

Ignores



Jump!

Next, we’ll talk 
about the jump 

branch instruction.* 

Aah, I remember us 
talking about jumping 

before. 

Basically, if necessary, 
the program can jump to 
the address of the next 

instruction to be executed.

Yeah, even though we might 
be executing address 

number 7...

the next instruction to be 
executed might well be instruction 
number 15 or instruction number 3, 

just like in this figure.

I suppose that means we can 
control program flow by 
using branch instructions.* There are cases in which we discriminate between 

branch instructions and jump instructions. 

Branch 
Instructions

The address 
to jump to!

Hop

Jump

Jump

15

9

8

7

3

direction 
the program 
counter is 

moving

The address 
location 

containing 
the currently 

executing 
instruction



So... I guess it’s one 
small step for man, 
one giant leap for 
computers! Right?

It’s also worth  
noting that some jumps 

are unconditional, 
while others require 

that certain conditions 
be met.

I see! There are dolphins that 
jump whenever they feel like it, 
while other dolphins jump only 

when there’s food!

It all makes sense!!

Sure...  
whatever helps 
you remember...

Branch 
instructions

Unconditional 
jump

Conditional 
jump

that’s an 
orca, by 
the way.
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Branch Instructions, Jump Instructions, and Skip Instructions

Ohh! So they’re different in terms of the distance moved. Pretty cool.

There are also other program control instructions, such as STOP and SLEEP instructions. 

When it comes to branch instructions, there is unfortunately no standard terminology. 
Depending on the CPU maker, the instructions might be known as branches, jumps, or even 
skips. But lately, it’s become popular to differentiate among them in the following way.

The differences 
among the three

1.	 Branch instructions branch to 
addresses not far from the 
execution site.

2.	 Jump instructions jump to 
addresses farther away from 
the execution site than branch 
instructions do.

3.	 Skip instructions can either skip 
or not skip the next instruction 
to be executed.

Different CPUs Use Different Terminology

If you look at the mnemonic tables of CPUs from companies like Intel (the i8080) and Zilog (the 
Z80) at the dawn of the 8-bit CPU, you can’t even find the word branch mentioned. If you instead 
look at the single-chip 16-bit TMS9900 CPUs made by Texas Instruments (TI) in 1974, jump was 
used for short branch operations, while branch was used solely for branch operations concerning 
registers. Then, the ATMega series CPUs made by Atmel, which are part of the Arduino micro-
controllers, use jump for changing the current execution address unconditionally, but they also 
have skips and branch instructions that relate to the currently executing address. 

Jump

Skip

Branch

Branch

Jump

Direction 
the program 
counter is 

moving

address 
containing 

the currently 
executing 

instruction
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Condition Evaluation and 
Status Flags

Finally, let’s talk a 
bit about condition 

evaluation (comparison 
and other instructions).

A good way to 
think about it is to 
consider the ATM 
example again.

Ah, such cold-hearted 
judgement! To have your fate 

decided by a comparison 
between the values of 

your account balance and 
the amount you want to 

withdraw...

I suppose. In this case, 
two instances of data 
were evaluated using a 
comparison instruction 
that has some kind of 

condition.

Data A

Data B

Is data A bigger? 
What’s it going  

to be?

Compares 

them and 

decides!

Ughhh. And what a 
callous decision 

it is...

(See page 26.)

  e operation result 
was positive.

The operation result 
was negative.

Please take 
your money.

Insufficient balance

Ack...

CPU
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Now, I want 
you to pay 

attention to...

The status flag* 
that is used when 

evaluating whether 
a condition is met.

Status flag...  
Didn’t we talk about  

status output before? 
Wasn’t that some value that 
indicated the state of some 

operational result, Like 
whether it was positive and 

stuff like that?

Yeah. The purpose of the 
status flag is to record 

information like that.

* Also called a status bit

It signals the result of a 
calculation using either a 

zero or a one.

Set (1) Reset (0)

Hmm. So a flag is set 
whenever a condition 

is evaluated to be 
negative?

Positive 
value

Status output
Command input 
substraction

Example:

The result of the 
calculation is 

positive!

The flag is not up...

The result of the 
calculation is 

negative!

The flag is up!
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There are actually 
many types of flags, each 
of them raised (set to 1) if 
some particular condition 
associated with the flag 

evaluates to true.

Decisions are made in 
accordance with either a 

single flag state or some 
combination of several 

flag states.

So we can look  
at single flags or 

combinations of flags 
to decide what to do, 
depending on whether 

some condition  
is met.

In addition to these, we introduce some 
other common flags on page 187.

A status register is 
simply the 8-bit or  

16-bit combination of 
a lot of these flags 
(each of them one bit).

Ooh, status registers! 
They’re like hardworking 
detectives, each of them 
remembering different 
information about an 

operator!!

Who are you 
supposed 

to be?

Set when the 
calculation results 

in a carried digit

Carry flag

Set when the result 
of a calculation is 

negative

Sign flag

They are either 
1 or 0.

Sign 
flag

Carry 
flag

Every bit stores 
different status flags

Status registers
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Putting Branches and Condition Evaluation Together

Okay, we’ve learned about branch instructions and condition evaluation, but we can get 
some truly useful instructions by putting the two together.

One example is the jump on minus instruction. It simply states that the program 
should jump to some address if the value in the accumulator is negative.

Yeah, we can also make other combinations of instructions like conditional jumps, 
conditional skips, and conditional branches. Thanks to these, we can do some really 
useful things.

Whoa! This seems absolutely essential not only for computers but also for any electrical 
application really!

So basically, jump to this address if these conditions are all met!

Or, put another way, the program is able to change its execution depending on some 
condition.

Some things we can do using conditional jumps 
and other instructions

1.	 We can run a different program depending on some condition.

2.	 We can decide not to run a program (skipping it) depending on some 
condition.

3.	 We can set and reset bits on output ports depending on some condition.

For example, we could control a lamp by setting or resetting some I/O 
port value to turn the lamp on and off.

Jump to some 
address

Branch (jump)

When 
negative...

Condition
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How Many Operands 
Do We Have?

It seems you 
understand the 

different instructions 
we’ve talked about.

So let’s move on 
to learning about 
operands next!!

Operands...  
Oper-Operation? 
As in surgery?

I’ll just pretend 
I didn’t see that 
cosplay, okay...?

Says the one who 
was cosplaying as 
a detective just a 

minute ago!!

Let’s see. Operands 
are the data and 

addresses used as 
the target of an 
operation, right?

But they can 
also be registers, 

if I remember 
correctly.

The number of 
operands also 

depends on the type 
of instruction we’re 
dealing with. Look at 

the next figure.

Operand

Type of 
instruction

Opcode

Operand Types

The target 
data or 

address of an 
operation



Opcode
Two operands

Add a and b

In this example, 
it seems the ADD 
operation needs 
two operands.

Is that correct?

Yeah. And the ADD here 
is actually something 
called a mnemonic,* 
the human-readable 
representation of 

the opcode.

All instructions have 
either zero, one, or 
two operands. This 
instruction happens 

to have two.

Huh? How could 
an instruction have 
no operands?! That 
seems completely 

pointless!

* In English, Mnemonics are mental tools that help with remembering things.

Heh. Well opcodes 
that have no 

operands do exist.

For example...  
The set accumulator to 1 opcode!!

an instruction that sets all the bits  
in the accumulator to one

set Accumulator to 1

Whoaaa! You’re 
right, that wouldn’t 
have any operands!

Accumulator Ta             da!!
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A lot of operations with zero 
or one operands simply work 
on what’s in the accumulator 

register at that time.

I see! 
The accumulator is 

a popular guy!

Also, for two-operand 
operations where 
both operands are 

addresses...

we call the first 
operand the source 

operand and the second 
the destination operand.

So their roles are 
decided already.

Source 
operand

Destination 
operand

Opcode First Second

Operands Take Many Forms

As you can tell from the names,  
operations like this use the data in the source 

operand to affect data in the destination operand.
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Operands Take Many Forms

Let’s finally 
approach the 
core subject 

here...

Different kinds of operands

•	 Immediate value processing

•	 Address reference

Addressing mode

(how we point to addresses and operands)

1.	 Absolute 
addressing

2.	 Relative addressing

Look at this! There 
are lots of different 

operands, too!

3.	 Indirect addressing

4.	 Address 
modification

Ah... so many! Especially the 
addressing modes! Why are 

there so many types?!

Don’t worry. 
I’ll explain them 

one by one.

Come! It’s time to 
operate with operands!

I’ve deduced 
that...

You’re really 
enjoying that 

costume.

Smack!
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Immediate Value Processing

Let’s start with immediate values.

The word immediate here means that the value will be used right away, just as it is. 
In other words, the operand itself is a value.

