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PREFACE

This book is an introduction to regression analysis, covering simple, multiple,
and logistic regression analysis.

Simple and multiple regression analysis are statistical methods for predicting
values; for example, you can use simple regression analysis to predict the number
of iced tea orders based on the day’s high temperature or use multiple regression
analysis to predict monthly sales of a shop based on its size and distance from
the nearest train station.

Logistic regression analysis is a method for predicting probability, such as
the probability of selling a particular cake based on a certain day of the week.

The intended readers of this book are statistics and math students who’ve
found it difficult to grasp regression analysis, or anyone wanting to get started
with statistical predictions and probabilities. You’ll need some basic statistical
knowledge before you start. The Manga Guide to Statistics (No Starch Press,
2008) is an excellent primer to prepare you for the work in this book.

This book consists of four chapters:

¢ Chapter 1: A Refreshing Glass of Math
¢ Chapter 2: Simple Regression Analysis
* Chapter 3: Multiple Regression Analysis
¢ Chapter 4: Logistic Regression Analysis

Each chapter has a manga section and a slightly more technical text section.
You can get a basic overview from the manga, and some more useful details and
definitions from the text sections.

I'd like to mention a few words about Chapter 1. Although many readers may
have already learned the topics in this chapter, like differentiation and matrix
operations, Chapter 1 reviews these topics in context of regression analysis,
which will be useful for the lessons that follow. If Chapter 1 is merely a refresher
for you, that’s great. If you've never studied those topics or it’s been a long time
since you have, it’s worth putting in a bit of effort to make sure you understand
Chapter 1 first.

In this book, the math for the calculations is covered in detail. If you're good
at math, you should be able to follow along and make sense of the calculations. If
you’re not so good at math, you can just get an overview of the procedure and use
the step-by-step instructions to find the actual answers. You don’t need to force
yourself to understand the math part right now. Keep yourself relaxed. However,
do take a look at the procedure of the calculations.



We've rounded some of the figures in this book to make them easier to
read, which means that some of the values may be inconsistent with the values
you will get by calculating them yourself, though not by much. We ask for your
understanding.

I would like to thank my publisher, Ohmsha, for giving me the opportunity
to write this book. I would also like to thank TREND-PRO, Co., Ltd. for turning
my manuscript into this manga, the scenario writer re_akino, and the illustra-
tor Iroha Inoue. Last but not least, I would like to thank Dr. Sakaori Fumitake of
College of Social Relations, Rikkyo University. He provided with me invaluable
advice, much more than he had given me when I was preparing my previous book.
I'd like to express my deep appreciation.

Shin Takahashi
September 2005

Xl PREFACE



G~ —7)
o) O
PROLOGUE
MORE TEA?

—~S e
Do, (A
o S




I LOVE THIS
TEA SHOP.

EVERYTHING 15
DELICIOUS!

WHAT BRINGS
YOU BY TODAY?
STUDYING AS USUAL?

2 PROLOGUE






IT'S JUST...
YOU CAN TALK
TO ANYONE!

OH? ARE YOU
JEALOUS, MIU?

NO! OF
COURSE NOT!

DON'T BE '
EMBARRASSED.

HE MUST BE A
GOO0D STUDENT.

READING BOOKS
ABOUT ADVANCED
MATHEMATICS.

A
4N
il

Sy
iy 4

HEY! WE'RE
ECONOMICS
MAJORS, TOO,
AREN'T WE?

4 PROLOGUE



MY GRADES S0 ASK 11 1 CAN'T DO THAT!
AREN'T GOOD I DON'T EVEN
HELP YOU
LIKE YOURS, 0Dy,

KNOW HIS NAME. THEN ASK

BESIDES,
HE ALWAYS
SEEMS BUSY.

WELCOME
TO THE TEA CAN I GET YOU
SOMETHING
TO DRINK?

PLEASE TAKE
ANY SEAT
YOU LIKE.

I WONDER IF
HELL COME IN ol | R
AGAIN SOON... WA Do

N 7

MORE TEA? 5




—

HE LEFT
HIS BOOK.

.....

WHAT WAS HE

READIN@?/ '

.

* INTRODUCTION TO REGRESSION ANALYSIS

THAT'S A
METHOD OF
STATISTICAL
ANALYSIS!

HEARD

MIU, DO YOU CHECK
THE WEATHER
FORECAST IN THE
MORNING?

REGRESSION
ANALYSIS?

COURSE.

6 PROLOGUE



TODAY'S HIGH
WILL BE 31°C.

SUPPOSE WE WERE KEEPING A
RECORD OF THE HIGH TEMPERATURE
AND THE NUMBER OF ORDERS OF
ICED TEA AT OUR SHOP EVERY DAY.

AR

=)
N, A

TODAY'S HIGH
WILL BE 27°C.

TODAY, WE
PREDICT &1

ORDERS OF
ICED TEA!

USING LINEAR REGRESSION ANALYSIS,
YOU CAN ESTIMATE THE NUMBER OF
ORDERS OF ICED TEA BASED ON
THE HIGH TEMPERATURE!

THERE'S ALSO A
SIMILAR TYPE OF
ANALYSIS CALLED
MULTIPLE LINEAR
REGRESSION.

MULTIPLE LINEAR? \
LOTS OF LINES?? /

WE USE LINEAR
REGRESSION TO

ESTIMATE THE
NUMBER OF ICED
TEA ORDERS BASED
ON ONE FACTOR—
TEMPERATURE.

BUT IN MULTIPLE LINEAR REGRESSION ANALYSIS,
WE USE SEVERAL FACTORS, LIKE TEMPERATURE,
PRICE OF ICED TEA, AND NUMBER OF
STUDENTS TAKING CLASSES NEARBY.

MULTIPLE LINEAR
ANALYSIS EGRESSION ANALYSIS

MORE TEA? 7



LET'S LOOK AT AN
EXAMPLE OF MULTIPLE

LINEAR REGRESSION
ANALYSIS.

MR, GUYMAN IS THE CEO OF A
CHAIN STORE. IN ADDITION TO
TRACKING SALES, HE ALSO KEEPS
THE FOLLOWING RECORDS FOR
EACH OF HIS STORES:

- DISTANCE TO THE NEAREST
COMPETING STORE

- NUMBER OF HOUSES WITHIN
A MILE OF THE STORE

- ADVERTISING EXPENDITURE

Distance Houses

to nearest within a Advertising

competing mile of expenditure Sales
Store store (m) the store (yen) (yen)
AR | ooo | coo | ooo | coo
BB | 444 | AAA | A | ans
“J| ooo | boo | ooo | ooo

WHEN HE 1S CONSIDERING
OPENING A NEW SHOP...

..HE CAN ESTIMATE
SALES AT THE NEW
SHOP BASED ON
HOW THE OTHER
THREE FACTORS
RELATE TO SALES
AT HIS EXISTING

STORES.

/1 SHOULD

TOTALLY
OPEN A NEW
STORE!

THERE ARE OTHER
METHODS OF ANALYSIS,
TOO, LIKE LOGISTIC

REGRESSION
ANALYSIS.

IFI
sTUDY
THIS

ONE DAY I
CAN TALK
7O HIM
ABOUT IT.

8 PROLOGUE



HOLD ONTO THIS
BOOK UNTIL HE
COMES BACK.

MORE TEA? 9



" THAT WOULD YOU THINK HE'LL
KNOW WHERE

TO LOOK?

BUT ONLY IF YOU
AGREE TO GIVE THAT
BOOK BACK TO HIM
YOURSELF, OKAY?

WELL, UH..I GUESS
I SHOULD KEEP
IT SAFE UNTIL HE
COMES IN AGAIN.

{,

WELL, SEE YOU
TOMORROW!
o /
o

(

I'M SURE
HE'LL BE
BACK SOON.

N\

10 PROLOGUE
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A REFRESHING
GLASS OF MATH
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THE BOSS HAS

AND SO SHOULD WE!

BUILDING A FOUNDATION [INYIIBZ Y — FINALLY GONE HOME,

UM, RISA, /.

COULD WE

START THE ] 2 !
LESSON

TONIGHT? \ =~ 0

SERIOUSLY?

YOU WANT
TO START
NOW?! Tan

I'VE NEVER SEEN
YOU SO EXCITED
TO LEARN! USUALLY
YOU NAP IN CLASS.

M, MEAN TO
EMBARRASS
Al YOU.

12 CHAPTER 1 A REFRESHING GLASS OF MATH



' SURE, LET'S DO IT.
REGRESSION DEPENDS
ON SOME MATH...

SO WE'LL START
WITH THAT.

ALL RIGHT,
WHATEVER
YOU SAY!

TLL WRITE OUT THE
LESSONS, TO MAKE
THEM MORE CLEAR.

SURE, YOU CAN
REWRITE THE

&
MENU AFTER rolrelz
THE LESSON. / | 'sXeoir
T,ys
N S/

NOTATION RULES

COMPUTERS CAN DO A
LOT OF THE MATH FOR
Us, BUT IF YOU KNOW
HOW TO DO IT YOURSELF,

YOU'LL HAVE A DEEPER
UNDERSTANDING OF
REGRESSION.

BUILDING A FOUNDATION 13



INVERSE FUNCTIONS

FIRST, I'LL EXPLAIN /INVERSE
FUNCTIONS USING THE
LINEAR FUNCTIONy=2x+ 1
AS AN EXAMPLE.

WHEN x 15
ZERO, WHAT Y=+ HOW ABOUT Y=2x+|
15 THE VALUE 90+ WHEN x 15 32 Ox3+|

50 WE CALL y

THE VALUE OF THE OUTCOME, OR YOU COULD SAY THAT
y PEPENDS DEPENDENT VARIABLE, x 15 THE BOSS OF y.
ON THE VALUE AND x THE PREDICTOR,
OF x. OR INDEPENDENT

VARIABLE.

WHAT'S 2
CUBED?

14 CHAPTER 1 A REFRESHING GLASS OF MATH



IN OTHER
WORDS, IF THEY
WERE PEOPLE...

x WOULD BE
THE BOS5%, AND
y WOULD BE
HIS SERVANT.

.THE BOSS AND THE
SERVANT SWITCH
PLACES.

Té

IN INVERSE
FUNCTIONS...

50 THE SERVANT IS
NOW THE BOSS?

THE SERVANT
TAKES THE
BOSS5'S SEAT.

INVERSE FUNCTIONS 15




SO FOR THE EXAMPLE
Yy =2x + 1, THE INVERSE
FUNCTION 15...

..ONE IN WHICH
y AND x HAVE
SWITCHED SEATS.

HOWEVER,

| 7~ WE WANT y ALL
| A\ BY ITSELF, 50...

THAT'S RIGHT. TO
EXPLAIN WHY THIS IS
USEFUL, LET'S DRAW

A GRAPH.

YOU TRANSPOSED

REORGANIZE IT AND DIVIDED BY

THE FUNCTION { 2,50 NOW y IS
LIKE THIS. (oo ALONE. )

)

16 CHAPTER 1 A REFRESHING GLASS OF MATH



MIU, CAN
YOU GRAB
A MARKER? |

)

OKAY,
HOLD ON.

DRAW A GRAPH
FORy=2x+1

<

DRAWING
NEATLY ON
A NAPKIN 15
HARD!

J

UM, LET'S
SEE.

LIKE THIS?

-3 w B o I

12345678910

GREAT JOB!
NOW, WE'LL
TURN IT INTO
THE INVERSE
FUNCTION.

WRITE y ON THE
x AXIS AND x
ON THE y AXIS.

A

~

A
L

{234561%7849 o3
| i
i |

INVERSE FUNCTIONS 17




IT'S THE
SAME THING! TURN
IT AROUND SO
THAT x 1S ON THE
BOTTOM, LIKE IT
USUALLY 15.

Y4
% /
9
8
7
6
5
2 /
>
ra
!
Al z345¢6v7 82900

o
\NORNY/

Fbgo\oobwm#'»rﬂ\
X

..TURN IT
LIKE THIS?

INEERE TR

YES, BUT NOW ZERO
IS ON THE RIGHT.
IT SHOULD BE ON
THE LEFT.

SHOULD 1
FLIP THE

g

NAPKIN OVER?

-

OXNZ
J69 Koout

\
e

\ S3 % 2¢ D 330N

N

e —nmebaoaqdoe

S
— &

/)

NOW IT'S A GRAPH
FOR THE FUNCTION

y=_x-_.

1 1

2 2

18 CHAPTER 1 A REFRESHING GLASS OF MATH



EXPONENTS AND LOGARITHMS

pabhh g \ pabhh g A pabhh g
% A
| 3 v A
z (3. .z
9=2 S —( 7 ) g=¢€
Y 5
= & T / + ——t—t—>
I3 e 0 I3 65 0 I3 102
il
OKAY... THEY ALL™
CROSS THE
POINT (O

ON TO THE NEXT
LESSON. THESE ARE
CALLED EXPONENTIAL
FUNCTIONS.

BECAUSE ANY
NUMBER TO THE
ZERO POWER

51,

RIGHT! NOW, HAVE
YOU SEEN THIS e
BEFORE?

R
gzez

THIS e IS THE BASE OF THE
NATURAL LOGARITHM AND HAS
A VALUE OF 2.7182.

IT'S CALLED

EULER'S NUMBER. I'VE HEARD

OF IT.

logy=x

IS THE
INVERSE
OF THE
EXPONENTIAL
EQUATION

AH! MORE
INVERSE
FUNCTIONS!

<
44?,

EXPONENTS AND LOGARITHMS 19




i
- x=2%
v %
k

x = e¥ 15 THE INVERSE
FUNCTION OF y = log,x,
WHICH 1S THE NATURAL
LOGARITHM FUNCTION.

10 ¥
Y
— >

HNOBWNZ
Q89 o0y

AGAIN!

TO FIND THE INVERSE OF y = €%,
WE’'LL SWITCH THE VARIABLES
x AND y AND THEN TAKE THEIR

LOGARITHM TO ISOLATE y.
WHEN WE SIMPLIFY log (e),
IT'S JUST y!

=t

SWITCH THE
é VARIBLES!

ILTH

EQUATION'-

L TOIPUT-y { 0 ()
‘BACK ON. = (=
THE LEFT, 7 ' b/

>

NEXT, I'LL GO
OVER THE RULES
OF EXPONENTIAL
AND LOGARITHMIC
FUNCTIONS.

REMEMBER
THIS—YOU'LL
NEED IT LATER!

20 CHAPTER 1 A REFRESHING GLASS OF MATH
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RULES FOR EXPONENTS
AND LOGARITHMS

i

T

Let’s try this. We’ll confirm that (e%® and e~” are equal
when a=2 and b = 3.

(e’) =e’xe’ xe’ =(exe)x(exe)x(exe)=exexexexexe=e*

3 3 6

This also means (e%)’ = e**> = (e’).

e

ea

Now let’s try this, too. We’ll confirm that —5 and e*™”
e

are equal when a =3 and b = 5.

e exexe exegxe 1 2 _ 35

—_= = = — = =e

e’ exexexexe exexgxgxg e

I il

RULES FOR EXPONENTS AND LOGARITHMS

2

=



T

3. CANCELING
EREEIERIEY @ AND log (e9) ARE EQUAL.

As mentioned page 20, y = 1og x and x = e are equivalent. First we
need to look at what a logarithm is. An exponential function of base
b to a power, n, equals a value, x. The logarithm function inverts
this process. That means the logarithm base b of a value, x, equals
a power, n.

We see that in log (e?) = n, the base b is e and the value x is e?,
soe"=e*and n=a.

So b" = x also means log,x = n.

1N \

base value power

4. EXPONENTIATION log (a?) AND b x log (a)
RULE ARE EQUAL.

Let’s confirm that log (a’) and b x log (a) are equal. We’'ll start by
using b x log (a) and e in the Power Rule:

ePlos (a) _ (eloge (a) )b

bxlog, (a)

And since e is the inverse of log , we can reduce e on the

right side to just a:

eb x loge(a) — ab

Now we’ll use the rule that b" = x also means log, x = n, where:

b=e

xX=a’

n=>b x log (a)
This means that "%
equal to b x log (a).

= a’, so we can conclude that log (a’) is

i il
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T

log (a) + log (b) AND
g (2 D) ARE EGUAL.

Let’s confirm that log (a) + log (b) and log (a x b) are equal. Again,
we'll use the rule that states that b" =x also means log x=n.

Let’s start by defining e™ = a and e* = b. We would then have
eme" = e™" = a x b, thanks to the Product Rule of exponents. We can
then take the log of both sides,

log (e™") =1log (a x b),

which on the left side reduces simply to
m+n=1og (a x b).
We also know that m + n = log a + log b, so clearly

log (a) + log (b) = log (a x b).

-
HERE I HAVE SUMMARIZED THE RULES
T'VE EXPLAINED SO FAR.
RULE 1 (e9® and e**are equal.
ea

RULE 2 o and e*’ are equal.

RULE 3 a and log (e are equal.

RULE 4 log (a”) and b x log (a) are equal.

RULE 5 log (a) + log (a) and log (a x b) are equal.
- J

In fact, one could replace the natural number e in these equations with
any positive real number d. Can you prove these rules again using d as
the base?

i il
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DIFFERENTIAL CALCULUS W‘wamﬂm
_ OH NO! TM
, TERRIBLE AT
S CALCULUS!
ST /
>’\ {DON'T,
WIOlzli‘ZY!
B v

N

(|®

: B, | :

«.» w L

- -
=

o
e

/ NOW, ON TO
2

, DIFFERENTIAL
/ CALCULUS!

IT LOOKS BAD,
BUT IT"S NOT THAT
HARD. T'LL EXPLAIN

IT SO THAT YOU CAN
UNDERSTAND.

TRUST ME,
YOU'LL DO FINE.

LET ME WRITE
THAT DOWN,
155.7 CM.




MIU'S AGE AND HEIGHT

AGE | HEIGHT THIS 15 A TABLE
SHOWING YOUR
4 1001 HEIGHT FROM
5 107.2 AGE 4 UP TO NOW.
2] 14.1
7 1217
q 13049
10 1375
L 143.2
12 149.4
13 1511
14 154.0
15 154.6
16 155.0
17 155.1
18 155.3
19 155.7

Sy —

HOW DI% you % " \ = :
GET THAT - i I/ y :
INFORMATION?! - N« THATS aoF
o ",, ] 5 <
U
T THAT
MAKE THIS LIKE THIS? LOOKS @‘
DATA INTO A GOo0PD.
SCATTER PLOT.
SCATTER PLOT OF MIU'S AGE AND HEIGHT
o * a o ) 1’
lqo b . - .
l’zoL . . ®
g ot
B
éot
4ot
20
O LL 1 1 1 1 x | S S § 1 L X 1 i
4567890112314 15617189
AGE
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LET'S COMPARE
YOUR HEIGHT AT

AGES 6 AND 7.

121.%
Ha.\ i

cm

I GREW 7.6 M
(121.7 - 114.1D
IN ONE YEAR,
BETWEEN AGES

6 AND 7.

Yo Ly 03,3
T 1

ROUGHLY SPEAKING, THE
RELATIONSHIP BETWEEN
YOUR AGE AND HEIGHT

FROM AGES 4 TO 14...

..CAN BE DESCRIBED
BY THIS FUNCTION.

THE LINE
REPRESENTS
THIS FUNCTION.

160 .

\
0 Yy=-2bE 033

U567 5 9 01/ 123145067189
AGE
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JUST ASSUME IT

WHERE DID THAT THAT IS A REGRESSION DESCRIBES THE
326.6 EQUATION! DON'T WORRY RELATIONSHIP
y=-——_+ 173.3 ABOUT HOW TO GET IT BETWEEN YOUR
RIGHT NOW. AGE AND YOUR

FUNCTION COME FROM?! HEIGHT.

FOR NOW, T'LL JUST BELIEVE
THAT THE RELATIONSHIP 15

y=-3258 17335,
X
(orear
NOW, CAN YOU SEE 50 USING THE EQUATION, YOUR INCREASE IN
THAT "7 YEARS OLD” HEIGHT BETWEEN AGE 6 AND AGE (6 + 1)
CAN BE DESCRIBED CAN BE DESCRIBED AS...
AS (6 + 1) YEARS
oLp"?