You’re right! So I guess this would mean, “Add two to the value in the accumulator.”

And this example shows a two-bit arithmetic left shift. Immediate value operands can be 
used with many different operations—for example, arithmetic operations, shift operations, 
and logic operations.

In the end, it’s just a concrete value though, right? I learned about immediate values 
immediately!

Immediate 
operand

Immediate 
noodles

Immediate value 
operand

Mnemonic 
“Add”

Immediate 
value 

operand
Left

Shift
Arithmetic

Just as it is right now!
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Yeah, in that case, it would turn out like this.

I guess address references have to be operands that are addresses, like address number 1 
or number 2. . . .

Address References

Yeah. Either internal* or external memory addresses, to be exact. The operation will grab 
the data on the address in question and use it.

Hmm, so for example, I could instruct the CPU to get the data on address 1 and address 2, 
add them, and store the result on address 3—right?

That’s right. The accumulator even has its own mnemonic: A. The mnemonic LDA means 
LoaD to Accumulator, while STA means STore Accumulator.

Oh! So is it important that calculations are always done in the accumulator then?

* If you look at the architectural diagram on page 106, you can see that classic CPUs had internal RAM. 
These were also referenced using memory addresses.

LDA Address 1	 Read the data on address 1 and store it in the accumulator.
ADD Address 2	 Add the data on address 2 to the accumulator.
STA Address 3	 Store the value in the accumulator to address 3.

Store

Add

Memory

ReadoutAccumulator
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What Are Addressing Modes?

Okay! Let’s talk a bit 
about addressing 

modes next!

Japanese 
plum 

dressing is 
my favorite...

Yes, yes! On 
salad it can’t—

What? No, that’s 
completely 

wrong!

Addressing modes are 
all about different 

ways of referencing 
addresses!!

Here are the ones we 
listed before.

Hmm...

Addressing modes

1.	 Absolute addressing

2.	 Relative addressing

Four different addressing 
modes seems a bit excessive. 

I mean, how would you 
reference an address in any 
way other than just saying, 

“it’s on number five”?

3.	 Indirect addressing

4.	 Address modification
Why would another way 

be necessary?
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Sure, it certainly would be 
easier to say, “it’s on five,” 
and have the data always be 

in number five.

This is what we 
call absolute 
addressing.

Number 
five

Data

Yeah, yeah! That’s 
the only thing that 

makes common 
sense, right?

Effective 
address Data

By the way... we call the 
address that actually 

contains the data we’re after 
the effective address.

In this case, that 
would be address 

number five.

Yeah, 
it would.

Let’s look at 
some of the 

other methods.

Huh
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Let’s say we pointed 
out number two, and 
when we opened it...

we found our 
data was at 
number five!

Number 
two

Data

A reference 
to number 

five (address 
number five).

This is what we would call 
indirect addressing.

Whaaat? Why 
would you ever 

do something so 
unnecessarily 
complicated...

Ha! It’s like finding a long-lost 
will or searching for hidden 

treasure! Only the ones who are 
tenacious enough to make it to 

the end can get the prize.

Calm down.

There are some merits to 
indirect addressing. If, for 
example, you tried to direct 

address an address with 
a very long number like 

“address number 9999...9”...
Opcode operand

The number of bits reserved for the 
operand is limited, and we can’t have 

arbitrarily long numbers!

The number would 
require more bits than 
we have available for 
the operand, and that 
wouldn’t work, right?

Loooo         ng...

Nope!
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Oh, I see!

But if we used indirect 
addressing, we could first 
go to a closer address 

number that would require 
fewer bits and fit in the 

operand.

Some 
opcode

Limited!

Usable 
addressing  

mode

And depending on 
the opcode, some 
addressing modes 

might not be allowed.

Wow, some opcode 
can’t work with 

certain addressing 
modes.

Amazing!

One reason why CPUs 
can execute complex 
programs is that they 
have so many different 

addressing modes.

And a genius programmer 
like me, of course, knows 

all of them intimately... 
I suppose they might be a 
bit too hard to grasp for 

someone like you.

I-I never said I thought 
they were hard! I’ll get 

them right away. You 
just have to explain 

them first!

In that case, let’s tackle 
all the addressing modes 

in one go.
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Addressing Mode Overview

Modern CPUs can address memory in several different ways, which we call addressing 
modes.

Absolute Addressing

Absolute addressing is when the operand’s value is used as the effective address (the 
address where the operation’s target data is located). It is also sometimes called direct 
addressing.

Depending on the CPU, there are cases where the size of the opcode makes it so 
the CPU can’t address the entire address space. It’s possible to lengthen the operand size 
if need be, however. In 16-bit CPUs, it’s common practice to store the opcode and the 
operand in 16 bits (2 bytes), but if the operand is lengthened, the instruction could end 
up being 4 bytes, or even 8.

Addressing modes

1.	 Absolute addressing

2.	 Relative addressing

3.	 Indirect addressing

4.	 Address modification

Data

MemoryAddress

Operand

Instruction

Hmm
m...
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Relative Addressing

Relative addressing is when the effective address is the result of the sum of the operand 
value and the program counter.

Relative addressing is most commonly used for jump instructions. Since the distance 
to the address we want to point out is limited by the range expressed by the two’s comple-
ment of the number of bits available in the operand, relative addressing is best used for 
conditional branching instructions in the program and is not recommended for any larger 
jumps in the address space.

The base value for an operation that uses relative addresses is the current value of 
the program counter, or PC. As soon as the PC has read an opcode, it immediately starts 
pointing to the next opcode to be processed.

Also, besides using the program counter as the base value for the relative address, 
we can use the address in a register instead. We call addresses like these xx-register 
relative addresses.

Data

MemoryAddress

Added!

Program 
counter

Operand

Instruction
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Indirect Addressing

Indirect addressing is used when the operand contains the address to some register and 
that register, in turn, contains the effective address for our target data.

The best way to think about indirect addresses (and the address modification mode 
coming up next) is their close relationship with arrays in the programming language C. 
When working with arrays, you generally use the effective address as a starting point 
and add or subtract some offset values to or from it, ending up with a new address in 
the end. This process is what we call address modification.

It was a bit difficult, but I 
think I got everything!

I suppose after this, I’m 
also an address master! 

Or admas for short!

Why would you 
shorten that?!

Data

Register

instruction

Operand
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Address Modification

Address modification is the process of using the value stored in a modification register 
to modify a number or address. We get the effective address by adding the value in the 
modification register to a base value, which may be stored in another register or in the 
program counter or even in an immediate value.

One of the most commonly used modification registers is the index register. We 
usually call the register containing the value we want to use as a base the base register. 
Most CPUs create the effective address in this case by simply adding the value in the 
base register and the value in the modification register (the index register, for example) 
together.

By using address modification in this way, you can achieve very practical effects. For 
example, you could extract some particular data from a set by specifying the offset in 
the index register and the start of the data set in a base register.

instruction

Data

Modifi- 
cationBase

Only add the 
value in the 
modification 

register!

Address

Added!

Base register

Modification 
register

Indirectly 
referenced 

address

Comes with 
the option to 

modify the value 
in the operand

Modification 
register

Operand
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A Look Inside the ALU

We’ve finally arrived 
at today’s high point! 
It’s the thing you’ve 
been waiting for...

Let’s go into  
fun-time mode!!

…huh? I wasn’t 
waiting for 

anything.

So cold!

remember, to 
understand arithmetic 
operation instructions 
and logic operation 

instructions, you 
have to...

Aah! Right,  
we were talking 

about the ALU!

Yep! I’m going to use this 
4-bit ALU IC as an example. 

Its name is 74S181.*

But it’s sometimes 
called a bit slice.

A 74S181, made by 
Texas Instruments

* The TI microcontroller we talked about on page 157 used four of these 74S181 circuits. 
They were used in many high-speed calculation computers—for example, in aircraft 

simulators and the like. The 74S181 circuit was eventually simplified into the 74S381 circuit.

Arithmetic 
Logic Unit

The Structure of Operations in the ALU 
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Hmm...? So even 
one of these ICs 

is capable of 
both arithmetic 

operations and logic 
operations? That’s 
pretty impressive!

Isn’t it, though?  
If you look at this 

diagram, you can see 
the entire pin layout.

You choose arithmetic 
or logic operations 
using the mode pin, 

and you use the select 
pins to determine which 

operation to do.

I see. So, for example,  
if I hooked up the IC to an 

air conditioner, the mode pin 
would let me choose if I 
wanted hot or cold air.

Excellent! Let’s finish 
up today’s lesson 
by having a look at 
the architecture 

(circuit diagram) and 
the function table 

of the 74S181 IC.

Output (4 bits)

(Each 4 bits)

Input B

Input A

Mode pin

Carry 
input

Four 
select 

pins
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Whaa! It’s really complicated, but I can see the four-bit inputs A and B clearly. I also see the 
select pins S0 through S3 and the mode pin M.

Yeah, that’s right. The carry is also there, denoted by Cn.

Basic Circuit Architecture of the 74S181
Referenced from a Texas Instruments data sheet (partially revised)

Carry

Mode pin

(Each 4 bits)

Input B

Input A

Select 
pins
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The most important parts of the 74S181 function table are marked with gray.

First off, M is the mode pin, H stands for high, and L stands for low. When M = H, we are 
using logic operations. If M = L, arithmetic operations are being used instead.

Arithmetic operations then further differ depending on whether we have a carry or 
not. If C

n
 = H, that means we do not have a carry, and if C

n
 = L, we do have a carry.

And S is the four select pins, right? Depending on the combination, we have 16 (24) differ-
ent operations to choose from!

74S181 Function Table

For more information on the symbols used in these formulas, please see pages 55–59. PLUS and 
MINUS are exactly what they seem. The symbols +, −, and ⊕ are symbols used in Boolean algebra 
(logical algebra).

There are also some redundant or unnecessary operations in the diagram, as you might see.

Selection
Active-High Data

M = H 
Logic operations

M = L; Arithmetic Operations

S3 S2 S1 S0 Cn = H (no carry) Cn = L (with carry)

L L L L F = A F = A F = A plus 1

L L L H F = A + B F = A + B F = (A + B) plus 1

L L H L F = AB F = A + B F = (A + B) plus 1

L L H H F = 0 F = minus 1 (2’s compl) F = ZERO

L H L L F = AB F = A plus AB F = A plus AB plus 1

L H L H F = B F = (A + B) plus AB F = (A + B) plus AB plus 1

L H H L F = A ⊕ B F = A minus B minus 1 F = A minus B

L H H H F = AB F = AB minus 1 F = AB

H L L L F = A + B F = A plus AB F = A plus AB plus 1

H L L H F = A ⊕ B F = A plus B F = A plus B plus 1

H L H L F = B F = (A + B) plus AB F = (A + B) plus AB plus 1

H L H H F = AB F = AB minus 1 F = AB

H H L L F = 1 F = A plus A* F = A plus A plus 1

H H L H F = A + B F = (A + B) plus A F = (A + B) plus A plus 1

H H H L F = A + B F = (A + B) plus A F = (A + B) plus A plus 1

H H H H F = A F = A minus 1 F = A

* Each bit is shifted to the more significant position.
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Now let’s take a closer look at the opcodes in the function table. For convenience, let’s 
assign a number to each of the opcodes: 0–15, or 16 in total. Of course these numbers may 
not be the same for other CPUs.

I’ll explain the ones with gray backgrounds in detail.

Important Arithmetic Operation Instructions

Opcode 6

No carry: The calculation result F is the difference between A and B minus 1.
With carry: The calculation result F is the difference between A and B.

Opcode 9

No carry: The calculation result F is the sum of A and B.
With carry: The calculation result F is the sum of A and B plus 1.

Arithmetic Operations
Logic Operations

No Carry With Carry

0 F = A F = A plus 1 0 F = A

1 F = A + B F = (A + B) plus 1 1 F = A + B

2 F = A + B F = (A + B) plus 1 2 F = AB

3 F = minus 1 (2’s compl) F = ZERO 3 F = 0

4 F = A plus AB F = A plus AB plus 1 4 F = AB

5 F = (A + B) plus AB F = (A + B) plus AB plus 1 5 F = B

6 F = A minus B minus 1 F = A minus B 6 F = A ⊕ B

7 F = AB minus 1 F = AB 7 F = AB

8 F = A plus AB F = A plus AB plus 1 8 F = A + B

9 F = A plus B F = A plus B plus 1 9 F = A ⊕ B

10 F = (A + B) plus AB F = (A + B) plus AB plus 1 10 F = B

11 F = AB minus 1 F = AB 11 F = AB

12 F = A plus A F = A plus A plus 1 12 F = 1

13 F = (A + B) plus A F = (A + B) plus A plus 1 13 F = A + B

14 F = (A + B) plus A F = (A + B) plus A plus 1 14 F = A + B

15 F = A minus 1 F = A 15 F = A
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Opcode 1: NOR (A,  B)

The operational result F is the negated output of the OR between the A and B bits. 
That is, it is the NOR of the bits in A and B.

Opcode 3: ZERO

The operational result F is 0, regardless of the input.

Opcode 4: NAND (A, B)

The operational result F is the negated output of the AND between the A and B bits. 
That is, it is the NAND of the bits in A and B.

Opcode 5: NOT (B)

The operational result F is the NOT of input B. That is, every 0 bit in B is flipped to a 
1, and every 1 bit in B is flipped to a 0.

Opcode 6: EXOR (A, B)

The operational result F is the EXOR of the bits in A and B.

Opcode 9: EXNOR (A, B)

The operational result F is the negated output of the EXOR of the bits in A and B.

Opcode 10: B

The operational result F is simply B.

Opcode 11: AND (A, B)

The operational result F is the AND of the bits in A and B.

Opcode 12: ONEs

The operational result F is all 1s, regardless of the input.

Opcode 14: OR (A, B)

The operational result F is the OR of the bits in A and B.

Opcode 15: A

The operational result F is simply A.

Important Logic Operation Instructions



182 C hapter 4 O perations

Thanks for today! 
By the way, here’s 

that thing I’ve been 
keeping for you...

Hm, You seem to 
be taking good 

care of it.

By the way... why do you 
call your computer 
the “shooting star”?  

Like a meteor...

Yeah... it’s a bit 
sentimental...

I don’t care 
in that case.

Learn to sense 
the mood!! You’re 

supposed to listen 
to this!!!

Uh... where 
was I...

It might get a 
bit long-winded 

but...

Click

Rattle
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I’ve actually been 
overseas for quite 
some time due to my 

father’s work.

And I only came back 
to Japan recently...

Aah, delusions 
like that can be 
fun sometimes. 

It’s not a 
delusion!! 
I’m telling 
the truth!

The truth... Then 
that must mean...

Unfamiliar 
surroundings 
and customs, a 

deepening loneliness, 
homesickness...

The story of a 
desolate and lonely 
boy making a shogi 
game while thinking 

of his home.

I can’t stop 
my tears!!

What on earth are 
you imagining?! 
And you call me 

delusional?!

Ayumi! 
You should 
introduce 

your guest 
to me.

Japan...

Click

Wahh

kn
ock

kn
ock

I get where 
you’re coming 

from.



184 C hapter 4 O perations

Mom,  
don’t get 
the wrong 
impression 
here! He’s 
just a...

Oh my! Is it Yuu? 
It’s been so long!

. . . . . !!!

It’s wonderful 
to see you again.

You’ve been 
abroad for 

quite some time, 
haven’t you?

It must be more 
than 10 years since 
you and Ayumi last 
played together. 
This is making me 

so nostalgic!

Bow

Umm...

Uh...Huh? What’s 
going on?  
Why? what? 

que?

?
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Serial Transmission and Parallel Transmission

There are two types of digital data transmission: serial transmission and parallel 
transmission.

Systems that use serial transmission send data one bit at a time; systems that use 
parallel transmission send several bits at a time. An interesting thing to note is that USB 
(as in USB memory or USB connectors) is short for Universal Serial Bus, which, as you 
might have guessed, uses serial transmission.

Serial transmission Parallel transmission

S
e
n
d
e
r

Shift Registers and Parallel–Serial Conversion

One of the components often used in logic circuits is a shift register. This type of register 
can perform shift operations and nothing else. An example is the accumulator within 
the ALU.

The most common use for shift registers is to parallel shift several bits of data 
(for example, 8 bits) to the right in one clock cycle. The rightmost bits are then con-
verted and sent as serial data.

There is some discussion about whether this serial transmission function should 
be seen as part of CPU functionality or as part of I/O. Overall, it’s easier to think of it 
as the means by which the CPU communicates with devices other than the memory, all 
bundled together as “I/O devices,” and as distinct from things not directly operated by 
the CPU block.

R
e
c
e
iv

e
r

Simultaneously!

R
e
c
e
iv

e
r

One bit at a time

S
e
n
d
e
r
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An Overview of Some Basic Registers

Registers are useful in many contexts, and they are essential to the CPU. Here are some 
basic registers and their functionalities.

Accumulator

This register stores calculation results from the ALU. It’s designed in such a way as to be 
ready for the next calculation as soon as the previous one is done. It’s called the accumulator 
in part because it’s generally used when incrementing values and counting sequentially, but 
also since it’s often used as the input for a follow-up sum right after another calculation has 
finished.