- 2.6 +r'733) ( 32“‘+/'73.3)

(6+1) b

WE REPLACE x
WITH YOUR AGE.
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- 326.6 26.6
WE CAN SHOW THE RATE OF 326.6 41733 }- 2.6 7 = —+{73.3
GROWTH AS CENTIMETERS (6t )
PER YEAR, SINCE THERE —_—
IS ONE YEAR BETWEEN
THE AGES WE USED.

CM/YEAR

OH! YOU DIVIDED
THE PREVIOUS
FORMULA BY 1

BECAUSE THE INTERVAL

IS ONE YEAR.

WHAT 1S AGE SIX

NEXT, LET'S

N AND A HALF IN
|NT£EE§9A§ ﬁ”ﬁ;”@% TERMS OF THE LET ME SEE...
IN HALF A YEAR. NUMBER 67

(6 + 0.5) YEARS

AND THIS IS THE INCREASE IN HEIGHT
PER YEAR, BETWEEN AGE 6 AND
AGE (6 + 0.5).

THE INCREASE IN HEIGHT IN 0.5 YEARS,
BETWEEN AGE 6 AND AGE (6 + 0.5)...

HEIGHT AT AGE
(6 + 0.5) HEIGHT AT AGE 6

( 3266 4 ins 3) ( 32‘ ‘+l'733)

s (o
((6f0§) +]73.3 733
0.5

CM/YEAR

(6t0.5)

THIS TIME YOU DIVIDED
THE FORMULA BY 0.5
BECAUSE THE INTERVAL 15
HALF A YEAR. I GET IT!

{5

..CAN BE
WRITTEN LIKE
THIS.
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LET'S THINK ABOUT THE

HEIGHT INCREASE OVER

AN EXTREMELY SHORT
PERIOD OF TIME.

QDD IT DESCRIBES THE EXTREMELY
SHORT PERIOD OF TIME BETWEEN
THE AGE OF 6 AND RIGHT AFTER
TURNING 6. USING OUR EQUATION,
WE CAN FIND THE CHANGE IN
HEIGHT IN THAT PERIOD.
DELTA;Z:

3244 326.6
~ 220843 3 |—-(— 2243,
) ((6+A)+'73 7 HT33

MATHEMATICS,

WE USE THIS

SYMBOL A

(DELTA) TO

REPRESENT LIKE THIS.

CHANGE.

THAT MEANS “THE INCREASE IN
HEIGHT PER YEAR, BETWEEN
AGE 6 AND IMMEDIATELY
AFTER TURNING &" CAN BE
DESCRIBED LIKE THIS:

’y JlE ’[///
/ /// FOLLOW ME AS
1 REARRANGE
THIS EQUATION /
IN A SNAP!

326.6 ‘
+173.3 )—- (—— == +1'73.3) 1
———————-——~——6———-—- CM/YEAR _V \\:’/
A { 1 /

|

2



316, .-\ [ 3164
mﬂ'BB) ( i +I73.3)

A

_326.8 +3zé.é
__(6+A)" 6
A

326.6 316.6
6 (6+4)
A

| |
A

(6+A)-6
6(6+A)
A

326.6 X

ARE YOU FOLLOWING
SO FAR? THERE ARE A
LOT OF STEPS IN THIS
CALCULATION, BUT IT'S
NOT TOO HARD, IS IT?
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326.6x—i—

6(6+A)

-

A

A

~326.6
“5(6+ )

|

=326.éx6(6+4)

v 326.6x
6(6+0

I CHANGED THE

REMAINING A TO ZERO
BECAUSE VIRTUALLY NO

TIME HAS PASSED.

X
A

NO, I THINK
I CAN HANDLE




GREAT, THEN SIT
DOWN AND TRY
THIS PROBLEM.

CAN YOU DESCRIBE THE INCREASE IN HEIGHT
PER YEAR, BETWEEN AGE x AND IMMEDIATELY
AFTER AGE x, IN THE SAME WAY?

ISTHS 7))
RIGHT? %A

3266 _(_ 3%.6 )
( " A)+u73.3) 11733
A

CM/YEAR

YESI N
INDEED! ()
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THERE'S A
SPECIAL NAME
FOR WHAT YOU
JUST DID.

THE ANSWER 15

326.6x - .
X

WE CALL IT DIFFERENTIATING—AS IN
DIFFERENTIAL CALCULUS. NOW WE
HAVE A FUNCTION THAT DESCRIBES

YOUR RATE OF GROWTH!

1DD
CALCULUS!

ZER

BY THE WAY, d
DERIVATIVES CAN BE
WRITTEN WITH THE 9% =326.£ %
PRIME SYMBOL () dz
OR AS

Q or

y': 326 .6 x

STRAIGHT
APOS-
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THE PRIME
SYMBOL LOOKS
LIKE A LONG

t"..\

TROPHE! 4

l

-12 TO TRY DIFFERENTIATING
OTHER FUNCTIONS.
WHAT DO YOU SAY?

l

——

12

7 CHALLENGE
ACCEPTED!

NOW! I CHALLENGE YOU




[

x+A) —x? 2_ (2x+A)A
( ) x +2xA + A - x* _ —9x 4 A
A A A

=~2x+0=2x 50 W _ox
dx

[ DIFFERENTIATE y = 1 WITH RESPECT TO x. j>
x

-
1 1 x—(x+A)
x+A _x_ (Xxtd)x A 1 -1
A A (x+A)x A (x+A)x
=
-1 -1 y d 2
m e —=-x" 50 Ey=—x
o J

i i}
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x+(x+A) x—-(x+A4)

T

X

~ (x+A)x X (x+A)x
= X S

=3

2x + A y -A

_ (x+A)x (x+A)x _ oy
! A
] s0 W
________________________ o

BASED ON THESE EXAMPLES,
YOU CAN SEE THAT WHEN YOU DIFFERENTIATE y — x-
WITH RESPECT TO x, THE RESULT 15 % ~ e,

T

]
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[

[{5(x +A) -7} +(5x —7)][{5(x +A) -7} - (5x —7)]

A
_[2(5x-7)+5A]x5A

A
=[2(5x-7)+5A]x5

z[2(5x—7)+5x0]><5

=2(5x-7)x5

S0 %zZ(Sx—ﬂxS

WHEN YOU DIFFERENTIATE Y = (ax +b)" wiTH
RESPECT TO x, THE RESULT IS % —n(ax+b)" xa.

T

i}
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/ W:>
HERE ARE SOME OTHER EXAMPLES OF
COMMON DERIVATIVES:

d
WHEN YOU DIFFERENTIATE y = e, d.i =e”,

WHEN YOU DIFFERENTIATE y = logx, Y _

WHEN YOU DIFFERENTIATE y = log(ax +b),
dy a
dx ax+b’
WHEN YOU DIFFERENTIATE y = log (1 +e™™"),
dy a
—=a-—-—.
dx 1+e™™
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MATRICES

THE LAST TOPIC
WE'LL COVER
TONIGHT 15
MATRICES.

MATRICES LOOK
LIKE APARTMENT
BUILDINGS MADE
OF NUMBERS.

YOU LOOK
NERVOUS.

RELAXI
_

IN MATH, A MATRIX 15
A WAY TO ORGANIZE A
RECTANGULAR ARRAY
OF NUMBERS. NOW T'LL
GO OVER THE RULES
OF MATRIX ADDITION,
MULTIPLICATION, AND
INVERSION. TAKE
CAREFUL NOTES,
OKAY?

= = | \ -
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T

JUST AS WITH EXPONENTS, MATHEMATICIANS HAVE
RULES FOR WRITING THEM.

CAN BE WRITTEN AS (1 2}(le=[_1)

{xl +2x, =-1
3 4 x, 5

3x, +4x, =5

( A MATRIX CAN BE USED TO WRITE EQUATIONS QUICKLY. )

1 2
AND %1 2% cAN BE WRITTEN AS *
3x, +4x, 3 4] x,
_
EXAMPLE

k, + 2k, + 3k, = -3 1 2 3,
_ 1
4k, + 5k, + 6k, =8 can be 4 5 6|,
].Ok1 + 11k2 + 12k3 =2 written as 10 11 12 k2

13k, + 14k, + 15k, =7 13 14 15\ °

-3
8
2

7

If you don’t know the values of the expressions, you write the expressions

and the matrix like this:

k, + 2k, + 3k, 1 2 3
4k, + 5k, + 6k, 4 5 6 |k Just like an ordinary table, we
say matrices have columns and
7k, + 8k, + 9k 7 8 9|k
! 2 8 2 rows. Each number inside of
10k, +11k, + 12k, 10 11 12 ||k, the matrix is called an element.
13k, + 14k, + 15k, 13 14 15
SUMMARY
A X, TApX, £+ X, = b, a, a, A | %1 b,
Ay Xy T Ay Xy o0+ Ay X, = b, can be Ay Ap Aaq || X2 — b,
.......................................... written as : : : : :
a,x, +a,x,+-+a,x, =b, Ap App Apg )\ *Xa ) | o
X, T Ap,pX, £+t a, X, a, a, A, | %1
Ay X, + Ay Xy + oo+ Ay X, can be a:21 a:22 a.Zq x:2
.................................... written as
A, X, + A%+ A, X, Ap App Apg )\ X4

I
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ADDING MATRICES

T

4 ™
NEXT, I'LL EXPLAIN THE ADDITION OF MATRICES.

12) (4 5
CONSIDER THIS: | 5 , |*| 5 4

NOW JUST ADD THE NUMBERS IN THE SAME
POSITION: TOP LEFT PLUS TOP LEFT, AND SO ON.

1+4 2+5 5 7
3+(-2) 4+4/7 |1 8
YOU CAN ONLY ADD MATRICES THAT HAVE

THE SAME DIMENSIONS, THAT 15, THE SAME
NUMBER OF ROWS AND COLUMNS.

| K

EXAMPLE PROBLEM 1
5 1 -1 3
What is 6 -9 + -3 10 ?
ANSWER

5 1) (-1 3)_(5+(D 1+3 ) (4 4
6 9] (-3 10| |6+(-3) (-99+10] (3 1

EXAMPLE PROBLEM 2

1 2 3 7 2 3

4 5 6 -1 7 -4
Whatis| 7 8 9 |+|-7 -3 10|?

10 11 12 8 2 -1

13 14 15 7 1 -9

I

MATRICES 39



il II

ANSWER

1 2 3 7 2 3 1+7 2+2 3+3 8 4
a 4 5 6| |-1 7 -4| |4+(-1) 5+7 6+(-4) 3 12
7 8 9 |+|-7 -3 10|=|7+(-7) 8+(-3) 9+10 |=| 0 5

10 11 12 8 2 -1 10+8 11+2 12+(-1) 18 13
13 14 15 7 1 -9 13+7 14+1 15+ (-9) 20 15

SUMMARY
a

n a, b, b, - blq
Here are two generic | ®21 %2 Qyg | Do Do oo by
matrices. : : :
ap Apy Apg \ Ppr by, b,
a,, a, alq b11 b12 blq
You can add them A; Ay a,, N b,, b, b,,
together, : : : :
a, a, Ay bpl bp2 o bpq
a, + b11 a, + b12 alq + blq
= like this: a, +b,, Ay +by - A, +by,
a, + bp1 a, + bp2 At bpq

the corresponding elements!

MULTIPLYING MATRICES

e
ON TO MATRIX MULTIPLICATION! WE DON'T MULTIPLY
MATRICES IN THE SAME WAY AS WE ADD AND
L] SUBTRACT THEM. IT'S EASIEST TO EXPLAIN BY
EXAMPLE, SO LET'S MULTIPLY THE FOLLOWING:

L 2)x y
3 4| x, y,

2
19
11

6

And of course, matrix subtraction works the same way. Just subtract

I

I II
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WE MULTIPLY EACH ELEMENT IN THE FIRST COLUMN
OF THE LEFT MATRIX BY THE TOP ELEMENT OF THE
FIRST COLUMN IN THE RIGHT MATRIX, THEN THE SECOND
COLUMN OF THE LEFT MATRIX BY THE SECOND
i ELEMENT IN THE FIRST COLUMN OF THE RIGHT MATRIX.

THEN WE ADD THE PRODUCTS, LIKE THIS:

1x, +2x,
3x, +4x,

AND THEN WE DO THE SAME WITH THE
SECOND COLUMN OF THE RIGHT MATRIX TO GET:

1y, + 2y,
3y, +4y,
50 THE FINAL RESULT 15:

1x, +2x, 1y, +2y,
3x, +4x, 3y, +4y,

IN MATRIX MULTIPLICATION, FIRST YOU MULTIPLY
AND THEN YOU ADD TO GET THE FINAL RESULT.
LET'S TRY THIS OUT.
- J

EXAMPLE PROBLEM 1

1 24 5
What is 3 4| -2 a4 ?
We know to multiply the elements and then add the terms to simplify.

When multiplying, we take the right matrix, column by column, and
multiply it by the left matrix.*

ANSWER
1 2)(4) (1x4+2x(-2)) (0 Pirat ol
3 4| -2] |3x4+4x(-2)] |4 1rst column
N 1 2)\5 B 1x5+2x4 (13 S d col
3 4ll4| |3xB5+4x4]| |31 econd column

So th . (1 2)4 5) (0 13
o € answer 1s 3 4 _24—431.

T

I

I II

* NOTE THAT THE RESULTING MATRIX WILL HAVE THE SAME NUMBER OF ROWS AS
THE FIRST MATRIX AND THE SAME NUMBER OF COLUMNS AS THE SECOND MATRIX.
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EXAMPLE PROBLEM 2

1 2
4 b5
What is 7 8

ANSWER
1 2

k, +2k,
4 5|k | 4k, +5k,
7 8| k,| | 7k, +8k,

10 11 10k, +11k,

[, +21,
L) | 41, +5l,
L] | 71, +8l,

101, +111,

1 2 m, +2m,
4 5 |m 4m, +5m,
7 8 (mz J B 7m, + 8m,
10 11 10m, +11m,

Multiply the first column of the
second matrix by the respective
rows of the first matrix.

Do the same with the second
column.

And the third column.

The final answer is just a concatenation of the three answers above.

k, +2k, L +21,
4k, + 5k, 41, + 51,
7k, + 8k, 71, + 81,

m, +2m,
4m, +5m,
7m, + 8m,
10k, +11k, 10l +111, 10m, +11m,

T

I
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THE RULES OF MATRIX MULTIPLICATION

T

T

Ve

WHEN MULTIPLYING MATRICES, THERE ARE THREE L
THINGS TO REMEMBER:

THE NUMBER OF COLUMNS IN THE FIRST
MATRIX MUST EQUAL THE NUMBER OF ROWS
IN THE SECOND MATRIX.

THE RESULT MATRIX WILL HAVE A NUMBER OF
ROWS EQUAL TO THE FIRST MATRIX.

THE RESULT MATRIX WILL HAVE A NUMBER OF
COLUMNS EQUAL TO THE SECOND MATRIX.

- /

Can the following pairs of matrices can be multiplied?
If so, how many rows and columns will the resulting matrix have?

EXAMPLE PROBLEM 1 u
3 4
3 6

ANSWER

L

2
-5

VO

o

Yes! The resulting matrix will have 2 rows and 1 column:
2
2 3 4 71 2x2+3x(-7)+4x0 (17
-5 3 6) ((-B8)x2+83x(-7)+6x0) (-31

EXAMPLE PROBLEM 2

9 4 -1

2 -2 1
7 -6 O
4 9 -7

-5 3 8

ANSWER

I

No. The number of columns in the first matrix is 3, but the number of
rows in the second matrix is 2. These matrices cannot be multiplied.

I II
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IDENTITY AND INVERSE MATRICES

-
= THE LAST THINGS I'M GOING TO EXPLAIN TONIGHT
ARE IPENTITY MATRICES AND INVERSE MATRICES.

AN IDENTITY MATRIX 1S A SQUARE MATRIX WITH
ONES ACROSS THE DIAGONAL, FROM TOP LEFT TO
BOTTOM RIGHT, AND ZEROS EVERYWHERE ELSE.

10
HERE 1S A 2 x 2 IDENTITY MATRIX: ( 0 1}

S = O
= O O

1
AND HERE IS A 3 x 3 IDENTITY MATRIX: | O
(0]

B \_ J

Some square matrices (a matrix that has the same number of rows as col-
umns) are invertible. A square matrix multiplied by its inverse will equal
an identity matrix of the same size and shape, so it’s easy to demonstrate
that one matrix is the inverse of another.

For example:

1 2) (-2 1 ) (1x(-2)+2x15 1x1+2x(-0.5)) (1 0
3 4|15 -05] (3x(-2)+4x1.5 3x1+4x(-0.5)| (0 1

-2 1 1 2
So 1.5 -0.5 is the inverse of 3 4|

PSST! HEY MIU,
WAKE UP.

WE'RE FINISHED
FOR TODAY.




BE SURE TO REVIEW
YOUR NOTES SO
YOU'LL BE READY FOR
THE NEXT LESSON:
REGRESSION

THANK YOU
SO MUCH FOR
TEACHING ME.

~ NO PROBLEM!
TM HAPPY
TO HELP.
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STATISTICAL DATA TYPES

Now that you've had a little general math refresher, it’s time for a
refreshing chaser of statistics, a branch of mathematics that deals
with the interpretation and analysis of data. Let’s dive right in.

We can categorize data into two types. Data that can be mea-
sured with numbers is called numerical data, and data that cannot
be measured is called categorical data. Numerical data is some-
times called quantitative data, and categorical data is sometimes
called qualitative data. These names are subjective and vary based
on the field and the analyst. Table 1-1 shows examples of numerical
and categorical data.

TABLE 1-1: NUMERICAL VS. CATEGORICAL DATA

Number of Place where

books read Age person most

per month (in years) often reads Gender
Person A 4 20 Train Female
Person B 2 19 Home Male
Person C 10 18 Café Male
Person D 14 22 Library Female

Y Y
Numerical Categorical
Data Data

Number of books read per month and Age are both examples
of numerical data, while Place where person most often reads and
Gender are not typically represented by numbers. However, cate-
gorical data can be converted into numerical data, and vice versa.
Table 1-2 gives an example of how numerical data can be converted
to categorical.

TABLE 1-2: CONVERTING NUMERICAL DATA TO CATEGORICAL DATA

Number of Number of

books read books read

per month per month
Person A 4 Few
Person B 2 I Few
Person C 10 Many
Person D 14 Many
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In this conversion, the analyst has converted the values 1 to 5
into the category Few, values 6 to 9 into the category Average, and
values 10 and higher into the category Many. The ranges are up to
the discretion of the researcher. Note that these three categories
(Few, Average, Many) are ordinal, meaning that they can be ranked
in order: Many is more than Average is more than Few. Some cate-
gories cannot be easily ordered. For instance, how would one easily
order the categories Brown, Purple, Green?

Table 1-3 provides an example of how categorical data can be
converted to numerical data.

TABLE 1-3: CONVERTING CATEGORICAL DATA TO NUMERICAL DATA

Favorite

season Spring Summer Autumn Winter
Person A Spring 1 0 0 0
Person B Summer I 0 1 0 0
Person C Autumn 0 0 1 0
Person D Winter 0 0 0 1

In this case, we have converted the categorical data Favorite
season, which has four categories (Spring, Summer, Autumn,
Winter), into binary data in four columns. The data is described
as binary because it takes on one of two values: Favorite is repre-
sented by 1 and Not Favorite is represented by O.

It is also possible to represent this data with three columns.
Why can we omit one column? Because we know each respondent’s
favorite season even if a column is omitted. For example, if the first
three columns (Spring, Summer, Autumn) are 0, you know Winter
must be 1, even if it isn’t shown.

In multiple regression analysis, we need to ensure that our data
is linearly independent; that is, no set of J columns shown can be
used to exactly infer the content of another column within that set.
Ensuring linear independence is often done by deleting the last col-
umn of data. Because the following statement is true, we can delete
the Winter column from Table 1-3:

(Winter) = 1 - (Spring) — (Summer) — (Autumn)
In regression analysis, we must be careful to recognize which

variables are numerical, ordinal, and categorical so we use the vari-
ables correctly.
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HYPOTHESIS TESTING

Statistical methods are often used to test scientific hypotheses. A
hypothesis is a proposed statement about the relationship between
variables or the properties of a single variable, describing a phe-
nomenon or concept. We collect data and use hypothesis testing to
decide whether our hypothesis is supported by the data.