Instruction register & instruction decoder

These registers store and decode the program instructions. This decoding process deter-
mines not only which operation to execute but also the operands on which to operate.

Status register

The status register is a collection of flags that take the value 1 or 0 as a result of calculations 
and operations. These flags can determine the order of program execution and how the CPU 
interacts with I/O devices. Since flags are only 1 bit each, it is very common to lump them 
together in 8-bit or even 16-bit registers. There are many different kinds of flags, and you 
can read more about them starting on page 187.

Modification registers (Base registers, index registers)

These registers serve as the starting point in certain addressing modes. The base register 
serves as a basis for address calculations. In relative addressing, adding an offset to the 
base register yields an effective address.

Index registers hold fixed values that modify operand immediate values in special 
circumstances to form the effective address. For example, you would add the offset found 
in the index register to a data array’s base address to find a specific value in the array.

TEMP register (Temporary register)

Temp registers are used to save temporary data during the many tasks undertaken by the 
CPU. Depending on the CPU, some blocks of the circuit might have several temp registers 
available. You can see a temp register labeled in the diagram of classic CPU architecture on 
page 106.

Looking at a 
CPU’s register 

configuration can 
tell you a lot about 

its features and 
properties.

Highly evolved 
modern CPUs have 

even more registers 
than this. 
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Program counter (PC)

The program counter holds the address to the next instruction to be executed. All CPUs have 
this register.

Stack pointer

Necessary when working with a stack, this register holds the last used stack address. 

An Overview of Some Basic Status Flags

When the CPU calculates a result, status flags (status bits) might be set or reset. The 
CPU makes decisions by evaluating the status flags, either just a single flag or a combi-
nation of several flags. As a result of these decisions, the program might take different 
branches or end up doing different calculations.

Zero flag (Z-flag)

Indicates whether the accumulator (the result of a calculation) is zero. If the CPU doesn’t 
have a dedicated module for doing comparisons, the Z-flag might also double as the flag 
that reports the outcome of a comparison test (the EQ-flag).

Sign flag (S-flag) or negative flag (N-flag)

If the accumulator contains a number, this flag tells you whether the number is negative or 
positive.

Carry flag (C-flag) or overflow flag (OV-flag)

Indicates whether a carry or an overflow occurred in the latest arithmetic add operation. It 
is also set if a shift operation resulted in overflow. In the case of an arithmetic subtraction 
operation, it is not set if borrowing (the inverse of carrying) didn’t occur.

Borrow flag

Indicates whether a borrow occurred during a subtraction. More often than not, a borrow is 
indicated by the carry flag not being set, but in some cases, the borrow flag might be used 
instead.

GT flag

This flag is set if the outcome of a comparison operation was “greater than.” The GT flag’s 
associated symbol is >.

LT flag

This flag is set if the outcome of a comparison operation was “less than.” The LT flag’s 
associated symbol is <.

ODD flag

Indicates whether the result of a calculation is an odd number.

Interrupt mask

Set beforehand, the interrupt mask determines what types of interrupts will occur. Setting it 
to all 1s will disable interrupts.
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The SLEEP Instruction

In addition to other control instructions, such as branches and jumps, there are instruc-
tions like STOP and SLEEP. The SLEEP instruction disables the program completely, put-
ting it into a resting state temporarily until some input (such as an interrupt) occurs. This 
function exists on the system level as well.

By using the SLEEP instruction, the CPU is able to slow the period of the clock and 
thereby the program, leading to lower power consumption. To return the CPU to its 
normal state, some kind of button on the device usually has to be pressed to trigger an 
interrupt in the CPU itself, rousing the system and programs back to full speed.

Interrupt flag

Indicates whether an interrupt is in progress or not. This flag will be set even if interrupts 
have been disabled.

When the 
condition is met, 
the bit is set to 1,  

and the flag 
stands up.

When the 
condition is not 

met, the bit is 
reset to 0, and 
the flag is put 

back down.

ring
ring
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Assembly and High-Level Languages

Hmm...

How could I 
have completely 
forgotten him...

Really... How could 
you not remember 
him? Little Yuu from 

down the street.

You used to play 
shogi together all 

the time... You’re 
pretty insensitive for 
being my daughter...

Maybe...

my memory is 
actually really 

bad...?



No, that can’t 
be it! I know 
I’m smart!!

Are you done 
talking to 

yourself yet?

Ah, Yuu...

U-umm... I mean... 
About you...

Heh...  
Don’t worry 

about it.

I was away for 
so long, it’s no 

wonder you don’t 
remember me.

Enough about that, 
let’s talk about 
programs today!

Fuhahahahaha!!!!

You’d better listen 
respectfully to 

genius programmer 
Yuu Kano’s every 

word very 
carefully!

Maybe it’s not that 
strange I forgot 

about this guy 
after all...



What Are Assembly 
Languages?

Like I said, today 
we’re going 

to learn about 
programs...

But we should skip 
straight to the 

conclusion because 
you actually already 

know about them!!

Whaaa, so my 
memory really is 
bad after all?!

Do you remember  
that we learned about 

these instructions 
using mnemonics?

LDA Address 1
Read the data at address 1 and  

store it in the accumulator

ADD Address 2
Add the content at address 2 to the accumulator

STA Address 3
Store the content in the accumulator to address 3

Any combination of these 
instructions is already a 
program (or rather, the 
source code for one*).

Ah! I remember 
these!

* You can learn about the difference between a  
program and its source code on page 199.

Now that you 
mention it, you did 

say programs 
are work 

instructions...

that are all 
like a chain of 
instructions.

Program 
(Work 

instructions)
Instruction

Instruction

Instruction



And we call any 
language made to 
write programs 
a programming 

language. High-level 
languages

As you can see, 
there are many types 

of languages. The ones 
that use mnemonics 

are called assembly 
languages.

Assembly 
languages

Machine 
language

Hmm... High-
level, assembly, 

and machine 
languages...

I don’t really 
get it, but at least 
it makes sense that 
the high-level ones 

are on top!!

Classy cars and 
hotels—You can 

get a lot by simply 
using sophisticated 

language.

No, it’s high-level, 
not high-class.

High-level simply 
means that it’s easy for 
people to understand 
and can be used with 

any type of CPU.

Let’s talk a 
bit about the 
difference...

between assembly 
languages and high-

level languages.

Easy for 
the CPU to 
understand

Arrays of 0s 
and 1s

Uses 
mnemonics

Easy for people 
to understand

A programming 
language like C

Money
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The Characteristics of Assembly Languages 
and High-Level Languages

Okay, let’s talk a bit about the assembly languages that are easy for CPUs (machines) to 
understand and the high-level languages that are easy for people to understand.

Umm. I don’t think I really understand what you’re saying. Because machine language is 
made up of arrays of 1s and 0s, I see how that would only be understandable to CPUs and 
not people.

But wouldn’t assembly languages be pretty easy for people to understand because 
they use mnemonics . . . ? Instructions like ADD are just plain English. . . .

So how could high-level languages be even easier to understand than that?!

Heh, that’s a valid question. It’s true that assembly languages are rather easy to 
understand.

High-level 
languages

Assembly 
languages

Machine 
language

Did you know...
human languages 

are called natural 
languages?

Easy for 
the CPU to 
understand

Arrays of 0s 
and 1s

Uses 
mnemonics

Easy for 
people to 
understand

A programming 
language like C
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But that’s because you already know how a CPU works and you’ve learned about registers 
(like the accumulator), addresses, and different kinds of instructions!

With a high-level language, you don’t have to care about things like registers, 
addresses, and instructions if you don’t want to. Some high-level languages don’t even 
let you work with low-level concepts like that. For example, if you want to add two and 
three together in a high-level language, you can just write, “a = 2+3”!

Whaaa??! But that’s completely different from everything we’ve learned so far! 

So high-level languages are easy for people to understand. You’re saying they let us 
write more intuitive instructions without having to care about how the CPU works! Is that 
right? If it is, that would be groundbreakingly useful, and it makes a lot of sense why it 
would appeal to people. It’s really close to how we think.

Heh heh heh. It seems you understand the appeal of high-level languages then. High-level 
languages are used for all large-scale program development, essentially.

There are other advantages of high-level languages, as well. Let’s look at those.

This is a variable. It’s the result of the 
addition and is stored to an arbitrary 

location. You don’t have to specify where 
it’s going (whether to a register or a 
memory location) if you don’t want to.

Addition in a 

high-level 

language
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Programs written in high-level languages can be used on a variety of CPUs. In contrast, 
assembly language instructions (represented by mnemonics) that run on one CPU probably 
will not run on other CPUs. They are CPU type dependent. Mnemonics relate directly to the 
instructions offered by a specific CPU instruction set, and they can’t be run on CPUs that 
don’t support that set of instructions.