We set up a hypothesis test by stating not one but two hypoth-
eses, called the null hypothesis (H)) and the alternative hypothesis
(H). The null hypothesis is the default hypothesis we wish to dis-
prove, usually stating that there is a specific relationship (or none
at all) between variables or the properties of a single variable. The
alternative hypothesis is the hypothesis we are trying to prove.

If our data differs enough from what we would expect if the null
hypothesis were true, we can reject the null and accept the alter-
native hypothesis. Let’s consider a very simple example, with the
following hypotheses:

H: Children order on average 10 cups of hot chocolate per month.

H_: Children do not order on average 10 cups of hot chocolate per
month.

We're proposing statements about a single variable—the num-
ber of hot chocolates ordered per month—and checking if it has a
certain property: having an average of 10. Suppose we observed five
children for a month and found that they ordered 7, 9, 10, 11, and
13 cups of hot chocolate, respectively. We assume these five chil-
dren are a representative sample of the total population of all hot
chocolate-drinking children. The average of these five children’s
orders is 10. In this case, we cannot prove that the null hypothesis
is false, since the value proposed in our null hypothesis (10) is
indeed the average of this sample.

However, suppose we observed a sample of five different chil-
dren for a month and they ordered 29, 30, 31, 32, and 35 cups of hot
chocolate, respectively. The average of these five children’s orders
is 31.4; in fact, not a single child came anywhere close to drinking
only 10 cups of hot chocolate. On the basis of this data, we would
assert that we should reject the null hypothesis.

In this example, we've stated hypotheses about a single vari-
able: the number of cups each child orders per month. But when
we'’re looking at the relationship between two or more variables,
as we do in regression analysis, our null hypothesis usually states
that there is no relationship between the variables being tested,
and the alternative hypothesis states that there is a relationship.
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MEASURING VARIATION

Suppose Miu and Risa had a karaoke competition with some friends
from school. They competed in two teams of five. Table 1-4 shows
how they scored.

TABLE 1-4: KARAOKE SCORES FOR TEAM MIU AND TEAM RISA

Team member Score Team member Score
Miu 48 Risa 67
Yuko 32 Asuka 55
Aiko 88 Nana 61
Maya 61 Yuki 63
Marie 71 Rika 54
Average 60 Average 60

There are multiple statistics we can use to describe the “center”
of a data set. Table 1-4 shows the average of the data for each team,
also known as the mean. This is calculated by adding the scores of
each member of the group and dividing by the number of members
in the group. Each of the karaoke groups has a mean score of 60.

We could also define the center of these data sets as being the
middle number of each group when the scores are put in order. This
is the median of the data. To find the median, write the scores in
increasing order (for Team Miu, this is 32, 48, 61, 71, 88) and the
median is the number in the middle of this list. For Team Miu,
the median is Maya’s score of 61. The median happens to be 61
for Team Risa as well, with Nana having the median score on this
team. If there were an even number of members on each team, we
would usually take the mean of the two middle scores.

So far, the statistics we’'ve calculated seem to indicate that the
two sets of scores are the same. But what do you notice when we
put the scores on a number line (see Figure 1-1)?

Team Miu Team Risa

Nana
Maya |Asuka Yuki |
| Yuko || Miu | |Marie| | Aiko | m

Cecd e b e e e el e
| | | | | | | | | | | [ | | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100 ] 10 20 30 40 50 60 70 80 90 10

°y

Score Score

FIGURE 1-1: KARAOKE SCORES FOR TEAM MIU AND TEAM RISA ON NUMBER LINES
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Team Miu’s scores are much more spread out than Team
Risa’s. Thus, we say that the data sets have different variation.

There are several ways to measure variation, including the sum
of squared deviations, variance, and standard deviation. Each of
these measures share the following characteristics:

¢ All of them measure the spread of the data from the mean.

* The greater the variation in the data, the greater the value of the
measure.

¢ The minimum value of the measures is zero—that happens only
if your data doesn’t vary at all!

SUM OF SQUARED DEVIATIONS

The sum of squared deviations is a measure often used during
regression analysis. It is calculated as follows:

sum of (individual score — mean score)?,

which is written mathematically as
> (x - %)

The sum of squared deviations is not often used on its own to
describe variation because it has a fatal shortcoming—its value
increases as the number of data points increases. As you have
more and more numbers, the sum of their differences from the
mean gets bigger and bigger.

VARIANCE

This shortcoming is alleviated by calculating the variance:

—\2

x—-x
Z(nT) , where n = the number of data points.

This calculation is also called the unbiased sample variance,
because the denominator is the number of data points minus 1
rather than simply the number of data points. In research studies
that use data from samples, we usually subtract 1 from the number
of data points to adjust for the fact that we are using a sample of the
population, rather than the entire population. This increases the
variance.

This reduced denominator is called the degrees of freedom,
because it represents the number of values that are free to vary.
For practical purposes, it is the number of cases (for example, obser-
vations or groups) minus 1. So if we were looking at Team Miu and
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Team Risa as samples of the entire karaoke-singing population,
we’'d say there were 4 degrees of freedom when calculating their
statistics, since there are five members on each team. We subtract
1 from the number of singers because they are just a sample of all
possible singers in the world and we want to overestimate the vari-
ance among them.

The units of the variance are not the same as the units of the
observed data. Instead, variance is expressed in units squared, in
this case “points squared.”

STANDARD DEVIATION

Like variance, the standard deviation shows whether all the data
points are clustered together or spread out. The standard deviation
is actually just the square root of the variance:

vJvariance

Researchers usually use standard deviation as the measure of
variation because the units of the standard deviation are the same
as those of the original data. For our karaoke singers, the standard
deviation is reported in “points.”

Let’s calculate the sum of squared deviations, variance, and
standard deviation for Team Miu (see Table 1-5).

TABLE 1-5: MEASURING VARIATION OF SCORES FOR TEAM MIU

Measure of variation Calculation

Sum of squared (48 - 60)* + (32 - 60)* + (88 — 60)* + (61 — 60)* + (71 — 60)°
deviations = (-12)* +(-28)* +28% +1* +11?

=1834
Variance % = 458.8

Standard deviation \/458.5 =21.4

Now let’s do the same for Team Risa (see Table 1-6).

TABLE 1-6: MEASURING VARIATION OF SCORES FOR TEAM RISA

Measure of variation Calculation

Sum of squared (67 - 60)” + (55 — 60)* + (61 — 60)* + (63 — 60)* + (54 — 60)°
deviations =7 +(-5)° +1* + 3% +(-6)°

=120
Variance 120 =30

5-1

Standard deviation V30 =5.5
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We see that Team Risa’s standard deviation is 5.5 points,
whereas Team Miu’s is 21.4 points. Team Risa’s karaoke scores
vary less than Team Miu’s, so Team Risa has more consistent
karaoke performers.

PROBABILITY DENSITY FUNCTIONS

We use probability to model events that we cannot predict with
certainty. Although we can accurately predict many future events—
such as whether running out of gas will cause a car to stop run-
ning or how much rocket fuel it would take to get to Mars—many
physical, chemical, biological, social, and strategic problems are so
complex that we cannot hope to know all of the variables and forces
that affect the outcome.

A simple example is the flipping of a coin. We do not know all
of the physical forces involved in a single coin flip—temperature,
torque, spin, landing surface, and so on. However, we expect that
over the course of many flips, the variance in all these factors will
cancel out, and we will observe an equal number of heads and tails.
Table 1-5 shows the results of flipping a billion quarters in number
of flips and percentage of flips.

TABLE 1-5: TALLY OF A BILLION CON FLIPS

Number of flips Percentage of flips
Heads 499,993,945 49.99939%
Tails 500,006,054 50.00061%
Stands on its edge 1 0.0000001%

As we might have guessed, the percentages of heads and tails
are both very close to 50%. We can summarize what we know about
coin flips in a probability density function, P(x), which we can apply
to any given coin flip, as shown here:

P(Heads) = .5, P(Tails) = .5, P(Stands on its edge) <1 x 10*°

But what if we are playing with a cheater? Perhaps someone has
weighted the coin so that P(x) is now this:

P(Heads) = .3, P(Tails) = .7, P(Stands on its edge) = 0

What do we expect to happen on a single flip? Will it always be
tails? What will the average be after a billion flips?
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Not all events have so few possibilities as these coin examples.
We often wish to model data that can be continuously measured.
For example, height is a continuous measurement. We could mea-
sure your height down to the nearest meter, centimeter, millimeter,
or ... nanometer. As we begin dealing with data where the possi-
bilities lie on a continuous space, we need to use continuous func-
tions to represent the probability of events.

A probability density function allows us to to compute the prob-
ability that the data lies within a given range of values. We can plot
a probability density function as a curve, where the x-axis repre-
sents the event space, or the possible values the result can take,
and the y-axis is f(x), or the probability density function value of x.
The area under the curve between two possible values represents
the probability of getting a result between those two values.

NORMAL DISTRIBUTIONS

One important probability density function is the normal distri-
bution (see Figure 1-2), also called the bell curve because of its
symmetrical shape, which researchers use to model many events.

FIGURE 1-2: A NORMAL DISTRIBUTION

The standard normal distribution probability density function
can be expressed as follows:

|

Jx) =

e

ﬁ‘v-'
3
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The mean of the standard normal distribution function is zero.
When we plot the function, its peak or maximum is at the mean
and thus at zero. The tails of the distribution fall symmetrically
on either side of the mean in a bell shape and extend to infinity,
approaching, but never quite touching, the x-axis. The standard
normal distribution has a standard deviation of 1. Because the
mean is zero and the standard deviation is 1, this distribution is
also written as N(O,1).

The area under the curve is equal to 1 (100%), since the value
will definitely fall somewhere beneath the curve. The further from
the mean a value is, the less probable that value is, as represented
by the diminishing height of the curve. You may have seen a curve
like this describing the distribution of test scores. Most test takers
have a score that is close to the mean. A few people score excep-
tionally high, and a few people score very low.

CHI-5QUARED DISTRIBUTIONS

Not all data is best modeled by a normal distribution. The chi-
squared (y?) distribution is a probability density function that fits
the distribution of the sum of squares. That means chi-squared
distributions can be used to estimate variation. The chi-squared
probability density function is shown here:

1 5_1 X
x X2 xe?

k k
SO =122 x> e"dx , x>0
0
0, x<0

The sum of squares can never be negative, and we see that f(x)
is exactly zero for negative numbers. When the probability density
function of x is the one shown above, we say, “x follows a chi-
squared distribution with k degree(s) of freedom.”

The chi-squared distribution is related to the standard normal
distribution. In fact, ifyoutake Z ,Z , ..., Z, as a set of indepen-
dent, identically distributed standard normal random variables and
then take the sum of squares of these variables like this,

X=Z}+Z+--+22,

then X is a chi-squared random variable with k degrees of freedom.
Thus, we will use the chi-squared distribution of k to represent
sums of squares of a set of k normal random variables.
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In Figure 1-3, we plot two chi-squared density curves, one for
k = 2 degrees of freedom and another for k = 10 degrees of freedom.

When k=2 When k=10

0.1
0.4

0.3

ool 0.051

FIGURE 1-3: CHI-SQUARED DENSITY CURVES FOR Z DEGREES OF FREEDOM (LEFT) AND 10 DEGREES OF
FREEDOM (RIGHT)

Notice the differences. What is the limit of the density functions
as x goes to infinity? Where is the peak of the functions?

PROBABILITY DENSITY DISTRIBUTION TABLES

Let’s say we have a data set with a variable X that follows a chi-
squared distribution, with 5 degrees of freedom. If we wanted to
know for some point x whether the probability P of X > x is less
than a target probability—also known as the critical value of the
statistic—we must integrate a density curve to calculate that prob-
ability. By integrate, we mean find the area under the relevant por-
tion of the curve, illustrated in Figure 1-4.

!

XZ

FIGURE 1-4: THE PROBABILITY P THAT A VALUE X EXCEEDS
THE CRITICAL CHI-SQUARED VALUE x
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Since that is cumbersome to do by hand, we use a computer or,
if one is unavailable, a distribution table we find in a book. Distri-
bution tables summarize features of a density curve in many ways.
In the case of the chi-squared distribution, the distribution table
gives us the point x such that the probability that X > x is equal to
a probability P. Statisticians often choose P = .05, meaning there is
only a 5% chance that a randomly selected value of X will be greater
than x. The value of P is known as a p-value.

We use a chi-squared probability distribution table (Table 1-6)
to see where our degrees of freedom and our p-value intersect. This
number gives us the value of y? (our test statistic). The probability
of a chi-squared of this magnitude is equal to or less than the p at
the top of the column.

TABLE 1-6: CHI-SQUARED PROBABILITY DISTRIBUTION TABLE

.995 .99 975 .95 .05 .025 .01 .005

of freedom

1 0.000039 0.0002 0.0010 0.0039 3.8415 5.0239 6.6349 7.8794
2 0.0100 0.0201 0.0506 0.1026 5.9915 7.3778 9.2104 10.5965
3 0.0717 0.1148 0.2158 0.3518 7.8147 9.3484 11.3449 12.8381
4 0.2070 0.2971 0.4844 0.7107 9.4877 11.1433 13.2767 14.8602
5 0.4118 0.5543 0.8312 1.1455 11.0705 12.8325 15.0863 16.7496
6 0.6757 0.8721 1.2373 1.6354 12.5916 14.4494 16.8119 18.5475
7 0.9893 1.2390 1.6899 2.1673 14.0671 16.0128 18.4753  20.2777
8 1.3444 1.6465 2.1797 2.7326 15.5073 17.5345 20.0902 21.9549
9 1.7349 2.0879 2.7004 3.3251 16.9190 19.0228 21.6660 23.5893
10 2.1558 2.5582 3.2470 3.9403 18.3070 20.4832 23.2093 25.1881

To read this table, identify the k degrees of freedom in the first
column to determine which row to use. Then select a value for p.
For instance, if we selected p = .05 and had degrees of freedom
k =5, then we would find where the the fifth column and the fifth
row intersect (highlighted in Table 1-6). We see that x = 11.0705.
This means that for a chi-squared random variable and 5 degrees
of freedom, the probability of getting a draw X = 11.0705 or greater
is .05. In other words, the area under the curve corresponding to
chi-squared values of 11.0705 or greater is equal to 11% of the total
area under the curve.

If we observed a chi-squared random variable with 5 degrees
of freedom to have a value of 6.1, is the probability more or less
than .05?
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When v, =5 and v, = 10

F DISTRIBUTIONS

The F distribution is just a ratio of two separate chi-squared dis-
tributions, and it is used to compare the variance of two samples.
As a result, it has two different degrees of freedom, one for each
sample.

This is the probability density function of an F distribution:

o A LY vy
[ N L
- - X el x>0
Sflx)= (J‘:leexdxjx(j:leexde (v, x x+v,) 2
o, x<0

If the probability density function of X is the one shown above,
in statistics, we say, “X follows an F distribution with degrees of
freedom v, and v,.”

When v, =5 and v, = 10 and when v, = 10 and v, = 5, we get
slightly different curves, as shown in Figure 1-5.

When v, =10 and v, =5

0.7
0.6
0.5
0.4
0.3
0.2

0.1
0

0.7

0.6
0.5
0.4
0.3
0.2

0.1
1 1 0 1

FIGURE 1-5: F DISTRIBUTION DENSITY CURVES FOR 5 AND 10 RESPECTIVE DEGREES OF FREEDOM (LEFT)
AND 10 AND 5 RESPECTIVE DEGREES OF FREEDOM (RIGHT)

Figure 1-6 shows a graph of an F distribution with degrees of
freedom v, and v,. This shows the F value as a point on the hori-
zontal axis, and the total area of the shaded part to the right is
the probability P that a variable with an F distribution has a value
greater than the selected F value.
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}

F(first degree of freedom, second degree of freedom; P)

FIGURE 1-6: THE PROBABILITY P THAT A VALUE x EXCEEDS THE CRITICAL F VALUE
Table 1-7 shows the F distribution table when p = .05.

TABLE 1-7: F PROBABILITY DISTRIBUTION TABLE FOR p = .05

1 2 3 4 5 6 7 8 9 10
1 161.4 199.5 215.7 224.6 230.2 264.0 236.8 238.9 2405 2419
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4
3 10.1 9.6 9.3 9.1 9.0 8.9 8.9 8.8 8.8 8.8
4 7.7 6.9 6.6 6.4 6.3 6.2 6.1 6.0 6.0 6.0
5 6.6 5.8 5.4 5.2 5.1 5.0 4.9 4.8 4.8 4.7
6 6.0 5.1 4.8 4.5 4.4 4.3 4.2 4.1 4.1 4.1
7 5.6 4.7 4.3 4.1 4.0 3.9 3.8 3.7 3.7 3.6
8 5.3 4.5 4.1 3.8 3.7 3.6 3.5 3.4 3.4 3.3
9 5.1 4.3 3.9 3.6 3.5 3.4 3.3 3.2 3.2 3.1
10 5.0 4.1 3.7 3.5 3.3 3.2 3.1 3.1 3.0 3.0
11 4.8 4.0 3.6 3.4 3.2 3.1 3.1 2.9 2.9 2.9
12 4.7 3.9 3.5 3.3 3.1 3.0 2.9 2.8 2.8 2.8

Using an F distribution table is similar to using a chi-squared
distribution table, only this time the column headings across the
top give the degrees of freedom for one sample and the row labels
give the degrees of freedom for the other sample. A separate table
is used for each common p-value.

In Table 1-7, when v, = 1 and v, = 12, the critical value is 4.7.
This means that when we perform a statistical test, we calculate
our test statistic and compare it to the critical value of 4.7 from this
table; if our calculated test statistic is greater than 4.7, our result
is considered statistically significant. In this table, for any test sta-
tistic greater than the number in the table, the p-value is less than
.05. This means that when v, = 1 and v, = 12, the probability of an
F statistic of 4.7 or higher occurring when your null hypothesis is
true is 5%, so there’s only a 5% chance of rejecting the null hypoth-
esis when it is actually true.
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Let’s look at another example. Table 1-8 shows the F distribu-
tion table when p = .01.

TABLE 1-8: F PROBABILITY DISTRIBUTION TABLE FOR p = .01

1 2 3 4 5 6 7 8 9 10

1 4052.2 4999.3 5403.5 5624.3 5764.0 5859.0 5928.3 5981.0 6022.4 6055.9
2 98.5 99.0 99.2 99.3 99.3 99.3 99.4 99.4 99.4 99.4
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2
4 21.2 18.8 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5
5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1
6 13.7 10.9 9.8 9.1 8.7 8.5 8.3 8.1 8.0 7.9
7 12.2 9.5 8.5 7.8 7.5 7.2 7.0 6.8 6.7 6.6
8 11.3 8.6 7.6 7.0 6.6 6.4 6.2 6.0 5.9 5.8
9 10.6 8.0 7.0 6.4 6.1 5.8 5.6 5.5 5.4 5.6
10 10.0 7.6 6.6 6.0 5.6 5.4 5.2 5.1 4.9 4.8
11 9.6 7.2 6.2 5.7 5.3 5.1 4.9 4.7 4.6 4.5
12 9.3 6.9 6.0 5.4 5.1 4.8 4.6 4.5 4.4 4.3

Now when v, = 1 and v, = 12, the critical value is 9.3. The prob-
ability that a sample statistic as large or larger than 9.3 would
occur if your null hypothesis is true is only .01. Thus, there is a
very small probability that you would incorrectly reject the null
hypothesis. Notice that when p = .01, the critical value is larger
than when p = .05. For constant v, and v,, as the p-value goes down,
the critical value goes up.
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ALL RIGHT
THEN, LET'S GO!

THIS TABLE SHOWS THE

HIGH TEMPERATURE AND

THE NUMBER OF ICED
TEA ORDERS EVERY DAY
FOR TWO WEEKS.

High temp. (°C)

Iced tea orders

22nd (Mon.)
23rd (Tues.)
24th (Wed.)
25th (Thurs.)
26th (Fri.)
27th (Sat.)
28th (Sun.)
29th (Mon.)
30th (Tues.)
31st (Wed.)
1st (Thurs.)
2nd (Fri.)
3rd (Sat.)
4th (Sun.)

29
28
34
31
25
29
32
31
24
33
25
31
26
30

77
62
93
84
59
64
80
75
58
91
51
73
65
84

PLOTTING THE DATA

|
A

..WE'LL FIRST
MAKE THIS INTO A
SCATTER PLOT...