Hmm. I see how high-level languages are super useful. . . . But what are the advantages of 
using the assembly languages you’ve been teaching me, then?

I mean, if high-level languages are this useful, why did you bother teaching me about 
the CPU structure and assembly in the first place? I kind of get the feeling that using high-
level languages is the new way to do things and assembly languages were the old way. . . .

No, that’s not true! Especially in scenarios where execution speed is paramount, assembly 
languages are very useful since they can push the CPU closer to its potential limit.

The difference between high-level languages 
and assembly languages

Huh?

A different 
type of CPU

One CPU

Mnemonics

Assembly 
language 
program

A different 
type of CPU

One CPU

High-level 
language 
program
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Some human-readable programming languages, like C, need to be compiled to convert 
them into machine language that the CPU can understand.

Even though the code might be easy for us to understand, it comes with a price. 
Because the code is being translated from a high-level language into a form the CPU can 
understand, it might end up executing slower* than if you had crafted it yourself in assem-
bly code. The calculations will turn out correct, but the way that the translation system 
ends up performing the calculation might not be the most efficient. In the end, this means 
you might not be able to use all of the CPU’s potential if you use a high-level language!

Ohh, I see. Using assembly languages, you can write more efficient code that uses the CPU 
to its full potential! Assembly languages are so incredible, they are still in use today.

Assembly languages are essentially using mnemonics for a specific CPU instruction set, 
right? This means that assembly languages are easy to convert to machine language and 
don’t waste much CPU time. 

* But it’s worth mentioning that modern CPUs are so fast that the delay doesn’t really affect us much in 
most cases, even if some operations do take slightly longer.

Easy to convert to machine language!

Okay!
Assembly 
language 
program

When a high-level language is translated 
into machine language, unnecessary parts or 
inefficiency are introduced into the program.

Oh my~

A bit inefficient...

High-level 
language 
program



198 C hapter 5  Programs

Large-Scale Software Development

The computer programs that we use every day include word processors, chat programs, 
and spreadsheets. We call these application programs, or just applications. Creating 
applications requires an incredible amount of work from many programmers over an 
extended amount of time. We call programs like this large scale, and the languages used 
to create them are generally high-level languages. Some examples include C, the slightly 
newer C++, and other languages such as Java and Python.

When developing with a high-level language, you don’t have to be aware of the 
CPU’s machine language instructions in the same way that you would if you were devel-
oping with an assembly language. You also don’t have to pay attention to the different 
addressing modes we talked about before.

Program source code that’s written in a high-level language has to be compiled so 
it can be converted into the machine language that the CPU can execute. Since this pro-
cess is automatic and tries to optimize the use of addressing modes, among other things, 
the developer doesn’t need to rack their brains paying attention to the CPU’s instruction 
set or the different registers or even the addressing modes, themselves.

But when writing smaller-scale device software, it is still not uncommon to use 
assembly languages. In these situations, if you don’t know everything there is to know 
about the CPU’s peculiarities, its addressing modes, and more, writing correct software 
will be more or less impossible.

The mnemonics you use when writing assembly code in a particular CPU’s instruc-
tion set are automatically converted into binary opcodes through a process called assembly. 
In effect, you are assembling the assembly language source code into a CPU’s machine 
language.

Today, even basic software like your operating system (Windows, for example) is 
mostly developed using high-level languages like C. But parts that are critical for perfor-
mance may still be developed using assembly languages. This is also true for software 
such as simulation applications, where assembly code might be used to optimize certain 
parts of the program that need to be blazing fast.
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Source code includes all of the instructions and text produced by humans, while the object 
code is the machine code that is produced when the source code is compiled, which is then 
executed by the CPU. Some recent AI (artificial intelligence) can even automatically produce 
source code.

Huh. I think I get it. Programs are the work instructions and their resources. Source code, 
on the other hand, is the instructions and text produced by humans to generate the work 
instructions.

The Difference Between 
Programs and Source Code

Let’s see. We talked a bit about programs and source code before. The two words might 
seem to mean the same thing, but they are different, strictly speaking.

Hmm, it might be cool to know the difference. I’m all ears!

Sure. A program usually refers to the chain of instructions fed to a computer to make it do 
something. A program combined with all the other resources it needs to perform its task 
is referred to as object code, while the word source code is usually reserved for the code 
(machine or high-level) used to create the program.

You might also run into the term source program, but for simplicity’s sake, you can just 
think of this as being the same thing as source code.

Program

Everything 
togetherSource code

Produced 
by humans
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Program Basics

What Can You Make Using Conditions and Jumps?

Okay, let’s 
summarize what 
makes the basis 
of a program.

It’ll also serve 
as a review of 

the things we’ve 
learned so far.

Come at me! 
I’ll serve back 
anything you 
throw at me!

This is not 
a game!!

First off, if we’re only 
using operational 

instructions (arithmetic, 
logic, and shifts) and 

data access...

then there is only a 
single path through 

the program.

Uh-huh. It 
just keeps 
processing 

one instruction 
after another, 

right?

But if we also use conditions 
and branches (jumps)...

We can write 
complex programs 

that can change 
execution flow 
depending on 

decisions made 
by the CPU!

Processing

Processing

Processing

Processing

Branched!

Processing

Condition

Processing
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Yeah! I haven’t 
forgotten.

Set (1) Reset (0)

The flags in the status 
register are set according 
to different conditions, and 
these are considered when 

making decisions.

That’s correct! You 
can think of each flag 
as representing two 

different branches, since 
each of them can either 

be a 1 or a 0.

for example, 
a branch could 

be “negative 
or positive” or 

“YES or NO.”

And if we start 
considering conditions 
involving combinations 

of several flags...

You can see how 
this would lead to 
a lot of potential 

branches.

Like this!
This would be really 
useful if we wanted 
to create a more 

complex program!

The flag isn’t 
standing...

The flag is 
standing up!

ProcessingProcessingProcessing Processing

Condition (If we consider a combination of two flags, 
we end up with four branches)

Processing
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And if we also apply 
conditional jumps...

you can keep 
repeating the same 
process in a loop 
as long as some 
condition is met.

In this neat 
little diagram, 
we repeat the 

same instructions 
over and over. 

The 
condition 

is no 
longer 

met. 
Onward!

We call this 
a repeating 
process. 

Oooh! This seems 
really useful.

You can 
repeat a series of 

instructions without 
having to write them 

multiple times.

…well, yes, 
but let’s stop 
talking about 

the basic 
concepts here.

Eh?! 
That’s it??

Well, no. To be 
able to create 

programs, 
you would, of 

course...

Need to have 
a lot more 

in-depth 
knowledge.

However!

?

Condition

Processing



No matter how complex 
the program and 

regardless of the 
language used...

There’s no 
denying the extreme 

importance of 
concepts like 
conditional 

decisions and 
branching!!

I see. So conditional 
decisions and branches 

(jumps) are the 
foundational secrets 
to understanding any 

program flow!

Yes. You only need 
to know this...

And if you want to learn 
more about programs, 

then read as many books as 
you can and wade through 
as much source code as 

possible...!

Yes!!

The road to 
becoming a genius 

programmer!!

Oooh! The 
enthusiasm!!

Every...single...day...

He used up all 
his strength 
with too much 
enthusiasm!!

Hahh
wheeze—
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What Should We Make the Computer Do?

Yeah. It’s just as you say. Things that weren’t even conceivable in the past are gradually 
becoming reality today.

One good example is the facial-recognition software used in some modern security 
applications. These programs convert human facial features (such as the distance between 
the eyes, the position and size of the mouth and nose, and so on) into numerical values and 
use them for calculations. Some programs can then differentiate among human faces by 
using this information.

I see. It feels a bit like science fiction that computers are actually able to tell people’s faces 
apart. It might even be a bit scary. But on the other hand, it could be used for fighting 
crime.

It seems like it might be a lot of fun to create a really cool program. I wonder what I 
would have it do. Maybe stock market or horse race predictions . . . ? Some program that 
would automatically make me a lot of money. . . .

Ah! Let’s put your personal desires aside for now. But thinking about what you want to 
make your computer do and what people would find useful are two very important aspects 
of creating a program.

By the way, we’ve been learning about programs today, but try to remember when we 
talked about digitization of information. In modern society, by digitizing things like music, 
images, video, and any other type of information, it becomes a lot easier to process infor-
mation using a computer.

Ah, I remember us talking about something like that. Now that I think about it, it’s actually 
kind of amazing!

I mean, if computers can handle any type of information, then you could do all kinds of 
things if you just created an amazing enough program!



Program Basics  205

Thanks for today. 
I learned a lot.

Sure, don’t 
worry 

about it.

Um... By the way...  
I asked mom about when 

we were kids...

Well you always 
beat Yuu in shogi...

and then you’d 
say something 

like...

You’re weak. 
I’m bored.

Even if he 
started crying...

You were pretty 
ruthless.

Even though it’s 
in the past now, 
I do feel kind 

of bad about it...

Wah

That 
bad...?



W-well, I 
suppose it was 
like that, b-but 
it’s all in the 

past now.

Your mom sure 
re- re- remembers 

a lot of small 
details though, 

hahahaha!

I... I never stopped 
to consider the 
feelings of the 
people who lost 

to me.

But losing to 
the CPU made 

me understand.

What it 
feels like 
to lose...

It’s rough, 
huh?

Ayumi... 
you–

Yuu...

Could it be...

That your twisted 
personality stems 
from losing so 
badly to me all 
those times?!

And to then grow up 
into the gloomy and 
twisted kid you are 
today, creating that 
shogi game only to 
try to rid yourself 
of your humiliation...

It’s a tragedy 
born all because 
I was too smart!!  

I’m so sorry!!!

I can’t tell if 
you’re apologizing, 
sympathizing with me, 

or insulting me... 
 

at least choose one!!



Ahem.  
In any case... It’s annoying, 

but it’s a fact 
that I lost.

So did you 
actually rid 

yourself of that 
humiliation we 
talked about?

Heh...

So now 
we’re even!

It’s all water under 
the bridge! My old 
reckless remarks, 
everything—gone! 

You gloomy, twisted 
little boy, you!!

Even though what you’re 
saying now is worse than 
anything you could have 
possibly said before?!

Hm, no matter. 
The next lesson 
will be the last.

Please bring 
the Shooting 
Star with you.

Huh? The 
Shooting Star...? 

What’s that?

You’re not 
actually planning 
on forgetting it, 

are you??!
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Where are Programs Stored?

Programs for small devices that use microcomputers are usually stored in ROM. In per-
sonal computers, only the BIOS (the Basic Input/Output System) is stored in ROM, which 
in turn is used to load the operating system (OS) from an external device (such as a hard 
drive) into RAM. Programs are also loaded into RAM before execution.

At the dawn of the CPU era some decades ago, miniature OS-like systems called 
machine code monitors were used when developing assembly code line by line.

Nowadays, even assembly programming is done on personal computers. Each CPU 
maker provides development tools to allow programmers to more easily develop assem-
bly language programs for their CPUs. You can create your program using these tools on 
your computer, attach a ROM writer to the system to embed your program into ROM, and 
finally integrate the ROM into your target system.

A more recently developed method allows programmers to transfer the program 
from a computer to the device’s non-volatile memory. This saves a lot of time because 
you can check how the device performs without having to rewrite the ROM every time.

It’s also worth mentioning that the method of rewriting a program on CPU ROM 
without detaching it from the system is called on-board programming.

What Happens Before a Program Is Executed?

Let’s talk a bit about what happens when you load a program you’ve written into ROM. 
What does the CPU do as soon as you turn on the power?

Simply turning on the power doesn’t actually do anything, as there is a significant risk 
that the system will not perform as expected before the voltage has climbed to a certain 
level. To ensure that the CPU will operate properly, the circuitry on the CPU board must 
keep the reset pin low until the power supply voltage stabilizes and the CPU’s clock gen-
erator starts functioning normally.

The clock generator normally starts operating before the power supply voltage 
stabilizes, so when the power supply voltage reaches the correct level, the CPU board’s 
reset circuit sets the reset pin to high, and the CPU can begin executing instructions. The 
voltage needed for this is generally specified in the CPU’s documentation.

At this point, all the preparations are done for loading the first line of the program. 
After releasing the reset state, the first thing the CPU does is load a reset vector.

The reset vector is usually written to the first or last part of the memory the CPU 
manages, and it tells the CPU where to find the first instruction of the program to run 
after a reset. For a PC, this would be the BIOS.

Programs are stored in ROM 
(non-volatile memory)!

Program
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The CPU will then run the instruction at the address specified by the reset vec-
tor and proceed normally from that point. It would execute the program the instruction 
belongs to, perform calculations, and process data in accordance with the program flow.
If the reset pin were to become active for any reason, the CPU would instantly cease all 
activity, no matter what it was currently working on, and return to its initial state. 

A reset is actually a type of interrupt, like the ones we learned about in earlier 
chapters. Although we learned previously that interrupts can stop a CPU from running 
its current set of instructions and make it run instructions at another address, we haven’t 
learned how the CPU knows which address to jump to. Each type of interrupt has an 
address associated with it, and the data structure that stores the addresses to execute 
depending on which type of interrupt occurs is called the interrupt vector table (IVT). The 
reset vector is at a set location in memory, and it is the first value in the interrupt vector 
table. That’s how it works at a very high level, but IVTs vary from CPU to CPU, so the 
location of the reset vector will depend on the CPU’s specifications.

Address space

X

Reset 
vector

The address in 
there (X) is the 

first instruction 
of the program.

First check 
the reset 
vector!

Y

X

Interrupt vector 
table

Interrupt B

Interrupt A

Execute Y if we get 
a B interrupt!

Execute X if we get 
an A interrupt!

If we take a look at 
the interrupt vector 

table, we can see 
that we should...
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Ahh~  
What wonderful 

weather!

Learning 
beneath an 

open sky isn’t 
bad at all.

But to think 
a shut-in like 
you studies at 

the park.

Well, 
I suppose 

it’s not far 
from home.

...Heh, in any 
case, this will 
be our last 

class.

Today’s theme is 
microcontrollers!

Microcontrollers? 
Are those like some 

kind of mini mind 
control robots?!

Why would you 
jump to that 
conclusion?!

Mind 

control

Nnngh!



Microcontrollers Are in 
All Kinds of Products

Ahem.

As their name suggests, 
Microcontrollers are 

small controller chips.

(There are also 
microcomputers!)

I’m not sure I 
understand from 

just the name.

What do they 
control 
exactly?

Are they 
different from 

the CPUs in 
computers?

Here, take a 
look at this.

There are also longer 
microcontrollers, such as 
the one seen on page 49.

Micro-
controllers are 
single integrated 
circuits (ICs), like 

this one.

Microcontroller

“Micro” 

+ 

“Controller”
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Microcontrollers 
can be found in all 

sorts of household 
electronics!

It’s not uncommon 
for one device 
to contain more 

than one.

Oho! So 
microcontrollers 

are in all sorts 
of things, then.

The Function of a 
Microcontroller

And the  
components of these 
microcontrollers...

Look like this!

Swat!



Wouldn’t you know! 
Microcontrollers contain 

memory (ROM or RAM),  
a CPU, and I/O circuits, all 
integrated into one chip! When embedded 

in products, they’re 
sometimes referred 

to as embedded 
controllers.

Whoa! It’s a lot of 
different systems 

all in one!

Heh heh heh, 
isn’t it great?

A single 
microcontroller can get 
programs from memory, 
execute them, and deal 
with input, just like any 

other computer.

All inside one IC!

I/O control function

CPU function

Memory function  
(ROM or RAM)

Microcontroller
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Hmm, so 
microcontrollers 
are the integrated 

circuits that control 
machines, then.

but wait...

Does that mean 
they’re even 

more useful than 
a computer’s 

CPU?!

Well, that 
might be so.

But microcontroller 
CPUs and computer 

CPUs are completely 
different!

Temperature 
control Timer control

A rice cooker might have 
a microcontroller that 
takes care of functions 

like temperature control 
or timer control...

But it can’t do all the 
complex operations a 

computer’s CPU can.

Ah, I suppose 
that’s true...

To activate 
at 6 pm, for 
example...

Micro-
controller

To maintain 
70°C, for 
example...

Example function of a 
microcontroller CPU
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So a 
microcontroller 
is what helps me 

keep the time when 
cooking rice...

And rice 
porridge, eggs, 

and other 
things I make in 
a rice cooker, 

as well.

But I suppose 
it can’t help me 
when I want to 
send emails or 
play a movie, 

though.

But what if...?

There are no 
buts here!

It’s impossible 
no matter how 
you look at it!!

Microcontrollers 
are limited in 

their possible 
applications...

but that means 
they’re also much 

cheaper than 
computer CPUs.

High-powered microcontrollers 
and expensive microcontrollers 

also exist.

Again?!

Microcontroller

Relatively cheap!
Lim

ited 

capabilit
ies!
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And because all 
this functionality is 
localized on one 

integrated circuit...

We also call 
them one-chip 

microcontrollers.

Uh-huh, I think I get 
the main features of 
microcontrollers 

now.

Even though they’re 
just one small IC, 
they still control 

many types of 
devices.

And have nothing to do 
with mind control!

They couldn’t have 
in the first place!

Did you seriously 
think that was 

possible?!

Architecture of a 
Microcontroller

Crack

phew

Hurray!