100

ICED TEA ORDERS
N
\U
I

sol1 1 |

(]

..LIKE THIS.

HIGH TEMP. (°C)

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

1 SEE.

SEE HOW THE DOTS
ROUGHLY LINE UP? THAT
SUGGESTS THESE VARIABLES
ARE CORRELATED. THE
CORRELATION COEFFICIENT,
CALLED R, INDICATES
HOW STRONG THE

W
0

R =0.9069

/”—x

R RANGES FROM #1 TO
-1, AND THE FURTHER IT IS
FROM ZERO, THE STRONGER
THE CORRELATIONX* T'LL SHOW
YOU HOW TO WORK OUT THE
CORRELATION COEFFICIENT
ON PAGE 78.
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* A POSITIVE R VALUE INDICATES A
POSITIVE RELATIONSHIP, MEANING AS
x INCREASES, SO DOES y. A NEGATIVE
R VALUE MEANS AS THE x VALUE
INCREASES, THE y VALUE DECREASES.




HERE, R IS LARGE,
INDICATING ICED
TEA REALLY DOES
SELL BETTER ON
HOTTER DAYS.

YES, THAT

MAKES SENSE! L )

BUT IT"S NOT REALLY
SURPRISING.

| H
OBVIOUSLY MORE
PEOPLE ORDER

ICED TEA WHEN
IS HOT OUT.

TRUE, THIS
INFORMATION ISN'T
VERY USEFUL BY

ITSELF.

k&

YOU MEAN
THERE'S
MORE?

SURE! WE
HAVEN'T EVEN
BEGUN THE
REGRESSION
ANALYSIS.

REMEMBER WHAT
I TOLD YOU THE
OTHER DAY? USING
REGRESSION
ANALYSIS...

TODAY'S HIGH
WL BE 31° C

YOU CAN PREDICT
THE NUMBER OF
ICED TEA ORDERS
FROM THE HIGH
TEMPERATURE.

TODAY, THERE
WILL BE 61
ORDERS OF

OH, YEAH... @

BUT HOW?

PLOTTING THE DATA €5



THE REGRESSION EQUATION

BASICALLY,
THE GOAL OF
REGRESSION
ANALYSIS 1S...

HOLD ON!
LET ME GRAB
A PENCIL.

..TO OBTAIN THE
REGRESSION EQUATION...

..IN THE FORM OF
y=ax+b.

ICED TEA ORDERS
SADRIREIRERE

i

L ZPE

ICED TEA ORDERS
SADRIREIRERE

PO

DUN2VBNBEXETEN9303ZBAS
HIGH TEMP. (°C)

DUN2VBNBEXETEN9303ZBAS

HIGH TEMP. (°Q)

IF YOU INPUT A HIGH l
TEMPERATURE FOR x...

~

85t
so b

Y= A7+b

SCR 7k

LARARENE N

.YOU CAN PREDICT
HOW MANY
ORDERS OF ICED

— TEA THERE WILL
2 \a\zuszszvzszfiao\ BE (. /
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[ 1 SEE! REGRESSION
ANALYSIS DOESN'T
SEEM TOO HARD.

AS 1 SAID EARLIER, y IS THE
DEPENDENT (OR OUTCOME)
VARIABLE AND x IS THE
INDEPENDPENT (OR PREDICTOR)

VARIABLE.

’?=a7Tc+b

DEPENDENT VARIABLE  INDEPENDENT VARIABLE

T

a IS THE REGRESSION COEFFICIENT,
WHICH TELLS US THE SLOPE OF
THE LINE WE MAKE.

THAT LEAVES
US WITH b, THE
INTERCEPT. THIS

TELLS US WHERE

THE Y-AXIS.
7

OUR LINE CROSSES

50 HOW DO I GET THE
REGRESSION EQUATION?

FINDING THE
EQUATION IS
ONLY PART OF
THE STORY.

YOU ALSO NEED TO
LEARN HOW TO VERIFY
THE ACCURACY OF
YOUR EQUATION BY
TESTING FOR CERTAIN
CIRCUMSTANCES. LET'S
LOOK AT THE PROCESS

AS A WHOLE.

THE REGRESSION EQUATION 67



HERE'S AN
OVERVIEW OF
REGRESSION
ANALYSIS.

GENERAL REGRESSION
ANALYSIS PROCEDURE

STEP 1 |
DRAW A SCATTER PLOT OF THE INDEPENDENT VARIABLE o
VERSUS THE DEPENDENT VARIABLE. IF THE DOTS LINE UP, e ..
THE VARIABLES MAY BE CORRELATED. . -
v
STEP 2 =axth
CALCULATE THE REGRESSION EQUATION. /
%
v
STEP 3
CALCULATE THE CORRELATION COEFFICIENT (R) AND WHAT'S R
AS5ESS OUR POPULATION AND ASSUMPTIONS. r s
z

MAKE A PREDICTION!

"
STEP 4
CONDUCT THE ANALYSIS OF VARIANCE.
.
STEP 5 Z
CALCULATE THE CONFIDENCE INTERVALS.
_‘e"
>~
STEP 6
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WE HAVE TO
DO ALL THESE
STEPS?

FOR A
THOROUGH
ANALYSIS, YES.

IT'S EASIER TO
EXPLAIN WITH AN
EXAMPLE. LET'S USE
SALES DATA FROM

WHAT DO STEPS 4 AND 5
EVEN MEAN?

WE'LL 6O OVER
THAT LATER.

STEP 1: DRAW A SCATTER PLOT OF THE INDEPENDENT 3
VARIABLE VERSUS THE DEPENDENT VARIABLE. IF THE ot
DOTS LINE UF THE VARIABLES MAY BE CORRELATED. — =

High temp. (°C) ‘ Iced tea orders
22nd (Mon.) 29 77 100
23rd (Tues.) 28 62 a5
24th (Wed.) 34 93
25th (Thurs.) 31 84
26th (Fri.) 25 59

h (Sat.)
32 80
31 75

ICED TEA ORDERS
N
u
T T T T T T T T

FIRST, DRAW A
SCATTER PLOT OF THE
INDEPENDENT VARIABLE
AND THE DEPENDENT
VARIABLE.

T NN TR T S T O T | WE’VE

20 21 2223 24 2?]26”?79“2:7??6 DONE THAT
ALREADY. /
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WHEN WE PLOT
EACH DAY’S HIGH
TEMPERATURE AGAINST
ICED TEA ORDERS, THEY
SEEM TO LINE UP.

AND WE KNOW FROM
EARLIER THAT THE
VALUE OF R 1S 0.9069,
WHICH IS PRETTY

IT LOOKS LIKE
THESE VARIABLES
ARE CORRELATED.

DO YOU REALLY
LEARN ANYTHING
FROM ALL
THOSE DOTS?
WHY NOT JUST
CALCULATE R?

100

ICED TEA ORDERS
N
\u
T T T T T T T T

THE SHAPE

o OF OUR
%0 21 22 25 24 25 26 2726 24 30 31 32 33 34 35 DATA IS )
HIGH TEMP. °C) IMPORTANT! »})’/

100
as
ao
85
80
75
70
65
60
55

ICED TEA ORDERS

. .
50 1 1 1 1 1 1 1 1 1 1 1 1 1 1

20 21 22 23 24 25 26 27 28 29 30 31 3Z 33 34 35
HIGH TEMP, °C)

Y

LOOK AT THIS CHART. RATHER
THAN FLOWING IN A LINE,
THE DOTS ARE SCATTERED
RANDOMLY.

AN

100
as
ao
85
80
75
70
65
60
55

ICED TEA ORDERS

e

X 17 7 A

A1 ALways praw A

PLOT FIRST TO
GET A SENSE OF
THE DATA’S SHAPE.

y=0.2x+69.5 °
AN

50 K
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35| =

REGRESSION EQUATION,
BUT IT'S MEANINGLESS. THE
LOW R VALUE CONFIRMS

IT, BUT THE SCATTER PLOT OH, 1 SEE.
LETS YOU SEE IT WITH PLOTS..ARE...
YOUR OWN EYES. IMPORTANT/

HIGH TEMF, (°C)

N}
YOU CAN STILL FIND A >
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Y
STEP 2: CALCULATE THE REGRESSION EQUATION.

X

NOW, LET'S MAKE b FINALLY,
- THE TIME
A ot y_ax + HAS COME.

LET'S FIND 2
| a AND b! i)

THE LITTLE ARROWS ARE
THE DISTANCES FROM THE
LINE, WHICH REPRESENTS
THE ESTIMATED VALUES
OF EACH DOT, WHICH ARE
THE ACTUAL MEASURED
VALUES. THE DISTANCES
ARE CALLED RES/IDUALS.
THE GOAL 1S TO FIND THE
LINE THAT BEST MINIMIZES
ALL THE RESIDUALS.

ICED TEA ORDERS
IATRIJIRS

THIS 1S CALLED
LINEAR LEAST
SQRUARES
REGRESS/ON.

A2BTRY03RXIBAS

LET'S DRAW A HIGH TEMP. (°C)

STRAIGHT LINE,
FOLLOWING THE

PATTERN IN THE DATA
AS BEST WE CAN.

ﬁe SQUARE THE
RESIDUALS TO
FIND THE SUM OF
SRUARES, WHICH
WE USE TO FIND
THE REGRESSION
EQUATION.

@ Calculate S, (sum of squares of
x), Sy, (sum of squares of y), and
S,y (sum of products of x and y).

ILL ADD
THIS TO MY
NOTES.

Calculate S, (residual sum of
squares).

@ Differentiate S, with respect to a 9TZ‘;‘Z‘;N;;}'"N
and b, and set it equal to O.

@ Separate out a and b.

@ Isolate the a component.
@ Find the regression equation.
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OKAY, LET'S START
CALCULATING!

&Y Find
* The sum of squares of x, S,,: (x - x)*
* The sum of squares of y, Sy,: (y-9)’

* The sum of products of x and y, S,,: (x-x)(y-9)

Note: The bar over a variable (like x) is a notation that means
average. We can call this variable x-bar.

High temp. Iced tea
in °C orders
x y x-X y-§ (x-%) (y-9) (x-%)(y-9)

22nd (Mon.) 29 77 -0.1 4.4 0.0 19.6 -0.6
23rd (Tues.) 28 62 -1.1 -10.6 1.3 111.8 12.1
24th (Wed.) 34 93 4.9 20.4 23.6 417.3 99.2
25th (Thurs.) 31 84 1.9 11.4 3.4 130.6 21.2
26th (Fri.) 25 59 -41 -13.6 17.2 184.2 56.2
27th (Sat.) 29 64 -0.1 -8.6 0.0 73.5 1.2
28th (Sun.) 32 80 2.9 7.4 8.2 55.2 21.2
29th (Mon.) 31 75 1.9 2.4 3.4 5.9 4.5
30th (Tues.) 24 58 -5.1 -14.6 26.4 212.3 74.9
31st (Wed.) 33 91 3.9 18.4 14.9 339.6 71.1
1st (Thurs.) 25 51 -4.1 -21.6 17.2 465.3 89.4
2nd (Fri.) 31 73 1.9 0.4 3.4 0.2 0.8
3rd (Sat.) 26 65 -3.1 -7.6 9.9 57.8 23.8
4th (Sun.) 30 84 0.9 11.4 0.7 130.6 9.8
Sum 408 1016 0 0 129.7 2203.4 484.9
Average 29.1 72.6

I ol

x y Siex Syy Syy

* SOME OF THE FIGURES IN THIS CHAPTER ARE ROUNDED

FOR THE SAKE OF PRINTING, BUT CALCULATIONS ARE
72 CHAPTER Z SIMPLE REGRESSION ANALYSIS DONE USING THE FULL, UNROUNDED VALUES RESULTING

FROM THE RAW DATA UNLESS OTHERWISE STATED.



@ Find the residual sum of squares, S..

* yis the observed value.

* g is the the estimated value based on our regression equation.

* y - g is called the residual and is written as e.

Note: The caret in § is affectionately called a hat, so we call this
parameter estimate y-hat.

High Predicted

temp. Actual iced iced tea

in °C  tea orders orders Residuals (e) Squared residuals

x v jg=ax+b y-g (y-3)
22nd (Mon.) 29 77 ax29+b 77-(@x29+b) [77 - (ax 29+ D)
23rd (Tues.) 28 62 ax28+b 62 -(ax28+b) [62-(ax28+Db)
24th (Wed.) 34 93 ax34+b 93-(ax34+b) [93-(ax34+Db)
25th (Thurs.) 31 84 ax3l+b 84-(ax31+b) [84-(ax3l+Db)
26th (Fri.) 25 59 ax25+b 59 -(ax25+b) [59 - (ax25+Db)]
27th (Sat.) 29 64 ax29+b 64-(ax29+b) [64-(ax29+Db)
28th (Sun.) 32 80 ax32+b 80-(ax32+b) [80-(ax32+Db)
29th (Mon.) 31 75 ax3l+b 75-(ax31+b) [75-(ax31l+Db)?
30th (Tues.) 24 58 ax24+b 58— (ax24+b) [58-(ax24+Db)
31st (Wed.) 33 91 ax33+b 91-(ax33+b) [91-(ax33+Db)
1st (Thurs.) 25 51 ax25+b 51 -(ax25+b) [51-(ax25+Db)
2nd (Fri.) 31 73 ax3l+b 73-(ax31+b) [73-(ax31l+Db)P
3rd (Sat.) 26 65 ax26+b 65-(ax26+b) [65-(ax26+Db)
4th (Sun.) 30 84 ax30+b 84-(ax30+b) [84-(ax30+Db)
Sum 408 1016 408a + 14b 1016 - (408a + 14b) S <—
Average 29.1 72.6 29.1a+b  72.6 - (29.1a+b) S,
=Xa+b = g—(Xa+b) 14
v

= -

THE SUM OF THE RESIDUALS SQUARED 15
CALLED THE RESIDUAL SUM OF SQUARES.
IT 15 WRITTEN AS S, OR RSS.

S, =[77—(ax29+b)]2 +"'+[84—(a><30+b)f
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Differentiate S, with respect to a and b, and set it equal to O.
When differentiating y = (ax + b)n with respect to x, the result is
dy

—Z =n(ax+ )"'1 xa,
Differentiate with respect to a.

‘Zie =2[77-(29a +b)|x(-29)+-+2[84—(30a +b)|x(-30)=0 @

Differentiate with respect to b.

C;Sbe = 2[77—(29a + b)]x(—1)+ ---+2[84 -(30a + b)]X(—l) =0 2]

@ Rearrange @ and ® from the previous step.

Rearrange ©.

2[77-(29a +b)|x(-29)+--+2[84-(30a +b)]x(-30) = 0

[77-(29a +b) | x(-29)+---+[ 84 —(30a + b) | x(~30) = 0 PIVIPE BOTH 5iDES BY 2.
29[(29a +b)-77]+--+30[(30a+b)-84|=0 ~ MULTIPLY BY -1
(29x29a+29xb-29x77)+-+(30x30a+30xb-30x84)=0  MULTIPLY.

© (29°+-+30°)a+(29++30)b—(29x77+--+30x84) =0  ZEFARNE OUT

Rearrange ©.
2[77-(29a +b)]x(-1)+--+2[84-(30a +b)|x(-1) =0
[77-(29a+b)|x(~1)+---+[84-(30a+b)|x(-1)=0  DNVPDE BOTH 5IDES BY 2.

[(29a+b)-77]+--+[(30a+b)-84]|=0 ~ MULTIPLY BY -1

_ SEPARATE OUT
(29+...+30)a+w—(77+..-+84)—0 a AND b.
14

(29+---+30)a+14b—(77+---+84)=0
14b = (77+-~+84)7(29+---+30)a SUBTRACT 14b FROM BOTH SIDES

AND MULTIPLY BY 1.
_77+---+84 29+---+30
B 14 14

o % THE COMPONENTS IN @ ARE THE
©® b=y-xa AVERAGES OF y AND x.

Ob

a ISOLATE b ON THE LEFT SIDE OF THE EQUATION.

74
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@ Plug the value of b found in @ into line © (® and ® are the results

(4]
77+---+84 29+---+30 E
P (292+,‘_+302)a+(29+,”+30)[ 184 2+ aj—(29><77+~--+30><84):0 oowals me
29+ 77+--+84) (29+- 2
(292+---+302)a+( 9+ +30)(77++84) (29+:+30) a—(29x77+--+30x84)=0
14 14
(29 +---+30)" (29+---+30)(77 +---+ 84) COMBINE THE
{(292+---+302) n a+ " —(29%77++30x84)=0 ey
29+---+30) 29+---+30)(77 +--+ 84
[(292+.~+302)—(+14+)}a_(29x77+~.+30x84)—( T 1)‘(1 ++84) TRANSPOSE.
[ Rearrange the left side of the equation. |
29+---+30)°
(292+...+302)_w
14
2 2 7
=(292+---+302)—2><(29+"'+30) ,(29++30) e app AND SUBTRACT 29+ +30)
14 14 2

<<

from Step 4).

=(29° +--+30*)-2x(29 +--+30)x

14 14

(297 +---+80) ~2x(29+ -+ 80)xX + (%) x14 ~ ®=="

(297 ++++30%) = 2x (29 ++++30)x X+ (X)* ++-+ (%)
AL 0
14

~[20° -2x29x %+ (%)" |+--+[30° -2x30x % + (%) |

29-x%) +--+(30-x)’
=S,

| Rearrange the right side of the equation. |

29 +---+30)(77 +---+84)

14

29+.--430 77+---+84
= X X
14

(29><77+-~-+30><84)—(

=(29%77+-- 14

y
xyx1l4-xxyx1l4+xxyx14
+--+30 _ __77+---+84
—————XyX1l4d - XX ———
14 14

—_ —

g_
g_

Il
—
N
©
X
~
~
a
+
W
o
X
(0]
=
|
—
N
©
+
+
W
(=)

ISOLATE a ON THE LEFT SIDE OF THE EQUATION.

2
29+.--+3o+[29+-~+30j _

THE LAST TERM IS
MULTIPLIED BY E
14

29 +---+30

WE ADD AND SUBTRACT xxyx14.
x14 +xxyx14

X(77+--+84)+Xxyx14

77+ +84)X+ XX G+ +XXT
] ]

14
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@ Calculate the regression equation.

S
From O in Step 5, a :S—"y. From © in Step 4, b=y - xa.

XX

If we plug in the values we calculated in Step 1,

S :
g Se _4849 .
S, 1297

b=y-xa=72.6-29.1x3.7=-36.4

then the regression equation is
y=3.7x-36.4.
It’s that simple!

Note: The values shown are rounded for the sake of printing, but
the result (36.4) was calculated using the full, unrounded values.

N\ e &
P | <2200 Ao e sLore @ ANo
%t = - . R T a
) 372364, INTERCEPT b 15 ALWAYS
§ 851 sum of products of x andy S,
[V 80 B a= = =
) o | sum of squares of x S,.
B ool b=g-Xa
& oes|
S0t THIS IS TRUE FOR ANY
55+ LINEAR REGRESSION.
50 U VS T SN T JUNN SR S 4 X f I L 1
L VU BABBLI903 ZI33#F
é HIGH TEMP. (°C)

WE DID IT!
WE ACTUALLY
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REMEMBER,
THE AVERAGE
TEMPERATURE 15 X
AND THE AVERAGE
NUMBER OF ORDERS
15 g.NOW FOR A
LITTLE MAGIC.

50O, MIU, WHAT
ARE THE AVERAGE
VALUES FOR THE
HIGH TEMPERATURE
AND THE ICED TEA

ORDERS?

ICED TEA ORDERS
Qd!
TRASHTIFTIRELHES

\
|
H
-
H
|
i
i
1
]

PR .

[l | SO N1

02 L3N 2% % DI RBMA

X
HIGH TEMP. (°C)

WITHOUT
LOOKING, I CAN
TELL YOU THAT THE
REGRESSION EQUATION
CROSSES THE POINT
(294, 72.6).

THE REGRESSION
EQUATION CAN BE...

Y=ax+b

= az+ (‘g—ia)
=A-21)+3

..REARRANGED
LIKE THIS.

STeP 4 o

—R

NOW, IF WE
SET x TOTHE
AVERAGE VALUE
(x)WE FOUND
BEFORE...

SEE WHAT
HAPPENS?

I

AA-Z)+F

i

A(Z-2)+Y
axo+§

i

i

¥

WHEN x 15 THE
AVERAGE, 50 15 y!

£
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ag

STEP 3: CALCULATE THE CORRELATION COEFFICIENT (R) AND R
ASSESS OUR POPULATION AND ASSUMPTIONS. 7

NEXT, WE'LL
DETERMINE THE
ACCURACY OF
THE REGRESSION
EQUATION WE HAVE
COME UP WITH.

WHY? WHAT WILL
THAT TELL US?

OUR DATA AND ITS REGRESSION EQUATION EXAMPLE DATA AND ITS REGRESSION EQUATION
100 100
as . as - .
\5": o y=3.7x - 36.4 g ao -
8 85| 8 85|
o %l o I
< - < -
B b B b
% &5 |- % 65
S eol . S eol
55 551
sol—1L 1 1 1 e 1 1 1 1 1 1 1 1 | sol+ 1+ o+ 4 o))
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

HIGH TEMP. (°C) HIGH TEMF. (°C)

MIU, CAN YOU SEE A
DIFFERENCE BETWEEN
THESE TWO GRAPHS?

WELL, THE
GRAPH ON
THE LEFT HAS
A STEEPER

THE DOTS ARE
CLOSER TO THE
REGRESSION LINE
IN THE LEFT GRAPH.

ANYTHING
ELSE?

RIGHT!

s "—"\
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WHEN A REGRESSION
EQUATION IS
ACCURATE, THE
ESTIMATED VALUES
(THE LINE) ARE
CLOSER TO THE
OBSERVED VALUES

ACCURATE
MEANS
REALISTIC?

RIGHT. ACCURACY
IS IMPORTANT, BUT
DETERMINING IT BY
LOOKING AT A GRAPH
IS PRETTY SUBJECTIVE.

THE DOTS
ARE KIND

THE DOTS
ARE

YES, THAT'S TRUE.

7

THAT'S WHY WE
NEED R!

SN\ 2

NN
Nzl
- A
]
CORRELATION
COEFFICIENT

/THE CORRELATION
COEFFICIENT FROM
EARLIER, RIGHT?

RIGHT! WE USE R TO REPRESENT AN
INDEX THAT MEASURES THE ACCURACY
OF A REGRESSION EQUATION. THE INDEX
COMPARES OUR DATA TO OUR PREDICTIONS—
IN OTHER WORDS, THE MEASURED x AND y
TO THE ESTIMATED X AND §.

R 15 ALSO CALLED
THE PEARSON
PRODUCT MOMENT
CORRELATION
COEFFICIENT
IN HONOR OF
MATHEMATICIAN
KARL PEARSON.
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ﬂexz&’s THE EQUATION.
WE CALCULATE THESE
LIKE WE DID S, AND
S,y BEFORE.

sum of products y and g Sy

R

- \/sum of squares of y x sum of squares of - \/Syy xSy,
1812.3

- - 0.9069
J2203.4x1812.3
.
THAT'S NOT
TOO BAD!
THIS LOOKS |
EAMILIAR. /RE@IZEErélON FUNCTION!

Actual Estimated
values values

y §=37x-364 y-§ §-§ (vy-5) (§-3) (v-9)(§-3) (y-9)

2

22nd (Mon.) 77 72.0 4.4 -0.5 19.6 0.3 -2.4 24.6
23rd (Tues.) 62 68.3 -10.6 -4.3 111.8 18.2 45.2 39.7
24th (Wed.) 93 90.7 20.4 18.2 417.3 329.6 370.9 5.2
25th (Thurs.) 84 79.5 11.4 6.9 130.6 48.2 79.3 20.1
26th (Fri.) 59 57.1 -13.6 -15.5 184.2 239.8 210.2 3.7
27th (Sat.) 64 72.0 -8.6 -0.5 73.5 0.3 4.6 64.6
28th (Sun.) 80 83.3 7.4 10.7 55.2 114.1 79.3 10.6
29th (Mon.) 75 79.5 2.4 6.9 5.9 48.2 16.9 20.4
30th (Tues.) 58 53.3 -14.6 -19.2 212.3 369.5 280.1 21.6
31st (Wed.) 91 87.0 18.4 14.4 339.6 207.9 265.7 16.1
1st (Thurs.) 51 57.1 -21.6 -15.5 465.3 239.8 334.0 37.0
2nd (Fri.) 73 79.5 0.4 6.9 0.2 48.2 3.0 42.4
3rd (Sat.) 65 60.8 -7.6 -11.7 57.3 138.0 88.9 17.4
4th (Sun.) 84 75.8 11.4 3.2 130.6 10.3 36.6 67.6
Sum 1016 1016 0 0 2203.4 1812.3 1812.3 391.1
Average 72.6 72.6

\ i l

y }_TJ Syy

S, ISN'T NECESSARY FOR
CALCULATING R, BUT I INCLUDED
IT BECAUSE WE'LL NEED IT LATER.
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IF WE SQUARE R,
IT'S CALLED THE
COEFFICIENT OF
DETERMINATION AND
IS WRITTEN AS R2

R® CAN BE AN Iama  CORRELATION
corr EFFICIENT,
INDICATOR OF... \\COEFFEILCAI;I:JDT',V \ Too /

...HOW MUCH
VARIANCE 15
EXPLAINED BY
OUR REGRESSION
EQUATION.

| AM A
COEFFICIENT OF
N?ETE!ZMINAT]ON.

/..

| AM A

i

AN R* OF ZERO INDICATES THAT
THE OUTCOME VARIABLE CAN'T
BE RELIABLY PREDICTED FROM
THE PREDICTOR VARIABLE.

THE HIGHER THE
ACCURACY OF THE
REGRESSION EQUATION,
THE CLOSER THE R* VALUE
IS TO 1, AND VICE VERSA.

S0 HOW HIGH DPOES R?
NEED TO BE FOR THE
REGRESSION EQUATION
TO BE CONSIDERED
ACCURATE?

UNFORTUNATELY, THERE
1S NO UNIVERSAL

BUT GENERALLY WE
WANT A VALUE OF AT
LEAST 5.

LOWEST...
B...

NOW TRY FINDING THE
VALUE OF R2.

R'=(09069)
= 0.8225
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THE VALUE

OF R? FOR OUR
REGRESSION EQUATION
IS WELL OVER .5, SO OUR
EQUATION SHOULD BE
ABLE TO ESTIMATE ICED
r  TEA ORDERS RELATIVELY
ACCURATELY.

FERETR

"

w 1. " " n 4 1 I
VURBABLWE TN ZIHAE
HIGH TEMP. (°C)

coefficient

JOT THIS EQUATION
DOWN. R? CAN BE
CALCULATED DIRECTLY
FROM THESE VALUES.

USING OUR NORNS DATA,

1 - (391.1/2203.4) =

.8225/

) (correlation]2 _axS,
S

uy

HANDY!

WE'VE FINISHED THE
FIRST THREE STEPS.

SAMPLES AND POPULATIONS

NOW TO ASSESS THE
POPULATION AND
VERIFY THAT OUR

ASSUMPTIONS

ARE MET!

I MEANT TO ASK
YOU ABOUT THAT.
WHAT POPULATION?
JAPAN? EARTH?

ACTUALLY, THE
POPULATION
WE'RE TALKING
ABOUT ISN'T
PEOPLE—
T'S DATA.

SR AR R o
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HERE, LOOK
AT THE TEA
'\ ROOM DATA
N\ AGAIN.

High temp. (°C)

Iced tea orders

22nd (Mon.) 29
23rd (Tues.) 28
24th (Wed.) 34
25th (Thurs.) 31
26th (Fri.) 25
27th (Sat.) 29
28th (Sun.) 32
29th (Mon.) 31
30th (Tues.) 24
31st (Wed.) 33
1st (Thurs.) 25
2nd (Fri.) 31
3rd (Sat.) 26
4th (Sun.) 30

77
62
93
84
59
64
80
75
58
91
51
73
65
84

HOW MANY DAYS
ARE THERE
WITH A HIGH @ )

TEMPERATURE (o
OF 31°c?

THE 25TH, 29TH,
AND 2ND...
SO THREE.

3

I CAN MAKE A
CHART LIKE THIS
FROM YOUR
ANSWER.

NOW,
CONSIDER
THAT...

..THESE THREE DAYS
ARE NOT THE ONLY
DAYS IN HISTORY
WITH A HIGH OF 31°C,
ARE THEY?

THERE MUST HAVE BEEN
MANY OTHERS IN THE
PAST, AND THERE WILL
BE MANY MORE IN THE

FUTURE, RIGHT?




THESE THREE
DAYS ARE A
SAMPLE...

b, FOR DAYS WITH THE
SAME NUMBER OF
ORDERS, THE DOTS

ARE STACKED.
N K

...FROM THE POPULATION OF ALL
DAYS WITH A HIGH TEMPERATURE OF
31°C. WE USE SAMPLE DATA WHEN IT'S
UNLIKELY WE'LL BE ABLE TO GET THE
INFORMATION WE NEED FROM EVERY
SINGLE MEMBER OF THE POPULATION.

THAT MAKES
SENSE.

POPULATION

POPULATION SAMPLE

SAMPLE

POPULATION -

SAMPLE

SAMPLE
POPULATION

SAMPLE

SAMPLES
REPRESENT THE
POPULATION.

THANKS, RISA.
I GET IT NOW.

/" ®ooD! ON TO
o 1 DIAGNOSTICS,
THEN.
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ASSUMPTIONS OF NORMALITY

A REGRESSION
EQUATION IS

IF A CERTAIN
HYPOTHESIS 15
VIABLE.

MEANINGFUL ONLY

HERE IT IS:

ALTERNATIVE HYPOTHESIS

THE NUMBER OF ORDERS OF ICED TEA ON
DAYS WITH TEMPERATURE x°C FOLLOWS A
NORMAL DISTRIBUTION WITH MEAN Ax+B AND
STANDARD DEVIATION G (SIGMA).

LET'S TAKE IT SLOW.
FIRST LOOK AT THE
SHAPES ON THIS GRAPH.

THESE SHAPES . '
REPRESENT THE ENTIRE 22
POPULATION OF ICED TEA
ORDERS FOR EACH HIGH
TEMPERATURE. SINCE WE
CAN'T POS5IBLY KNOW THE
EXACT DISTRIBUTION FOR EACH

TEMPERATURE, WE HAVE TO
ASSUME THAT THEY MUST ALL

BE THE SAME: A NORMAL,
BELL-SHAPED CURVE.




“MUST ALL BE
THE SAME"?

WON'T THE
DISTRIBUTIONS
BE SLIGHTLY
DIFFERENT?

“COULD THEY DIFFER.
~ACCORDING TO-" -
- TEMPERATURE?

THEY'RE NEVER
EXACTLY THE SAME.

YOU'RE
A SHARP
ONE...

[Cle/o)Y)
POINT.

)

é \ |
g

BUT WE MUST ASSUME
THAT THEY ARE!
REGRESSION DEPENDS
ON THE ASSUMPTION
OF NORMALITY!

JUST BELIEVE IT,
OKAY? I CAN

DO THAT.

BY THE WAY, Ax+B IS CALLED
THE POPULATION REGRESSION.
THE EXPRESSION ax+b IS THE
SAMPLE REGRESSION.
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STEP 4: CONDUCT THE ANALYSIS OF VARIANCE.

»(»"»* -
=,

B

NOW, LET'S

RETURN TO THE

STORY ABOUT
A; B/ AND O.

B, LIKE b, 15 AN
INTERCEPT. AND ©
1S THE STANDARD

IS A SLOPE.

DEVIATION.

A, B, AND ¢ ARE
COEFFICIENTS
OF THE ENTIRE

POPULATION.

IF THE REGRESSION EQUATION 1S

’g::az+ b

a SHOULD BE CLOSE TO A
* bSHOULD BE CLOSE TO B

' \/ s, SHOULD BE
number of individuals -2 ¢CLOSE TO o

DO YOU RECALL a, b,
AND THE STANDARD

DEVIATION FOR
OUR NORNS

WELL, THE
REGRESSION
EQUATION WAS
y =3.7x - 36.4,
SO...

&)

* AlS ABOUT 3.7
* BI1S ABOUT -36.4

391.1 391.1
15 ABOUT (1,5 =\ 15 =57
PERFECT!

15 THAT RIGHT?
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"CLOSE TO" SEEMS
SO VAGUE. CAN'T WE
FIND A, B, AND ¢ WITH

MORE CERTAINTY?

SINCE A, B, AND ¢ ARE
COEFFICIENTS OF THE
POPULATION, WE'D
NEED TO USE ALL THE
NORNS ICED TEA AND
HIGH TEMPERATURE DATA
THROUGHOUT HISTORY! WE
COULD NEVER GET IT ALL.

)

/

..WE CAN DETERMINE o=
ONCEAND FORALL )l sl > N

WHETHER A = 0! =
<

0

IMAGINE IF A
WERE ZERO...

YOU SHOULD
LOOK MORE
EXCITED! THIS

IS IMPORTANT!
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THAT WOULD
MAKE THIS
DREADED
HYPOTHESIS
TRUE!

IF THE SLOPE A =0, THE LINE 1S
HORIZONTAL. THAT MEANS ICED
TEA ORDERS ARE THE SAME,
NO MATTER WHAT THE HIGH
TEMPERATURE 15!

THE TEMPERATURE __[¥]
DOESN'T MATTER!

LET'S DO THE
ANALYSIS AND SEE
WHAT FATE HAS IN
STORE FOR A.

HOW DO WE
FIND OUT @
ABOUT A?

”WE CAN DO AN
ANALYS/S OF
A\ variance awovw!
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THE STEPS OF ANOVA

THE F STATISTIC LETS US TEST
THE SLOPE OF THE LINE BY
LOOKING AT VARIANCE. IF THE
VARIATION AROUND THE LINE
IS MUCH SMALLER THAN THE
TOTAL VARIANCE OF Y, THAT'S
EVIDENCE THAT THE LINE
ACCOUNTS FOR Y'S VARIATION,
AND THE STATISTIC WILL BE
LARGE. IF THE RATIO IS SMALL,
THE LINE DOESN'T ACCOUNT
FOR MUCH VARIATION IN Y, AND
PROBABLY ISN'T USEFUL!

J

Step 1 Define the population. The population is “days with a high temperature of
x degrees.”

Step 2 Set up a null hypothesis and Null hypothesis is A = 0.
an alternative hypothesis. Alternative hypothesis is A = 0.

Step 3 Select which hypothesis test ~ We’ll use analysis of one-way variance.
to conduct.

Step 4 Choose the significance level. We’ll use a significance level of .05.

Step 5 Calculate the test statistic The test statistic is:
from the sample data. 2

a S,
1 | number of individuals -2
s)cx
Plug in the values from our sample regression
equation:
2
3.7 . 391.1 -55.6
1 14-2
[ 129.7 j
The test statistic will follow an F distribution
with first degree of freedom 1 and second degree of
freedom 12 (number of individuals minus 2), if the null
hypothesis is true.

Step 6 Determine whether the At significance level .05, with d; being 1 and d, being 12,
p-value for the test statistic the critical value is 4.7472. Our test statistic is 55.6.
obtained in Step 5 is smaller
than the significance level.

Step 7 Decide whether you can reject Since our test statistic is greater than the critical value,
the null hypothesis. we reject the null hypothesis.

4 N

SOA=#0,
WHAT A RELIEF!
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STEP 5: CALCULATE THE CONFIDENCE INTERVALS. @
<
NOW, LET'S TAKE IN THE R
A CLOSER LOOK | | POPULATION... B
: fA KNOW THAT
#0/ PN IT'S THE RIGHT
f VALUE?

AT HOW WELL
OUR REGRESSION
EQUATION
REPRESENTS THE 049
POPULATION. ,

~.LOTS OF
DAY5 HAVE A
HIGH OF 31°C,
AND THE NUMBER
OF ICED TEA
ORDERS ON
THOSE DAYS
VARIES. OUR
REGRESSION ||
EQUATION --
PREDICTS ONLY WE CAN'T KNOW
ONE VALUE FOR SURE. WE
FOR ICED TEA CHOOSE THE MOST
LIKELY VALUE: THE
POPULATION MEAN.

ORDERS AT THAT
TEMPERATURE.

OKAY, I'M
READY!

MAXIMUM
MEAN
ORDERS

REGRESSION
EQUATION

IF THE POPULATION HAS A
NORMAL DISTRIBUTION...
DAYS WITH A HIGH

OF 31°C CAN EXPECT
APPROXIMATELY THE
MEAN NUMBER OF ICED
TEA ORDERS. WE CAN'T

KNOW THE EXACT MEAN, MINIMUM
BUT WE CAN ESTIMATE MEAN
A RANGE IN WHICH IT ORDERS
MIGHT FALL.

THE MEAN NUMBER
OF ORDERS 15
SOMEWHERE IN HERE.

HUH? THE RANGES
DIFFER, DEPENDING
ON THE VALUE OF x!




AS YOU NOTICED, THE

WE CALCULATE AN WIDTH VARIES. IT'S EVEN THIS INTERVAL
INTERVAL FOR EACH SMALLER NEAR x, WHICH ISN'T ABSOLUTELY
TEMPERATURE. IS THE AVERAGE HIGH GUARANTEED TO

CONTAIN THE TRUE
POPULATION MEAN.
OUR CONFIDENCE
IS DETERMINED BY
THE CONFIPENCE
COEFFICIENT.

TEMPERATURE VALUE.

SOUNDS
FAMILIAR!

\

.15 NO ORDINARY
COEFFICIENT.

CONFIDENCE...

THERE IS NO WHEN CALCULATING A CONFIDENCE
gffggg;‘;ﬁ INTERVAL, YOU CHOOSE THE
) NFIDENCE COEFFICIENT FIRST.
CALCOLATE T CONFIDENCE COEFFICIENT FIRST
YOU WOULD THEN SAY “A 42% (
YOU CHOOSE CONFIDENCE INTERVAL FOR ICED TEA

THE CONFIDENCE
COEFFICIENT, AND
YOU CAN MAKE IT
ANY PERCENTAGE
YOU WANT.

ORDERS WHEN THE TEMPERATURE IS 31°C
IS 30 TO 35 ORDERS,” FOR EXAMPLE!

I WILL MAKE IT 42%.
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WELL, MOST
PEOPLE 4z% 15 TOO
CHOOSE EITHER LOW TO
a5% OR qq%. BE VERY
MEANINGFUL.

HEY, IF OUR
CONFIDENCE IS BASED
ON THE COEFFICIENT,
ISN'T HIGHER BETTER?

WELL, NOT
NECESSARILY.

TRUE, OUR CONFIDENCE
IS HIGHER WHEN WE
CHOOSE 99%, BUT THE
INTERVAL WILL BE MUCH
LARGER, TOO.

THE NUMBER OF ORDERS

NOW, SHALL WE
CALCULATE THE
CONFIDENCE INTERVAL
FOR THE POPULATION
OF DAYS WITH A HIGH

TEMPERATURE OF 31°C?

OF ICED TEA IS ALMOST

9% \ CERTAINLY BETWEEN

O AND 120!

THE NUMBER OF ORDERS

& 5% \OF ICED TEA 15 PROBABLY

BETWEEN 40 AND 80!

HOWEVER, IF THE
CONFIDENCE COEFFICIENT
IS TOO LOW, THE RESULT 1S
NOT CONVINCING.

HMM, I SEE.

THAT'S NOT
SURPRISING.

s
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HERE'S HOW TO CALCULATE A 95%
CONFIDENCE INTERVAL FOR ICED TEA
ORDERS ON DAYS WITH A HIGH OF 31°C.

This is the confidence interval.

—

Number of
| orders of iced tea R
1

79.5* - 3.9=75.6 3l1xa+b 79.5+3.9=834
=31 x 3.7 -36.4

=79.5

Distance from the estimated mean is

\/F(l, n - 2;.05)x [% " (x"s_ 2 J e

- n-2

1-29.1)°
:\/F(1,14—2;.05)x[i+(3 o )ng‘gl'l

14 129.7 14 -2
=3.9

where n is the number of data points in our sample and F is a ratio of
two chi-squared distributions, as described on page 57.

TO CALCULATE A 99% CONFIDENCE INTERVAL,
JUST CHANGE

F(1,14 - 2;.05) = 4.7
TO
F(1,14 - 2;.01) = 9.3

(REFER TO PAGE 58 FOR AN EXPLANATION OF F(1,n-2;.05) = 4.7, AND 50 ON.)