Architecture of a 
Microcontroller

Finally, let’s take 
a look at the 

architecture of a 
microcontroller.

I recommend 
comparing this to 
the architecture 

of a CPU.

Ooh~! The memory 
controller (RAM and ROM), 

CPU, and I/O controller are 
all there...

Integrated into the 
microcontroller!

It’s really  
important to note that 

a microcontroller can be 
connected to all sorts 

of external devices, 
depending on what it’s 

used for!

External 
devices such 
as switches, 

LEDs, 
motors, 

and other 
things 

connected 
to the 

controller

A
dd

r
e
ss

 
r
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g
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t
e
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D
a
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t
e
r
s
 (I/O

)

I/O 
controller

C
o

n
t
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c
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c
u
it

Overview of a 
Microcontroller
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History of the Microcontroller

Microcontrollers have a very interesting history. The very first electronic calculator used 
an ALU made with electron vacuum tubes. It was very large by today’s standards, taking 
up an entire room the size of a volleyball court. This was around the time of World War II, 
in the 1940s. England and other countries were in the middle of developing electronic 
calculating machines to decipher the codes that the German army was using. Unlike 
modern computers, these were not developed in an open international marketplace 
but instead in top-secret military research laboratories. Because of this, it’s not clear 
whether the American ENIAC computer, presented to the world in 1946, was truly the 
first computer or not.

The first transistor was invented in 1947, displacing electron vacuum tube calcula-
tors with semiconductor-based technology. And with the invention of the integrated 
circuit in 1958, the miniaturization of electronic calculators progressed significantly.

Even so, the 16-bit minicomputer seen in Chapter 4, which used four 74S181 chips, 
was not developed until 1972. Removing all external devices, it had a width of 60 cm, a 
height of 30 cm, and a depth of 45 cm. It could handle an address space of 16KW (kilo-
words, where 16 bits of data is equal to 1 word), which is what we would call 32KB today. 
(Compare this to modern SD cards, which are able to store 32GB of data or, in terms of 
memory size, about a million times more data.)

In the second half of the 1970s, Intel introduced its one-chip CPU as a mass-
produced commodity. This product instantly dominated the market, lowering costs 
across the board.

The one-chip CPU also heralded a new age from 1976 onward in which amateur 
electronics enthusiasts could afford learning kits (for example, the Altair 8800 micro-
computer). With these, they could learn how to program in machine language with the 
one-chip CPU as a base.

This is also around the time when the term personal computer, or PC, came into 
popular use, since you could finally have one of these technical marvels for yourself.
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But progress did not stop there! One-board controllers that fit the CPU, memory, 
and I/O controllers onto a board about the size of an A4 sheet of paper were developed. 
Eventually, these components fit onto a single IC chip that could be used to control all 
sorts of devices.

Because these ICs had CPUs that were inseparable from their ROM or RAM memory 
and integrated I/O ports, they could store programs, perform calculations, and handle 
input and output. These ICs were called microcontrollers since they were comparatively 
small and controlled other devices

After this, there was a desire for larger memory, which stimulated a demand for 
larger computers, as well. But the small-scale devices that use integrated one-chip 
microcontrollers are still in very high demand today and are used in everything from 
household electronics to toys.

And so microcontrollers contain everything from a CPU to memory to I/O controllers.

Now, computers 
in the form of 

microcontrollers 
are in everything 

from rice cookers 
to automobiles!

And then 
transistors 
made from 

semi-
conductors.

So we first had 

computers using 

electron vacuum 

tubes...
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What Are DSPs?

We should take this opportunity to talk a bit about DSPs, as well.

DSP? Yet another strange acronym. So, what are they?

DSPs, much like CPUs, are ICs that perform operations. But compared to CPUs, they’re 
extremely fast.

Their “brain” is made up of what is called a multiplier-accumulate operation circuit. 
This essentially means DSPs are really good at doing multiplication and addition at 
the same time!

Multiplier-
accumulate 
operation 

circuit

Ahem!
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Whoa! So what’s that good for? I suppose it has to be good for something.

Yeah. It turns out you have to do a lot of multiplication and addition when processing digital 
signals, especially for audio recordings. In fact, that’s what DSP is short for—digital signal 
processor.

Audio . . . so . . . when I’m talking on my cell phone, for example? I suppose my analog voice 
has to be converted to digital form somehow for it to be transmitted to my friend on the 
other end of the line.

I see. So they’re good at doing multiplication and addition at the same time, which is useful 
for digital signal processing.

While CPUs are really important, I get the sense that DSPs are, too. I’ll make sure to 
remember them!

That’s correct! Most modern mobile phones have DSPs. They’re also being used more 
often for digital filtering in audio devices and for the operations required to improve acous-
tic effects.

Wow, so they’re all around us, these DSPs!

Currently, development for a one-chip DSP with large RAM at the level of a microcontroller 
is underway. 
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DSPs and Multiplier-Accumulate Operations

During the development of the CPU, there was a growing need for increasing the pro-
cessing speed of calculations—in particular, division and multiplication were a lot slower 
than desired.

As we’ve seen, the CPU’s ALU was mostly geared toward performing addition and 
subtraction at this time. Using these older ALUs, you had to repeatedly perform addition 
to multiply two numbers and repeatedly perform subtraction to divide two numbers. At 
the time, computers were becoming more popular in scientific applications, which meant 
that demand for high-performance multiplication was very high. This is when develop-
ment of the circuits that were capable of floating-point multiplication really took off, and 
the result was the digital signal processor, or DSP.

To process digital signals, DSPs perform fast Fourier transforms (FFTs) on them. 
This requires a lot of simultaneous additions and multiplications. To perform these multi-
plications and additions efficiently, DSP ICs have a multiplier-accumulator circuit.

Shortly after DSPs were developed, mobile phones started to use digital trans-
missions, and digital voice signal processing and filtering became more common. The 
transmission stream could also be compressed, and the receivers started using systems 
with DSPs at their core to convert the raw voice data using vocoders (a voice encoder/
decoder).

Later, microcontroller-like DSPs with larger RAM molded into the chip started to 
show up, making voice data processing even faster.

Microcontrollers in Industrial Machines

CPUs, microcontrollers, and DSPs are in many of the devices we use in our daily lives. 
Some examples include today’s wall clocks, alarm clocks, and even wristwatches, all 
of which are likely to contain a one-chip microcontroller. Other household devices like 
refrigerators, air conditioners, and washing machines are likely to contain more than 
one. And the remote controls used to send commands to these devices also contain a 
microcontroller IC.

Automated robots and conveyor belts in large-scale industry also have to be con-
trolled in some fashion and therefore require either a CPU or DSP.

Many devices in our homes have microcontrollers,  
and they even have industrial uses...
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Up until now, we’ve had single-chip CPUs as well as microcontrollers that contain a 
CPU, memory, and I/O controllers all in one. The amount we can pack into a single chip is 
determined by tradeoffs among our capacity to produce semiconductors, their production 
cost, and the market’s demand and margins.

Advancements in IC production technology have led to the development of FPGAs 
(field-programmable gate arrays). Using an FPGA, you can create any logical circuit you 
desire and bring it into reality with hardware. The basic structure can contain lookup tables 
of anywhere from several thousand to several million units in a single IC. These tables can 
be prepared beforehand by the IC maker and provided as is.

The initial state of the IC consists of a lookup table memory section and logic blocks 
that can be wired together in different ways, resulting in many possible applications. The 
raw IC is then configured by the user with specialized tools to write the modeled design 
into the circuit, creating the desired IC. Development is normally done on a computer, but 
the specialized tools needed can also be stored on a USB, making the creation of even 
large-scale logic circuits an easy task.

In the past, CPUs were different from FPGAs, but in recent years, FPGAs contain-
ing CPU functionality have started to appear. There are two ways to make an FPGA into a 
CPU. The first is to simply create an existing CPU design in the wiring of your logic circuit 
using the development tools provided, and the other is to embed a CPU in one part of the 
gate array as a separate IC.

In either case, the CPU as a single IC is becoming gradually less common over time. 
But even though we have DSPs, there is still a need to control tasks other than multiply-
accumulate operations, and as such, the principles underlying the CPU will remain impor-
tant concepts no matter how ICs continue to develop.

of how a CPU works is the most important thing!There are many types of useful ICs... but knowing the basics 





Epilogue



I guess this marks 
the end of our 

lessons.

I feel 
congratulations 

are in order 
since you made 
it all this way.

Oh, that reminds 
me... I promised to 
return this after 
we were done, 

didn’t I?

Here you go, 
one hostage 

laptop.

The entire reason 
I started learning 

about CPUs was 
because I lost 
to this thing.

I hate to  
admit it, but this 

little guy is 
really strong!

It is.