* THE VALUE 79.5 WAS CALCULATED USING UNROUNDED NUMBERS.

50 WE ARE 95% SURE
THAT, IF WE LOOK AT THE
POPULATION OF DAYS
WITH A HIGH OF 31°C, THE
MEAN NUMBER OF ICED / ‘
TEA ORDERS 1S BETWEEN ® , EXACTLY!

76 AND 83.
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STEP 6: MAKE A PREDICTION!

AT LAST, WE
MAKE THE
PREDICTION.

..HOW MANY ICED
TEA ORDERS WILL
WE GET AT THE SHOP

TOMORROW?

IF TOMORROW'S
HIGH TEMPERATURE
IS 27°C...

——

HMM, THE BINGO!

REGRESSION
EQUATION 15
y=3.7x - 36.4...

9=3.Tx27-36.4
=63.5
~ 64

* THIS CALCULATION WAS PERFORMED USING ROUNDED FIGURES.
IF YOU'RE DOING THE CALCULATION WITH THE FULL,
UNROUNDED FIGURES, YOU SHOULD GET é4.6. ASSUMPTIONS OF NORMALITY 495



BUT WILL THERE
BE EXACTLY
64 ORDERS?

HOW CAN WE
POSSIBLY KNOW
FOR SURE?

WE'LL MAKE A
THAT'S A GREAT PREDICTION INTERVAL! f\
QUESTION.
WE'LL PICK A
COEFFICIENT AND
THEN CALCULATE A
RANGE IN WHICH ICED

TEA ORDERS WILL
MOST LIKELY FALL.

WE SHOULD
GET CLOSE TO
64 ORDERS BECAUSE
THE VALUE OF R: IS )
0.8225, BUT... e [N o

HOW CLOSE? e B & SUBSE ]

NOT QUITE. BEFORE, WE
WERE PREDICTING THE
MEAN NUMBER OF ICED
TEA ORDERS FOR THE

POPULATION OF DAYS
WITH A CERTAIN HIGH

TEMPERATURE, BUT NOW
WE'RE PREDICTING THE
LIKELY NUMBER OF ICED

TEA ORDERS ON A GIVEN

DAY WITH A CERTAIN
TEMPERATURE.

I DONT
SEE THE
DIFFERENCE.

R

96 CHAPTER 2 SIMPLE REGRESSION ANALYSIS



&

WHAT'S THE

HOW MANY
ORDERS WILL

PREDICTION INTERVALS
GIVE A PROBABLE RANGE
OF FUTURE VALUES.

CONFIDENCE INTERVALS
HELP US ASSESS THE
POPULATION.

THE PREDICTION -
INTERVAL LOOKS LIKE A / //// . AS WITH A
| ConFDencEwTERVAL, 4. . CONFIDENCE
y BUT IT'S NOT THE SAME. ] INTERVAL, WE
N NEED TO CHOOSE
THE CONFIDENCE
COEFFICIENT
BEFORE WE CAN DO
THE CALCULATION.
AGAIN, a5% AND 99%
ARE POPULAR.

I JUST CALCULATED CONFIDENCE
AN INTERVAL, SO THE PREDICTION —g INTERVAL - NOW, TRY
THIS SHOULD BE INTERVAL WILL BE 85| | SALCULATING
WIDER BECAUSE PREDICTION RE|| THE PREDICTION
IT COVERS THE INTERVAL ¥3 INTERVAL
S8 FOR 27°C.
RANGE OF o

ALL EXPECTED
VALUES, NOT JUST
WHERE THE MEAN

SHOULD BE. : S
A
THE CALCULATION 15
VERY SIMILAR, WITH THE FUTURE ,]
ONE IMPORTANT 15 ALWAYS
DIFFERENCE... SURPRISING. / 7
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HERE'S HOW WE CALCULATE A 95% PREDICTION
INTERVAL FOR TOMORROW'S ICED TEA SALES.

This is the prediction interval.

A
L/_H_\/_H\J Number of
orders of iced tea
64.6 - 13.1 =51.5 27xa+b 64.6 + 13.1 = 77.7*
=27 x3.7-36.4
= 64-6

Distance from the estimated value is

—\2
\/F(l,n—23.05)><[1+l+(x0_x) JX Se
S n

n

xXx

27 -29.1)°
:\/F(1,14—2;.05)x[1+i+( 9.1) JX391.1
14 1297 14-2

=13.1

-~

THE ESTIMATED NUMBER OF TEA ORDERS WE
CALCULATED EARLIER (ON PAGE 95) WAS ROUNDED,
BUT WE'VE USED THE NUMBER OF TEA ORDERS
ESTIMATED USING UNROUNDED NUMBERS, 64.6, HERE.

HERE WE USED THE F DISTRIBUTION TO FIND THE
PREDICTION INTERVAL AND POPULATION REGRESSION.
TYPICALLY, STATISTICIANS USE THE T DISTRIBUTION

9 TO GET THE SAME RESULTS.

* THIS CALCULATION WAS PERFORMED USING THE ROUNDED NUMBERS
SHOWN HERE. THE FULL, UNROUNDED CALCULATION RESULTS IN 77.6.

A/

50 WE'RE 5% CONFIDENT g=3T 364
THAT THE NUMBER OF
ICED TEA ORDERS WILL BE
BETWEEN 52 AND 78 WHEN
THE HIGH TEMPERATURE
FOR THAT DAY 15 27°C.

THAT'S
THE IDEA!
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WHAT ARE YOU
STARING AT? L

210
OH! I WAS

~ «% v | DAYDREAMING.

YOU MADE
IT THROUGH

TODAY'S LESSON.

HOW WAS IT?

[ IT WAS DIFFICULT
AT TIMES...

..BUT I'M CATCHING
ON. I THINK I CAN
DO THIS.

AND PREDICTING
THE FUTURE
IS REALLY
EXCITING!

YEAH, IT
ROCKS!

WE CAN MAKE
ALL KINDS OF
PREDICTIONS
ABOUT THE
FUTURE.

LIKE, HOW MANY
DAYS UNTIL YOU
FINALLY TALK TO HIM.
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WHICH STEPS ARE NECESSARY?

Remember the regression analysis procedure introduced on
page 68?

1. Draw a scatter plot of the independent variable versus the
dependent variable. If the dots line up, the variables may be
correlated.

2. Calculate the regression equation.

3. Calculate the correlation coefficient (R) and assess our popula-
tion and assumptions.

4. Conduct the analysis of variance.
Calculate the confidence intervals.
6. Make a prediction!

In this chapter, we walked through each of the six steps, but it
isn’t always necessary to do every step. Recall the example of Miu’s
age and height on page 25.

¢ Fact: There is only one Miu in this world.
¢ Fact: Miu’'s height when she was 10 years old was 137.5 cm.

Given these two facts, it makes no sense to say that “Miu’s
height when she was 10 years old follows a normal distribution
with mean Ax + B and standard deviation ¢.” In other words, it’s
nonsense to analyze the population of Miu’s heights at 10 years old.
She was just one height, and we know what her height was.

In regression analysis, we either analyze the entire population
or, much more commonly, analyze a sample of the larger popula-
tion. When you analyze a sample, you should perform all the steps.
However, since Steps 4 and 5 assess how well the sample represents
the population, you can skip them if you're using data from an entire
population instead of just a sample.

NOTE We use the term statistic to describe a measurement of a char-
acteristic from a sample, like a sample mean, and parameter to
describe a measurement that comes from a population, like a
population mean or coefficient.

STANDARDIZED RESIDUAL

Remember that a residual is the difference between the measured
value and the value estimated with the regression equation. The
standardized residual is the residual divided by its estimated
standard deviation. We use the standardized residual to assess
whether a particular measurement deviates significantly from
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the trend. For example, say a group of thirsty joggers stopped

by Norns on the 4th, meaning that though iced tea orders were
expected to be about 76 based on that day’s high temperature, cus-
tomers actually placed 84 orders for iced tea. Such an event would
result in a large standardized residual.

Standardized residuals are calculated by dividing each residual
by an estimate of its standard deviation, which is calculated using
the residual sum of squares. The calculation is a little complicated,
and most statistics software does it automatically, so we won’t go
into the details of the calculation here.

Table 2-1 shows the standardized residual for the Norns data
used in this chapter.

TABLE 2-1: CALCULATING THE STANDARDIZED RESIDUAL

Measured Estimated

number of number of

High orders of orders of

temperature iced tea iced tea Residual Standardized
x y y=3.7x-36.4 y-y residual

22nd (Mon.) 29 77 72.0 5.0 0.9
23rd (Tues.) 28 62 68.3 -6.3 -1.2
24th (Wed.) 34 93 90.7 2.3 0.5
25th (Thurs.) 31 84 79.5 4.5 0.8
26th (Fri.) 25 59 57.1 1.9 0.4
27th (Sat.) 29 64 72.0 -8.0 -1.5
28th (Sun.) 32 80 83.3 -3.3 -0.6
29th (Mon.) 31 75 79.5 -4.5 -0.8
30th (Tues.) 24 58 53.3 4.7 1.0
31st (Wed.) 33 91 87.0 4.0 0.8
1st (Thurs.) 25 51 57.1 -6.1 -1.2
2nd (Fri.) 31 73 79.5 -6.5 -1.2
3rd (Sat.) 26 65 60.8 4.2 0.8
4th (Sun.) 30 84 75.8 8.2 1.5

As you can see, the standardized residual on the 4th is 1.5. If
iced tea orders had been 76, as expected, the standardized residual
would have been O.

Sometimes a measured value can deviate so much from the
trend that it adversely affects the analysis. If the standardized
residual is greater than 3 or less than -3, the measurement is
considered an outlier. There are a number of ways to handle out-
liers, including removing them, changing them to a set value,
or just keeping them in the analysis as is. To determine which
approach is most appropriate, investigate the underlying cause
of the outliers.
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INTERPOLATION AND EXTRAPOLATION

If you look at the x values (high temperature) on page 64, you can
see that the highest value is 34°C and the lowest value is 24°C.
Using regression analysis, you can interpolate the number of iced
tea orders on days with a high temperature between 24°C and 34°C
and extrapolate the number of iced tea orders on days with a high
below 24°C or above 34°C. In other words, extrapolation is the esti-
mation of values that fall outside the range of your observed data.

Since we’ve only observed the trend between 24°C and 34°C, we
don’t know whether iced tea sales follow the same trend when the
weather is extremely cold or extremely hot. Extrapolation is there-
fore less reliable than interpolation, and some statisticians avoid it
entirely.

For everyday use, it’s fine to extrapolate—as long as you're
aware that your result isn’t completely trustworthy. However, avoid
using extrapolation in academic research or to estimate a value
that’s far beyond the scope of the measured data.

AUTOCORRELATION

The independent variable used in this chapter was high tempera-
ture; this is used to predict iced tea sales. In most places, it’s
unlikely that the high temperature will be 20°C one day and then
shoot up to 30°C the next day. Normally, the temperature rises or
drops gradually over a period of several days, so if the two variables
are related, the number of iced tea orders should rise or drop grad-
ually as well. Our assumption, however, has been that the deviation
(error) values are random. Therefore, our predicted values do not
change from day to day as smoothly as they might in real life.

When analyzing variables that may be affected by the passage of
time, it’'s a good idea to check for autocorrelation. Autocorrelation
occurs when the error is correlated over time, and it can indicate
that you need to use a different type of regression model.

There’s an index to describe autocorrelation—the Durbin-
Watson statistic, which is calculated as follows:

T
d= zt=2 (e —€1)’

T
2
e
Zt:l t
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The equation can be read as “the sum of the square of
each residual minus the previous residual, divided by the sum
of each residual squared.” You can calculate the value of the
Durbin-Watson statistic for the example in this chapter:

(-6.3-5.0)* +(2.3— (-6.3))" + -+ (8.2 - 4.2)" _

1.8
5.0% +(-6.3)*> +--- + 8.22

The exact critical value of the Durbin-Watson test differs for
each analysis, and you can use a table to find it, but generally we
use 1 as a cutoff: a result less than 1 may indicate the presence of
autocorrelation. This result is close to 2, so we can conclude that
there is no autocorrelation in our example.

NONLINEAR REGRESSION

On page 66, Risa said:

THE GOAL OF REGRESSION ANALYSIS
IS TO OBTAIN THE REGRESSION
EQUATION IN THE FORM OF
y=ax+b.

This equation is linear, but regression equations don’t have
to be linear. For example, these equations may also be used as
regression equations:

y=g+b
x

y=a\/;+b
y=ax’+bx+c
y=axlogx+b

The regression equation for Miu’s age and height introduced on

page 26 is actually in the form of y = @ | b rather than y=ax+b.
x
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Of course, this raises the question of which type of equation
you should choose when performing regression analysis on your
own data. Below are some steps that can help you decide.

1. Draw a scatter plot of the data points, with the dependent vari-
able values on the x-axis and the independent variable values on
the y-axis. Examine the relationship between the variables sug-
gested by the spread of the dots: Are they in roughly a straight
line? Do they fall along a curve? If the latter, what is the shape
of the curve?

2. Try the regression equation suggested by the shape in the
variables plotted in Step 1. Plot the residuals (or standardized
residuals) on the y-axis and the independent variable on the
x-axis. The residuals should appear to be random, so if there
is an obvious pattern in the residuals, like a curved shape, this
suggests that the regression equation doesn’t match the shape
of the relationship.

3. If the residuals plot from Step 2 shows a pattern in the residuals,
try a different regression equation and repeat Step 2. Try the
shapes of several regression equations and pick one that appears
to most closely match the data. It’s usually best to pick the sim-
plest equation that fits the data well.

TRANSFORMING NONLINEAR EQUATIONS INTO LINEAR EQUATIONS

There’s another way to deal with nonlinear equations: simply turn
them into linear equations. For an example, look at the equation for
Miu’s age and height (from page 26):

y=-2285 1733

X

You can turn this into a linear equation. Remember:

If l:X, then l:x.
X X
1
So we’ll define a new variable X, set it equal to ' and use X
in the normal y = aX + b regression equation. As shown on page 76,
the value of a and b in the regression equation y = aX + b can be
calculated as follows:

a:SXy
SXX
b=g-Xa
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TALBE 2-2: CALCULATING THE REGRESSION EQUATION

We continue with the analysis as usual. See Table 2-2.

age
Age 1 Height B ~ ., . B ~
x =X y (x-X) y-3 X-X (y-9)° X-X(y-3)
4 0.2500 100.1 0.1428 -38.1625  0.0204 1456.3764 -5.4515
5 0.2000 107.2 0.0928 -31.0625 0.0086  964.8789 -2.8841
6 0.1667 114.1 0.0595 -24.1625 0.0035 583.8264 -1.4381
7 0.1429 121.7 0.0357 -16.5625  0.0013  274.3164 -0.5914
8 0.1250 126.8 0.0178 -11.4625  0.0003  131.3889 -0.2046
9 0.1111 130.9 0.0040 -7.3625  0.0000 54.2064 -0.0292
10 0.1000 137.5  -0.0072 -0.7625  0.0001 0.5814 -0.0055
11 0.0909 143.2  -0.0162 4.9375  0.0003 24.3789 -0.0802
12 0.0833 1494  -0.0238 11.1375  0.0006  124.0439 -0.2653
13 0.0769 151.6  -0.0302 13.3375  0.0009 177.889 -0.4032
14 0.0714 154.0  -0.0357 15.7375  0.0013  247.6689 -0.5622
15 0.0667 154.6  -0.0405 16.3375  0.0016  266.9139 -0.6614
16 0.0625 155.0  -0.0447 16.7375  0.0020  280.1439 -0.7473
17 0.0588 155.1  -0.0483 16.8375  0.0023  283.5014 -0.8137
18 0.0556 155.3  -0.0516 17.0375  0.0027  290.2764 -0.8790
19 0.0526 155.7  -0.0545 17.4375  0.0030  304.0664 -0.9507
Sum 184 1.7144  2212.2 0.0000 0.0000  0.0489 5464.4575 -15.9563
Average 11.5 0.1072 138.3
According to the table:
o ﬁ _~15.9563 _ _396.6"

Sy 0.0489
b=y - Xa =138.2625 - 0.1072 x(-326.6) =173.3

So the regression equation is this:

y=-326.6X+173.3

i )
height 1
age

* If your result is slightly different from 326.6, the difference might be due to
rounding. If so, it should be very small.

TRANSFORMING NONLINEAR EQUATIONS INTO LINEAR EQUATIONS
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which is the same as this:

y=- 326.6 +173.3
x
t t
height age

We've transformed our original, nonlinear equation into a
linear one!
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THANKS FO
[ BRINGING
\_ THE DATA.

J 1T NICE OF YOU TO
.\ HELP YOUR FRIEND.
..I HAVE MY

REASONS,

N
OH, THAT'S Y}
HER. /

et
—r—1T |

MY CLASS
ENDED LATE. N

IT'S OKAY.
WE JUST GOT
A_HERE TOO.




OH! WHO'S
YOUR
FRIEND?

THIS 15
KAZAMI. HE'S

IN MY HISTORY :
CLASS.

WE'RE GOING TO
COVER MULTIPLE

REGRESSION ANALYSIS NO PROBLEM.
TODAY, AND KAZAMI "HeLp e 100
BROUGHT US SOME h ~_

DATA TO ANALYZE.

' WHICH BAKERY ¥

YOU LIKE
CROISSANTS,
DON'T YOU,
miuz

OF

COURSE!
THEY'RE

DELICIOUS.

..

| IS YOUR
: FAVORITE?

DEFINITELY KAZAMI
BAKERY—THEIRS
ARE THE BEST!

i

KAZAM.L...
OH!
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THE HEIR TO
THE KAZAMI
BAKERY
EMPIRE!

THEN YOU
MUST BE...2

RISA, DON'T
BE DRAMATIC.

IT's JUST A TEN RIGHT NOW,
SMALL FAMILY AND MOST OF
THEM ARE HERE

BUSINESS.

\_ N THE CITY.

Y HASHIMOTO |

STATION (2]

WAKABA T

THERE ARE ONLY \-

ROKUJO
STATION

WE'RE PLANNING
TO OPEN A NEW
ONE SOON.

SO TODAY...

BUT I SEE
KAZAMI
BAKERIES ALL
OVER TOWN,

WE'RE GOING TO
PREDICT THE SALES
OF THE NEW SHOP

USING MULTIPLE
REGRESSION
ANALYS/S.
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IN MULTIPLE

ACCORDING TO MY NOTES, IN SIMPLE REGRESSION
MULTIPLE REGRESSION ANALYSIS, WE USED ONE VSEE %ggifc'%éﬁm'ﬁygﬁé
THAN ONE FACTOR TO THE VALUE OF ANOTHER THE VALUE OF OUR

PREDICT AN OUTCOME. VARIABLE. O OME VARIABLE

MULTIPLE REGRESSION EQUATION
?’- A+ Q22+ - + ApAp +b

T

OUTCOME PREDICTOR PARTIAL REGRESSION
VARIABLE VARIABLES COEFFICIENTS

/ EVERY x VARIABLE
HAS ITS OWN a, BUT
THERE'S STILL JUST
ONE INTERCEPT.

AND JUST ONE OUTCOME I GET IT!
VARIABLE, y. LIKE THIS, SEE?

REGRESSION
ANALYSIS MULTIPLE REGRESSION ANALYSIS
PREDICTOR PREDICTOR PREDICTOR | PREDICTOR
VARIABLE VARIABLE 1 VARIABLE 2 VARIABLE P

OUTCOME OUTCOME
VARIABLE VARIABLE
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) R 585

THE MULTIPLE REGRESSION EQUATION

L

ARE THE STEPS
THE SAME AS IN /
SIMPLE REGRESSION (
ANALY5IS5?

THEY'RE SIMILAR—
BUT NOT EXACTLY
THE SAME.

MULTIPLE REGRESSION ANALYSIS PROCEDURE

DRAW A SCATTER PLOT OF EACH PREDICTOR VARIABLE AND THE
OUTCOME VARIABLE TO SEE IF THEY APPEAR TO BE RELATED.

~

CALCULATE THE MULTIPLE REGRESSION EQUATION.

-

EXAMINE THE ACCURACY OF THE MULTIPLE REGRESSION EQUATION.

>

CONDUCT THE ANALYSIS OF VARIANCE (ANOVA) TEST.

~

CALCULATE CONFIDENCE INTERVALS FOR THE POPULATION.

~—

MAKE A PREDICTION!

7 WE HAVE TO LOOK AT X "
EACH PREDICTOR ALONE T'LL WRITE
AND ALL OF THEM THAT
TOGETHER. DOWN.
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STEP 1: DRAW A SCATTER PLOT OF EACH PREDICTOR VARIABLE AND THE
OUTCOME VARIABLE TO SEE IF THEY APPEAR TO BE RELATED.

HQ\C/)ET'I?/EONU FIRST, LET'S LOOK
RESULTS YET? AT THE DATA FROM

THE SHOPS ALREADY

? ) ¥ ,-'.T:I
CAN 1 SEE ;‘I / ‘ IN BUSINESS.

NOT YET.
BE PATIENT.

Floor space Distance to the

of the shop nearest station Monthly sales
Bakery (tsubo*) (meters) (¥10,000)
Yumenooka Shop 10 80 469
Terai Station Shop 8 0 366
Sone Shop 8 200 371
Hashimoto Station Shop 5 200 208
Kikyou Town Shop 7 300 246
Post Office Shop 8 230 297
Suidobashi Station Shop 7 40 363
Rokujo Station Shop 9 0 436
Wakaba Riverside Shop 6 330 198
Misato Shop 9 180 364

* 1 tsubo is about 36 square feet.

THE OUTCOME
VARIABLE 15 NOW DRAW A
MONTHLY SALES, SCATTER PLOT

AND THE OTHER TWO
ARE PREDICTOR
VARIABLES.

FOR EACH
PREDICTOR
VARIABLE.
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MONTHLY SALES

CORRELATION COEFFICIENT = .8924

Rokujo Station Shop
Sone Shop
Suidobashi Station Shope ® e Misato Shop
Terai Station Shop
Post Office Shop &

# Kikyou Town Shop

Hashimoto Station Shop e & Wakaba Riverside Shop

4 6 3
FLOOR SPACE

MONTHLY SALES
ARE HIGHER IN

BIGGER SHOPS AND
IN SHOPS NEAR A
TRAIN STATION.

-
® Yumenooka Shop

MONTHLY SALES

CORRELATION COEFFICIENT = -.7751

& Yumenooka Shop
Rokujo Station Shop
J Terai Station Shop » @ Sonc Shop
Suidobashi Misato Shop
300 Station Shop  Post Office Shop
Kikyou Town Shop ®
zw Hashimoto Station Shop # .
Wakaba
Riverside Shop
{00
0
0 B 10 0 2 D 3w W

DISTANCE TO THE NEAREST STATION

TOTALLY.

LOOKS LIKE
BOTH OF

THESE AFFECT

MONTHLY
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STEP 2: CALCULATE THE MULTIPLE REGRESSION EQUATION.

/ A LOT OF THE
COEFFICIENTS WE
CALCULATED DURING
SIMPLE REGRESSION
ANALYSIS ARE ALSO
\ INVOLVED IN MULTIPLE
N REGRESSION.

BUT THE
CALCULATION IS A BIT
MORE COMPLICATED.

DO YOU REMEMBER
THE METHOD
WE USED?

7LINEAR LEAST
SQUARES

THAT'S RIGHT!
LET'S REVIEW.

FIRST GET THE RESIDUAL
SUM OF SQUARES, S..

Se={469-(a,x (0 + 22 x 80+b)F*
+H{Ub- (i x&+q>x 0+b)}>
-f. cee

+{364~(Q1x 9+ Qux (D +b)3?

7

THEN DIFFERENTIATE BY ay, ay,
AND b AND SET THE EQUATION
EQUAL TO ZERO. FIND THE VALUES
OF ay Ay, AND b THAT MAKE Se

08 > LU 02 e 0l
et 234~(a0 Q10 B0+5)} = O
ip?-z(-&»{déﬂ(a,x/omzxm»ﬂz w)im-(a,xmxow)}

daz_,,...+z(-(£0){%4'(01’7*02"/90“ $)8=0

AND PRESTO!
PIECE OF CAKE.

THINK I LIKE
THIS CAKE.
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COME ON!
SHARPEN YOUR
PENCILS AND GET

READY!
]

AHA! THIS 1S
WHERE WE USE
THE MATRICES...

COEFFICIENTS...

=
/oﬂ -.%
WE CAN FIND THE r —_—
PARTIAL REGRESSION —> #

..BY DOING THIS X
CALCULATION! (@ﬁ)@
b

REGRESSION COEFFICIENT!

WHAT THE
HECK IS
THIS?!

—__ — >.——-

( 0 80 N 46

§ 0 1 366

§ 200 | i

logesvququgg" Ioz?esvqueqz
80 0 W0 200 300 230 40 0 30 (8 20 0 W0 200 300 230 4 0 B0 (80

[ | | { I | § 301 (I | | { | 1t | 297

v o4 | 33

9 0 1 43

6 30 1 THIS BIG THING 15 (9%

I ? 180 1)] EQUAL TO THE PARTIAL 34




FLOOR SPACE

s & 5 7
80 0 00 200 300 230
T T A

\
Hyog
j’

L

N
(o™
S

g8

O ON~D-J OO0 J U] WO S

E

THE 1'S ARE A BASELINE

MULTIPLIER USED
TO CALCULATE THE
INTERCEPT (b).

LABELED

EVERYTHING.

7 7
R0 0 00 200 300 Z30 40
[

(48
366
371

208

& & 5 8 6 9
330 180

9
0
Lo

297
363
436
198
34

| T

DISTANCE TO THE
NEAREST STATION

IT'S NO USE!
THERE ARE TOO
MANY NUMBERS!

) THIS CALCULATION
WILL TAKE WEEKS!
NAY, MONTHS!!

PLEASE, THE
COMPUTER IS OUR
ONLY HOPE.
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\ /
enel O\ =
ILLDOIT Partial regression '

FOR YOU..* Predictor variable coefficients /
Floor space of the shop
(tsubo) a, =41.5 ‘/
Distance to the nearest
station (meters) a;=-0.3

— Intercept b =65.3 )HOORAY-’! N
C CHE)

4/

* SEE PAGE 209 FOR THE FULL CALCULATION.

SO HERE'S

YOU ARE THE EQUATION.

Y=4|52-032:+65.3
oo

FIN,
MONTHLY FLOOR DISTANCE TO | pAy’;L”LzY!
SALES SPACE THE NEAREST T
STATION

YOU SHOULD
WRITE THIS
DOWN.

” THERE'S
ONE MORE
THING...

...THAT WILL HELP
YOU UNDERSTAND THE
MULTIPLE REGRESSION

EQUATION AND MULTIPLE
REGRESSION ANALYSIS.

HAT R N
:gn.; @
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-

N

N\
N

AR 7 THIS SEEMS
\Y
\

THE LINE PLOTTED BY THE { EamiAr. )

MULTIPLE REGRESSION EQUATION N /- THINK,
WILL ALWAYS CRO55 THE POINTS " HAVE —

“ISEEN—]

(Xi» X2 e s Xp, U), WHERE \ =

% 15 THE AVERAGE OF x;.

I
I
i
J i
y 4
y 4
y 4
/
y 4

——MY-BRAIN:-IS.
\:MELTIN@.

TO PUT IT DIFFERENTLY, OUR EQUATION y = 41.5x; — 0.3x, + 65.3 WILL
ALWAYS CREATE A LINE THAT INTERSECTS THE POINTS WHERE AVERAGE
FLOOR SPACE AND AVERAGE DISTANCE TO THE NEAREST STATION

INTERSECT WITH THE AVERAGE SALES OF THE DATA THAT WE USED.
NI (| (LA U 4

”OH YEAH! WHEN™\}
WE PLOT OUR
EQUATION, THE LINE
; PASSES THROUGH
/ / / e THE AVERAGES.
/ AR

WE'LL FIND OUT
USING REGRESSION
DIAGNOSTICS. WE'LL
NEED TO FIND R?, AND

IF IT'S CLOSE TO 1,
THEN OUR EQUATION IS
PRETTY ACCURATE!

SO NOW WE HAVE
AN EQUATION,
BUT HOW WELL
CAN WE REALLY
PREDICT THE
SALES OF THE
NEW SHOP?

GO0OD MEMORY!
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BEFORE WE FIND R%, WE NEED TO FIND PLAIN OLD
R, WHICH IN THIS CASE IS CALLED THE MULTIPLE &)
CORRELATION COEFFICIENT. REMEMBER: R IS A WAY (@7'
OF COMPARING THE ACTUAL MEASURED VALUES (y)
WITH OUR ESTIMATED VALUES ()X

Actual Estimated value
value gj=41x, - 0.3x,

Bakery y +65.3 y-9 §-9 (y-9) (3-3) (y-9)@-3)(y-9)
Yumenooka 469 453.2 137.2 121.4 18823.8 14735.1 16654.4 250.0
Terai 366 397.4 34.2 65.6 1169.6 4307.5 2244.6 988.0
Sone 371 329.3 39.2 -2.5 1536.6 6.5 -99.8 1742.6
Hashimoto 208 204.7 -123.8 -127.1 153264 16150.7 15733.2 10.8
Kikyou 246 253.7 -85.8 -78.1 7361.6 6016.9 6705.0 58.6
Post Office 297 319.0 -34.8 -12.8 1211.0 163.1 444 .4 485.3
Suidobashi 363 342.3 31.2 10.5 973.4 109.9 327.1 429.2
Rokujo 436 438.9 104.2 107.1 10857.6 11480.1 11164.5 8.7
Wakaba 198 201.9 -133.8 -129.9 17902.4 16870.5 17378.8 15.3
Misato 364 377.6 322 458  1036.8  2096.4 1474.3 184.6
Total 3318 3318 0 0 76199.6 72026.6 72026.6 4173.0
Average 331.8 331.8
Vo Vol
y 1] Syy Sgg Syg Se
WE DON'T NEED S,
YET, BUT WE WILL
USE IT LATER.
. sum of (y-g)(g-g) _ Sy

\/sum of (y—g)* xsum of (Q - 5)2 \/Syy xSy

_ 72026.6 _ 9799
J76199.6 x 72026.6
\
RIS
R® = (.9722)" = .9452 a452.
—

* AS IN CHAPTER 2, SOME OF THE FIGURES IN THIS CHAPTER ARE ROUNDED FOR
: READABILITY, BUT ALL CALCULATIONS ARE DONE USING THE FULL, UNROUNDED
20 VALUES RESULTING FROM THE RAW DATA UNLESS OTHERWISE STATED.



50 THE WAY
WE CALCULATE
R IN MULTIPLE
REGRESSION 1S A
LOT LIKE IN SIMPLE
REGRESSION,
ISNT IT?

YES, AND WHEN THE
VALUE OF R? IS
CLOSER TO 1, THE
MULTIPLE REGRESSION
EQUATION IS MORE
ACCURATE, JUST LIKE

BEFORE. /

15 THERE A RULE
THIS TIME FOR HOW
HIGH R*> NEEDS TO BE
FOR THE EQUATION
TO BE CONSIDERED

SO THIS MULTIPLE
REGRESSION EQUATION
IS REALLY ACCURATE!

NO, BUT .5 CAN
AGAIN BE USED AS
A LOWER LIMIT.

YEAH, WE CAN
PREDICT SALES
OF THE NEW SHOP
WITH CONFIDENCE.

Sl

YOU CAN SIMPLIFY THE R? CALCULATION.
I WON'T EXPLAIN THE WHOLE THING,
BUT BASICALLY IT'S SOMETHING LIKE THIS*

R? = (multiple correlation coefficient)’

_ a,S,, +a,5,, +--+a,S,, -1- S,

* REFER TO PAGE 144 FOR AN EXPLANATION OF Sy, Sy, ... , Spy
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THE TROUBLE WITH R?

' BEFORE YOU GET

TOO EXCITED, THERE'S
L SOMETHING YOU
SHOULD KNOW...

\
WE DID THE
THIS R MIGHT CALCULATIONS HOW CAN
BE MISLEADING. PERFECTLY. THIS BE?

WELL, THE
TROUBLE I5...

EVERY TIME WE
ADD A PREDICTOR
VARIABLE p...

..R? GETS LARGER.
GUARANTEED.

SUPPOSE WE ADD THE AGE
OF THE SHOP MANAGER
TO THE CURRENT DATA.

\

Distance

Floor to the

\!//
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area of nearest Shop g Monthly
the shop station manager’s sales
Bakery (tsubo) (meters) age (years) (¥10,000)
Yumenooka Shop 10 80 42 469
Terai Station Shop 8 0 29 366
Sone Shop 8 200 33 371
Hashimoto Station Shop 5 200 41 208
Kikyou Town Shop 7 300 33 246
Post Office Shop 8 230 35 297
Suidobashi Shop 7 40 40 363
Rokujo Station Shop 9 0 46 436
Wakaba Riverside Shop 6 330 44 198
Misato Shop 9 180 34 364
e WHY
AGE 1S NOW WOBLV
THE THIRD AGE
PREDICTOR MATTER?
VARIABLE. \ .
—

BEFORE ADDING
ANOTHER VARIABLE,
THE R* WAS 9452,

AFTER ADDING
THIS VARIABLE...




S
R2 -

- —

- Ay

..IT'S .a495!

~N
N
RN

9495 = >

FLOOR DISTANCE ace G 7 FLOOR DISTANCE
AREA TO THE OF THE AREA TO THE
OF THE D NEAREST SHOP ‘@' OF THE D NEAREST
SHOP STATION MANAGER SHoP STATION

AS YOU CAN SEE,
IT'S LARGER.

BUT WHEN WE
PLOT AGE VERSUS
MONTHLY SALES,
THERE IS NO
PATTERN, SO...

CORRELATION COEFFICIENT = .0368

500
e e smop YET DESPITE THAT,
uj i . 9
R THE VALUE OF R
hiy Terai Station Shop ¢ e # Suidobashi INCREAGED-
2 Misato Shop  station
% 300 Post Office Shop @ Shop \
3 Kikyou Town Shop \
= Hashimoto Station Shop ¢ "
‘i m Wa’kaba
2 Riverside
Shop
100

(=]

10 20

THE AGE OF THE
SHOP MANAGER HAS
NOTHING TO DO WITH
MONTHLY SALES!

30 40 w\

AGE OF THE SHOP MANAGER

I KNEW IT!
N

50 WHAT WAS
THE POINT OF
ALL THOSE
CALCULATIONS?

THE APJUSTED COEFFICIENT
OF DETERMINATION, AKA

APJUSTED R? WILL SAVE US!

WHAT?
ANOTHER R*?




ADJUSTED R?

THE VALUE OF ADJUSTED R? (R%) CAN BE
OBTAINED BY USING THIS FORMULA.

S,

e

MIU, COULD YOU
FIND THE VALUE OF
ADJUSTED R? WITH AND
WITHOUT THE AGE OF

Rz—l—[

sample size — number of predictor variables —1

THE SHOP MANAGER?

)

S

vy
sample size -1

( )

TOO MANY

WHEN THE
PREDICTOR
VARIABLES ARE
ONLY FLOOR AREA
AND DISTANCE...

..R* 15 9452,

50 ADJUSTED R: 1S:

S

e

i

sample size —

)

number of predictor variables —1

4173.0

o
(

76199.6
10-1

%

10-2-1

sample size -1

(oo o)
j 10" |
= 49296

T
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THE ANSWER

HOW ABOUT
WHEN WE ALSO
INCLUDE THE SHOP
MANAGER'S AGE?

WE'VE ALREADY
GOT R? FOR THAT,
RIGHT?

YES, IT'S
94495,

AGE
o 90
SHOP (L,
MANAGER

FLOOR
DISTANCE
AREA TO THE
OF THE D NEAREST
HoP
5 STATION

R?>=.9495

SO ALL 1 HAVE TO
GET IS THE VALUE OF
ADJUSTED R>...

WHAT ARE S,, AND S,
IN THIS CASE?

Syy 15 THE SAME AS
BEFORE. IT'S 76199.6.

WE'LL CHEAT AND
CALCULATE S, USING
MY COMPUTER.

PREDICTOR VARIABLES:
FLOOR AREA
- DISTANCE
© MANAGER'S AGE

Se
1 (sample size — number of predictor variables — lj

Syy
sample size -1

[ 3846.4 j WAIT A
~ 10-3-1) MINUTE...
=1- [76199.6) - 9z43

10-1

&
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SN

LOOK! THE VALUE
OF ADJUSTED R? IS

0]

AR B Y A N P A
\Przé\maoz K/A/zlABLEs // ///
@ N

FLOOR FLOOR AREA,
AREA AND DISTANCE,
DISTANCE AND AGE

LARGER WHEN THE
AGE OF THE SHOP
MANAGER IS NOT

INCLUDEPD.

SEE? ADJUSTED R?
TO THE RESCUE!

HEY, LOOK
AT THIS.

ADJUSTED R? 1S SMALLER
THAN R IN BOTH CASES.
IS IT ALWAYS SMALLER?

0] @
FLOOR FLOOR AREA,
AREA AND DISTANCE,
DISTANCE AND AG

GOO0D EYE!
YES, IT IS
ALWAYS
SMALLER,.

IT MEANS THAT ADJUSTED
R? 15 A HARSHER JUDGE
OF ACCURACY, SO WHEN

WE USE IT, WE CAN BE

MORE CONFIDENT IN OUR

MULTIPLE REGRESSION

EQUATION.

ADJUSTED
R* 1S
AWESOME,
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HYPOTHESIS TESTING WITH
MULTIPLE REGRESSION

WE'LL DO
HYPOTHESIS AND

SINCE WE'RE HAPPY
WITH ADJUSTED R?,
WE'LL TEST OUR
ASSUMPTIONS
ABOUT THE
POPULATION.

REGRESSION
COEFFICIENT TESTS,

1_22

N4

7 YES, BUT IN
PLE REGRESSION
ANALYSIS, WE HAVE
PARTIAL REGRESSION
COEFFICIENTS, INSTEAD.

DO You
REMEMBER
HOW WE DID

THE HYPOTHESIS
TESTING BEFORE?

I THINK 0. WE
TESTED WHETHER
THE POPULATION

MATCHED THE
EQUATION AND THEN

CHECKED THAT A

DIDN'T EQUAL ZERO.

/ RIGHT! IT'S \

BASICALLY
THE SAME
WITH MULTIPLE
REGRESSION.

THE MONTHLY SALES FOLLOW A NORMAL
DISTRIBUTION WITH MEAN A, x; + Agx, + B

~~ ALTERNATIVE HYPOTHESIS -~
IF THE FLOOR AREA OF THE SHOP

IS x; TSUBO AND THE DISTANCE TO
THE NEAREST STATION 1S x, METERS,

AND STANDARD DEVIATION .

NOW, WE HAVE
MORE THAN ONE x

AND MORE THAN ONE

A. AT LEAST ONE OF

THESE A’S MUST NOT
EQUAL ZERO.
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STEP 4: CONDUCT THE ANALYSIS OF VARIANCE (ANOVA) TEST.

HERE ARE OUR
ASSUMPTIONS ABOUT THE
PARTIAL REGRESSION
COEFFICIENTS. a,, a, AND b
ARE COEFFICIENTS OF THE
ENTIRE POPULATION.

Yy=a,x, +a,x,+b

* A; IS APPROXIMATELY a;.
* A, |5 APPROXIMATELY a,.
* B |5 APPROXIMATELY b.

S,
o=
\/sample size —number of predictor variables -1

COULD YOU APPLY
THIS TO KAZAMI
BAKERY'S DATA?

THE MULTIPLE
REGRESSION EQUATION 1S

y=41.5x; — 0.3x, + 65.3,
S0...

THESE ARE OUR ) . A, 15 APPROXIMATELY 415,

A, IS APPROXIMATELY -0.3.
B 1S APPROXIMATELY €5.3.

o = [AT30
T = \Togor = 244
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NOW WE NEED TO
TEST OUR MODEL
USING AN F-TEST.

THERE ARE
TWO TYPES.

ONE TESTS ALL THE
PARTIAL REGRESSION
COEFFICIENTS TOGETHER.