But the 
Shooting 

Star isn’t just 
strong.

It’s especially 
strong 

against you.
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Uh, what do 
you mean?

Well, you see... 
you know how one of 

the upperclassmen 
in your club likes to 
post your play data 

on the Web?

They even 
included personal 
information in the 
play records on 

your blog...

In the interest of 
protecting the student’s 

privacy, I have run 
her face through a 

mosaic filter.

I’m almost 
certain I know 
who that is!!!

When I knew I was 
going home, I got 

nostalgic and looked 
up your name...

And found 
all kinds of 
information 
right away.

Including pictures 
of your victory in 
the nationals and 
records of your 

play style.
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Like a stalker biding his 
time, watching his prey... 
The abuse of personal 
privacy in this digital 
society even crosses 

international borders...!

Who are you calling 
a stalker?!

And then I saw 
your bored face 
in more than one 
victory photo...

Seeing that, I could 
no longer—

Your trauma of repeatedly 
losing to me was revived, 
and before you knew it, 
you were developing a 

program designed to beat 
me, and only me, is that it?!

Give me a break 
already!

Fear

Victor

Victor
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Well, anyway, 
let me 

return this.

I still feel bad about 
losing to it, but it’s 
been educational in 
more than one way.

You don’t 
have to give 

it back.

Eh?

The Shooting 
Star is especially 
strong against 

you.

That means it will 
be doing the most 

good in your hands.

Use it to keep 
boredom at bay while 
you aim to reach the 

company of stronger 
players.

I planned to give it 
to you from the very 
start, to be honest.



Wha-?

so that 
means...

This is the lethal 
instrument you designed 

to rid yourself of 
your grudge and 

resentment...

But it’s also a 
present for me...?

Well, I suppose 
you could interpret 

it that way.

But don’t bother 
thanking me for it. 

After all, I have loads 
of laptops like that.

And developing 
the program was 
an excellent way 
to kill some time, 

fuhahahah!
Yuu...

Hm? What is 
it now?

If you’re 
going to 
complain...
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I’m really happy...

Thank you!

I’ll treasure it!!

...! Ah, no, I mean 
I’ll take anything 

I can get!

aHEm, let me just 
boot it up, okay!

Clic
k

Ah!

thum
p!
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Huh...

A Shooting star 
wallpaper...?

I feel like I’m 
remembering 
something...

I had snuck off to 
watch shooting stars 
in this park with some 
boy who was moving 

far away...

...so you finally 
remember.

And I wished 
upon those 
stars that...

I would inherit 
a truckload 
of money 
someday.

What’s with that 
greed of yours?! 

And why would 
you even bring 

that up?!

Mone
y
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Well you know, 
there was a 

meteor shower 
that night and...

I wished for a 
lot of other 
stuff as well!

Like what?

Umm, 
let’s see...

My favorite friend 
Yuu is moving 

tomorrow, and 
I’m so sad.

Instead of 
having to endure 

missing him...

I wish I could 
forget him for 

a while...
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I remember...

Everything!!!

I-i-it doesn’t 
matter one bit!!

...!!

A-anyway 
what did you 
wish for?!

Well, 
you see...

I wished that I 
would return 

here someday...

To talk a lot 
more with 

Ayumi.

That I’d get a lot 
better at shogi, 
of course... yeah!

If you keep 
praying to THE 
stars for that, 

you’re only going 
to get worse, 

you know.

And besides, 
it’s not like I 
lost to you— 

I lost to 
the CPU!!

We’re back to 
where we started!!

gahh
h!
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Well, if you’re not 
satisfied with that, then 
you’ll just have to beat 

me one on one.

If you can...  
idiot !

There you go again!

You just don’t know 
when to give up, 
do you, Ayumi?!!

The end



I got a protective 
case for the 

Shooting Star! 
I can’t decide if 

you’re taking good 
or bad care of it!!

Now it won’t break 
if I flip out and 

hit it when I lose!



Afterword

Up to this point, we have only talked about very old and primitive CPUs. The ones we have 
shown could only really be used for things like toys or simple AC remote controls. They are 
too simple to be used in most modern microcomputers or CPUs today. Currently, the speed 
of progress is so fast that everything I say here will quickly become obsolete. But even so, I 
wrote this book in an attempt to help anyone who might want to learn some lasting basics—
even in these fast-changing times.

In other words, I would like to emphasize that this book has concentrated on the very 
basic principles governing CPUs, forgoing any information relating to general computer 
architecture. But even so, I would like to leave you with a small impression of the current 
state of progress.

It is unfortunately quite hard to illustrate modern complex circuits in the type of dia-
grams we used at the start of the book to show the different parts of the CPU, so I’m going 
to have to talk in very superficial terms here.

There are many techniques used to make modern CPUs execute programs more 
quickly. An older one of these techniques is the prefetch instruction. Instead of trying to 
get the next instruction after the current one has finished processing, prefetching tries to 
extract the next instruction from memory before the current one has completed to shorten 
any wait times that might otherwise occur.

Since the CPU is a lot faster than main memory, it makes a lot of sense to let prefetch 
decode the next instructions and store them in a cache in preparation for the next calcula-
tion. Repeating this prefetching process of reading and decoding instructions ahead of time 
can lead to continuous execution speed increases across the board.

There is another instruction called pipelining in which the instruction cycle is broken 
into several dependent steps. These steps are usually fetch, decode, execute, access mem-
ory, and finally write back to register/memory. The goal here is to keep all parts of the CPU 
busy at all times by executing these steps in parallel. So while one instruction might be run-
ning its execute step, another instruction would be running its decode step, and yet another 
instruction would be fetching. 

CPU researchers found some tendencies toward inefficiencies when using certain 
instruction and operand combinations. Attempts to remove these inefficiencies by simplify-
ing the instruction set led to the development of the RISC (reduced instruction set computer) 
architecture. Processors that use this instruction set are called RISC processors.
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Many worried that reducing the instruction set would make complex calculations 
require more instructions and therefore slow down execution. In reality, however, many 
applications saw a performance boost on the RISC architecture. It turns out that reducing 
the instruction set’s complexity leads to simplifications in the hardware design that allow for 
higher single instruction execution clock speeds.

Because of this, RISC processors have started to be used in many different areas. 
Processors that don’t use RISC principles have been dubbed CISC (complex instruction set 
computer), riffing off the RISC name. This acronym was created purely as an antonym of 
RISCs, and there is no particular architecture associated with the CISC name.

Recent Intel and other CPU chips contain not just one but many cores, which are 
distributed between different processes on the system. This is something that falls in the 
domain of computer architecture, so as I mentioned at the start of the book, this is not 
something I will explain in much detail.

However, there is no requirement that all complex calculations must be performed in 
order. It is fine for the CPU to split up different parts of a task and run the individual parts 
on separate cores simultaneously, exchanging data between cores only when absolutely 
necessary. Letting the CPU multitask like this can improve execution speed a great deal. 
Using the CPU in such a way, however, poses problems not only for the hardware but also 
for the OS, memory access, and code execution scheduling.
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control bus, 99
control signals

I/O signals, 100
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making, 25–27
programs and, 19
skip instructions, 157
SLEEP instruction, 188
types of, 15

OR gate (logic union gate), 
51–52, 55

output devices, 16–17
overflow, 45, 150–151
overflow flag (overflow bit;  

OV-flag), 151, 187

P

parallel transmission, 185
PC (program counter), 107–108, 

112–114, 187
personal computers (PCs), 220
pins, 49–50
pipelining, 238
prefetch instructions, 238
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resets, 128–129
reset signals, 136–137
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voltage, 31

as binary states, 37–38
and reset process, 136–137
and turning on CPU, 208

X
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Hah! All the cpu 
can do is simple 
calculations?

Wait a second... 
Don’t jump to 
conclusions.

I don’t know 
why I was 

ever worried!

Ayumi is a world-class shogi (Japanese 

chess) player who can’t be beaten—that is, 

until she loses to a powerful computer 

called the Shooting Star. Ayumi vows to 

find out everything she can about her new 

nemesis. Lucky for her, Yuu Kano, the genius 

programmer behind the Shooting Star, is 

willing to teach her all about the inner 

workings of the microprocessor—the 

“brain” inside all computers, phones, and 

gadgets. 

Follow along with Ayumi in the Manga 
Guide to Microprocessors and 

you’ll learn about:

⭑	How the CPU processes information 

and makes decisions
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⭑	How computers perform arithmetic 

operations and store information

⭑	logic gates and how they’re used in 

integrated circuits

⭑	the Key components of modern 

computers, including registers, 

GPUs, and RAM

⭑	Assembly language and how it differs 

from high-level programming languages

Whether you’re a computer science student 

or just want to understand the power of 

microprocessors, you’ll find what you 
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