NULL
Hypothesis | Ar=0 Ao Az=()

ALTERNATIVE — A
HYPOTHESIS |NOT Ai=A2=0

IN OTHER WORDS, ONE OF
THE FOLLOWING IS TRUE:

A %0 o Az #0
*A#0 0 Az=0
*Ai=0 amp A2#0

THE OTHER TESTS THE

INDIVIDUAL PARTIAL
REGRESSION COEFFICIENTS
SEPARATELY.

NULL T

HYPOTHESIS Ai=0

ALTERNATIVE :

HYPOTHESIS Ai# 0
S0, WE HAVE

TO REPEAT THIS !
TEST FOR EACH vES.
OF THE PARTIAL
REGRESSION
COEFFICIENTS?

LET'S SET THE
SIGNIFICANCE
LEVEL TO .05.
ARE YOU READY
TO TRY DOING
THESE TESTS?
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FIRST, WE'LL TEST ALL THE PARTIAL
REGRESSION COEFFICIENTS TOGETHER.

THE STEPS OF ANOVA

Step 1
Step 2

Step 3

Step 4
Step 5

T

Step 6

Step 7

Define the population.

Set up a null hypothesis and
an alternative hypothesis.
Select which hypothesis test
to conduct.

Choose the significance level.
Calculate the test statistic
from the sample data.

Determine whether the
p-value for the test statistic
obtained in Step 5 is smaller
than the significance level.

Decide whether you can reject
the null hypothesis.

The population is all Kazami Bakery shops.

Null hypothesis is A; = 0 and A, = 0.
Alternative hypothesis is that A; or A, or both = 0.

We’ll use an F-test.

We'll use a significance level of .05.
The test statistic is:

S,, —S.
number of predictor variables

S,

e

sample size — number of predictor variables —1 B

76199.6 -4173.0 = 4173.0

+ =60.4
2 10-2-1

The test statistic, 60.4, will follow an F distribution
with first degree of freedom 2 (the number of predictor
variables) and second degree of freedom 7 (sample size
minus the number of predictor variables minus 1), if the
null hypothesis is true.

At significance level .05, with d, being 2 and d, being 7
(10 — 2 — 1), the critical value is 4.7374. Our test statistic
is 60.4.

Since our test statistic is greater than the critical value,
we reject the null hypothesis.
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NEXT, WE'LL TEST THE INDIVIDUAL PARTIAL
REGRESSION COEFFICIENTS. I WILL DO

THIS FOR A; AS AN EXAMPLE.

THE STEPS OF ANOVA

Step 1 Define the population. The population is all Kazami Bakery shops.

Step 2 Set up a null hypothesis and  Null hypothesis is A; = 0.
an alternative hypothesis. Alternative hypothesis is A; = 0.

Step 3 Select which hypothesis test ~ We’ll use an F-test.
to conduct.

Step 4 Choose the significance level. We’ll use a significance level of .05.

Step 5 Calculate the test statistic The test statistic is:
from the sample data. if . S, _

S,; sample size - number of predictor variables -1
2
41.5 . 4173.0 _ m
0.0657 10-2-1
The test statistic will follow an F distribution with
first degree of freedom 1 and second degree of freedom
7 (sample size minus the number of predictor variables
minus 1), if the null hypothesis is true. (The value of S;;
will be explained on the next page.)

Step 6 Determine whether the At significance level .05, with d; being 1 and d, being 7,
p-value for the test statistic the critical value is 5.5914. Our test statistic is 44.
obtained in Step 5 is smaller
than the significance level.

Step 7 Decide whether you can reject Since our test statistic is greater than the critical value,
the null hypothesis. we reject the null hypothesis.

REGARDLESS OF THE RESULT OF STEP 7,
IF THE VALUE OF THE TEST STATISTIC
a . S
S,, sample size —number of predictor variables -1
IS 2 OR MORE, WE STILL CONSIDER THE PREDICTOR VARIABLE
CORRESPONDING TO THAT PARTIAL REGRESSION COEFFICIENT
TO BE USEFUL FOR PREDICTING THE OUTCOME VARIABLE.
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FINDING Sy AND S,;

I (10 (80 '\N' THIS 15 THE Sy, THAT
5 0 ] APPEARED IN STEP 5.
$ 200 1
|0885'79796q§§gg"
R0 0 200 200 300 30 40 0 330 (80 = - @ooooD - -
o 1 1 ik g s v
7 4 |
910 :! THIS 15 Sys.
6 220!
L 9 8o 1)]
nooeonce RGBT

YOU NEED TO ADD A LINE WITH A 1 IN ALL ROWS AND COLUMNS.

WE USE A MATRIX TO FIND S;; AND S,,.
WE NEEDED S,; TO CALCULATE THE TEST
STATISTIC ON THE PREVIOUS PAGE, AND WE
USE S, TO TEST OUR SECOND COEFFICIENT
INDEPENDENTLY, IN THE SAME WAY*

SO A; DOESN'T
EQUAL ZERO! WE
CAN REJECT THE
NULL HYPOTHESIS

S
WHEN EXPLAINING THE "TEST OF PARTIAL REGRESSION COEFFICIENTS.” YOUR
132 FINAL RESULT WILL BE THE SAME NO MATTER WHICH METHOD YOU CHOOSE.



STEP 5: CALCULATE CONFIDENCE INTERVALS FOR THE POPULATION.

WHAT'S
NEXT? WAS IT YES, THAT'S RIGHT. WE'RE
SOMETHING ABOUT GOING TO CALCULATE
CONFIDENCE? CONFIDENCE INTERVALS.

.THE CALCULATION 1S EXTREMELY
DIFFICULT. LEGEND HAS IT THAT A
STUDENT ONCE WENT MAD TRYING

: TO CALCULATE IT.

BUT THIS
TIME...

IT STARTS OUT LIKE
SIMPLE REGRESSION
ANALYSIS. BUT THEN
THE MAHALANOBIS
DISTANCE* COMES IN,
AND THINGS GET VERY
COMPLICATED VERY
QUICKLY.

WOW. DO You
THINK WE CAN “
DO IT?

I KNOW WE CAN,
BUT WE'LL BE
HERE ALL NIGHT.

WE COULD HAVE A
SLUMBER PARTY.

* THE MATHEMATICIAN F.C. MAHALANOBIS INVENTED A WAY TO

USE MULTIVARIATE DISTANCES TO COMPARE POPULATIONS. HYPOTHESIS TESTING WITH MULTIPLE REGRESSION 133



ALL RIGHT, LET'S
STAY UP ALL NIGHT |
DOING MATH!

CHANGED
MY MIND!
_ NO MATH!

WELL THEN, |
GUESS WE'LL
HAVE TO FIND OUT
THE CONFIDENCE
INTERVALS USING
DATA ANALYSIS
SOFTWARE.

THANK YOU,
COMPUTER! |

THIS TIME IT'S OKAY,
BUT YOU SHOULDN'T
ALWAYS RELY ON
COMPUTERS. DOING
CALCULATIONS BY
HAND HELPS YOU
LEARN.

IT HELPS
YOU LEARN.

SORRY!

YOU ARE
SUCH A JERK
1 SOMETIMES!

I THOUGHT IT
WAS FUNNY!
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STOP DAYDREAMING
WE'LL NEED TO CHOOSE THE -
CONFIDENCE LEVEL FIRST. : ; ANY PAY ATTENTION!

| FROM A STATION, THE

CONFIDENCE INTERVA

W

* THIS CALCULATION 15 EXPLAINED IN MORE DETAIL ON PAGE 146.

S0 FIRST
WE DO 1 GOT IT! WE'VE FOUND OUT
453.2 + 34.9... THAT THE AVERAGE SHOP

EARNS BETWEEN ¥4,183,000
AND ¥4,881,000, RIGHT?
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STEP &: MAKE A PREDICTION!

HERE 1S THE DATA
FOR THE NEW SHOP

Floor space Distance to the
of the shop

(tsubo) (meters)

nearest station

WE'RE PLANNING
TO OPEN.

Isebashi Shop

10 110

CAN YOU
PREDICT THE
SALES, MIU?

‘g= 41.5x, - 0.3zt 65.3
= 4. 5xI0-03x]|10+65.3

YOU'RE A GENIUS,
MIU! T SHOULD
NAME THE SHOP
AFTER YOU.

PROBABLY:: "
NAME IT
./ AFTER RISA...

¥4,473,000
PER MONTH!

BUT HOW COULD WE Y
KNOW THE EXACT
SALES OF A SHOP
THAT HASN'T BEEN
BUILTZ? SHOULD
WE CALCULATE A
PREDICTION INTERVAL?

IN SIMPLE REGRESSION ANALYSIS,
THE METHOD TO FIND BOTH THE
CONFIDENCE AND PREDICTION
INTERVALS WAS SIMILAR. 15
THAT ALSO TRUE FOR MULTIPLE
REGRESSION ANALYSIS?
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SO WE'LL
USE THE
MAHA...MAHA...
SOMETHING
AGAIN?

YEAH.
BLAH BLAH
DISTANCE

Ull PrEDICTION

IT'S THE
MAHALANOBIS
DISTANCE.
YES, WE NEED
TO USE IT
TO FIND THE

INTERVAL.

COULD WE...MAYBE,
PLEASE USE YOUR
COMPUTER AGAIN?
JUST ONCE MORE?

THE CONFIDENCE
LEVEL 15 95%, SO

PREDICTED SALES...

..ARE BETWEEN
¥3,751,000 AND
¥5,109,000.

NOT BAD!

S0, PO YOU THINK
YOU'LL OPEN
THE SHOP?

THESE NUMBERS ARE
PRETTY GOOD. YOU
KNOW, I THINK WE

JUST MIGHT!

THIS HAS BEEN ACE.
THANK YOU, BOTH

WHOA, WHOA!
HOLD ON, THERE'S
JUST ONE MORE
THING.
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!

CHOOSING THE BEST COMBINATION OF PREDICTOR VARIABLES

A BETTER
EQUATION?!
AN
A O
WE NEED TO CHECK .
WHETHER THERE'S
A BETTER MULTIPLE
REGRESSION
EQUATION!
WHAT'S WRONG
WITH THE ONE WE
HAVE? WHAT ABOUT
MY PREDICTION?
MEANINGLESS!
A7 NOW WHO'S
Y BEING DRAMATIC?

LIKE THE AGE OF
THE SHOP MANAGER?
WE USED THAT, EVEN
THOUGH IT DIDN'T HAVE
ANY EFFECT ON SALES!

JUST AS WITH SIMPLE
REGRESSION ANALYSIS,
WE CAN CALCULATE A
MULTIPLE REGRESSION
EQUATION USING ANY
VARIABLES WE HAVE
DATA ON, WHETHER OR
NOT THEY ACTUALLY
AFFECT THE OUTCOME
VARIABLE.
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““INGREDIENTS...
THIS SOUP 15

THE EQUATION
BECOMES
COMPLICATED IF
YOU HAVE TOO

MANY PREDICTOR

VARIABLES.

v i , -

50 MANY




THE BEST MULTIPLE
REGRESSION EQUATION
BALANCES ACCURACY
AND COMPLEXITY BY
INCLUDING ONLY THE
PREDICTOR VARIABLES
NEEDED TO MAKE THE
BEST PREDICTION.

DIFFICULT

Y=A X+ 02 X2+ A3 x3+uRa+As X5 +As 2'6;
.f.

EASY

& 2%=a|14+azlz+b

ACCURATE

= +0 2+
soﬂ%’ Az ﬁzz b

NOT ACCURATE
J=A A+ 23+b
R® @

SHORT IS
SWEET.

>

7
r/‘R)
*

THE METHOD WE'LL USE TODAY

THERE ARE SEVERAL WAYS TO FIND
THE EQUATION THAT GIVES YOU THE
MOST BANG FOR YOUR BUCK.

IS SIMPLER THAN ANY OF THOSE.
IT'S CALLED BEST SUBSETS
REGRESSION, OR SOMETIMES,

THE ROUND-ROBIN METHOPD.

A

FORWARD SELECTION
BACKWARD ELIMINATION

FORWARD-BACKWARD
STEPWISE SELECTION

- ASK A DOMAIN EXPERT
WHICH VARIABLES ARE
THE MOST IMPORTANT

—
THESE ARE SOME COMMON WAYS.

FIRST, WE'D CALCULATE THE Z /
WHAT THE HECK MULTIPLE REGRESSION EQUATION T /
IS THAT? FOR EVERY COMBINATION OF : /
PREDICTOR VARIABLES! /4
= =
E e X1 ° X1 AND Xz * X; AND X2 AND X3 —
L sHow N —
you.sbppose || "Xz Xz AND X3 ™ \ T
X1 X3, AND x5 - THIS SURE  1y/”
ARE POTENTIAL |E=  * X3 « X AND X3 15 ROUND-
PREDICTOR — ABOUT.
VARIABLES. .
L0 LN NN
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LET'S REPLACE x,,
X5, AND x3 WITH
SHOP SIZE, DISTANCE
TO A STATION, AND
MANAGER'S AGE.

WE'LL MAKE
. A TABLE THAT
SHOWS THE PARTIAL

IS5 OUR EQUATI?ON REGRESSION
THE WINNER? COEFFICIENTS AND
- , . ADJUSTED R-...

Predictor

variables a; a, a; b R?

1 54.9 -91.3 .07709

2 -0.6 424.8 .5508

3 0.6 309.1 .0000
— land 2 41.5 -0.3 65.3 .9296

1 and 3 55.6 2.0 -170.1 .7563

2 and 3 -0.6 -0.4 438.9 4873

1and 2 and 3 42.2 -0.3 1.1 17.7 .9243

|, 115 FLOOR AREA, Z IS DISTANCE TO A STATION, AND 3 IS MANAGER'S AGE.
WHEN 1 AND 2 ARE USED, ADJUSTED R? IS HIGHEST.

50 OUR
E%‘?E?ST'F NOW WE REALLY KNOW THAT
WE ROCK. y = 41.5x; - 0.3x, + 65.3

DOES A GOOD JOB AT
PREDICTING THE SALES AT
THE NEW SHOP.

THAT'S RIGHT!
GOOD WORK,
FOLKS!
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YEAH! I CAN'T

BELIEVE HOW
MUCH I’Q/E REALLY? THEN YOU

LEARNED! SHOULD PAY ME A
,,,,,, CONSULTATION FEE.

ARE YOU STARTING \
TO UNDERSTAND

20, TeLL | REGRESSION?

ME, MIU.

R

d I THINK
1 MAY HAVE
LEARNED
SOMETHING,

CIAERA

Y g T
| i i /

I EARNED

YOU CAN , %r s

PAY US IN ONE, TOO! .. RO
CROISSANTS! JY OHWELL... - "~
N [/ LCANTSAY -7 -

NO TO'THAT. ~ - |

TLL RACE YOU
TO THE BAKERY!

RISA 1S5
REALLY COOL,
ISN'T SHE?




ASSESSING POPULATIONS WITH
MULTIPLE REGRESSION ANALYSIS

Let’s review the procedure of multiple regression analysis, shown
on page 112.

1. Draw a scatter plot of each predictor variable and the outcome
variable to see if they appear to be related.

Calculate the multiple regression equation.
Examine the accuracy of the multiple regression equation.
Conduct the analysis of variance (ANOVA) test.

Calculate confidence intervals for the population.

O W x W N

Make a prediction!

As in Chapter 2, we’ve talked about Steps 1 through 6 as if they
were all mandatory. In reality, Steps 4 and 5 can be skipped for the
analysis of some data sets.

Kazami Bakery currently has only 10 stores, and of those
10 stores, only one (Yumenooka Shop) has a floor area of 10 tsubo!
and is 80 m to the nearest station. However, Risa calculated a confi-
dence interval for the population of stores that were 10 tsubo and
80 m from a station. Why would she do that?

Well, it’s possible that Kazami Bakery could open another
10-tsubo store that’s also 80 m from a train station. If the chain
keeps growing, there could be dozens of Kazami shops that fit that
description. When Risa did that analysis, she was assuming that
more 10-tsubo stores 80 m from a station might open someday.

The usefulness of this assumption is disputable. Yumenooka
Shop has more sales than any other shop, so maybe the Kazami
family will decide to open more stores just like that one. However,
the bakery’s next store, Isebashi Shop, will be 10 tsubo but 110 m
from a station. In fact, it probably wasn’t necessary to analyze such
a specific population of stores. Risa could have skipped from calcu-
lating adjusted R* to making the prediction, but being a good friend,
she wanted to show Miu all the steps.

1. Remember that 1 tsubo is about 36 square feet.
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STANDARDIZED RESIDUALS

As in simple regression analysis, we calculate standardized resi-
duals in multiple regression analysis when assessing how well the
equation fits the actual sample data that’s been collected.

Table 3-1 shows the residuals and standardized residuals for
the Kazami Bakery data used in this chapter. An example calcula-
tion is shown for the Misato Shop.

TABLE 3-1: STANDARDIZED RESIDUALS OF THE KAZAMI BAKERY EXAMPLE

Floor Distance

area to the

of the nearest Monthly

shop station sales Monthly sales Residual Standardized
Bakery X, X, y g =41.5x, - 0.3x, + 65.3 y-y residual
Yumenooka Shop 10 80 469 453.2 15.8 0.8
Terai Station Shop 8 0 366 397.4 -31.4 -1.6
Sone Shop 8 200 371 329.3 41.7 1.8
Hashimoto 5 200 208 204.7 3.3 0.2
Station Shop
Kikyou Town Shop 7 300 246 253.7 -7.7 -0.4
Post Office Shop 8 230 297 319.0 -22.0 1.0
Suidobashi 7 40 363 342.3 20.7 1.0
Station Shop
Rokujo 9 0 436 438.9 -2.9 -0.1
Station Shop
Wakaba 6 330 198 201.9 -3.9 -0.2
Riverside Shop
Misato Shop 9 180 364 377.6 -13.6 -0.6

If a residual is positive, the measurement is higher than pre-
dicted by our equation, and if the residual is negative, the measure-
ment is lower than predicted; if it’s O, the measurement and our
prediction are the same. The absolute value of the residual tells us
how well the equation predicted what actually happened. The larger
the absolute value, the greater the difference between the measure-
ment and the prediction.
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If the absolute value of the standardized residual is greater
than 3, the data point can be considered an outlier. Outliers are
measurements that don’t follow the general trend. In this case,
an outlier could be caused by a store closure, by road construc-
tion around a store, or by a big event held at one of the bakeries—
anything that would significantly affect sales. When you detect an
outlier, you should investigate the data point to see if it needs to be
removed and the regression equation calculated again.

MAHALANOBIS DISTANCE

The Mahalanobis distance was introduced in 1936 by mathe-
matician and scientist P.C. Mahalanobis, who also founded the
Indian Statistical Institute. Mahalanobis distance is very useful
in statistics because it considers an entire set of data, rather than
looking at each measurement in isolation. It’s a way of calculating
distance that, unlike the more common Euclidean concept of dis-
tance, takes into account the correlation between measurements
to determine the similarity of a sample to an established data set.
Because these calculations reflect a more complex relationship,

a linear equation will not suffice. Instead, we use matrices, which
condense a complex array of information into a more manage-
able form that can then be used to calculate all of these distances
at once.

On page 137, Risa used her computer to find the prediction
interval using the Mahalanobis distance. Let’s work through that
calculation now and see how she arrived at a prediction interval of
¥3,751,000 and ¥5,109,000 at a confidence level of 95%.

STEP 1

Obtain the inverse matrix of

S, S, S, S, S, - S, s' g2 .. glp
S, S, 20 | which is S,, S, - Szp _ g2l g2 .. g%
Sp S Sy, Sp S v Sy, S

The first matrix is the covariance matrix as calculated on
page 132. The diagonal of this matrix (S;;, Sy,, and so on) is the vari-
ance within a certain variable.
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The inverse of this matrix, the second and third matrices shown
here, is also known as the concentration matrix for the different
predictor variables: floor area and distance to the nearest station.

For example, S,, is the variance of the values of the distance
to the nearest station. S,5 would be the covariance of the distance to
the nearest station and some fifth predictor variable.

The values of S;; and S,, on page 132 were obtained through
this series of calculations.

The values of S;; and S;j in

-1

S11 Slz o Slp
Szl Szz o Szp
Spl SP2 o Spp

and the values of S;; and S;;j obtained from conducting individual
tests of the partial regression coefficients are always the same.
That is, the values of S;; and S;; found through partial regression
will be equivalent to the values of S;; and S;; found by calculating
the inverse matrix.

STEP 2

Next we need to calculate the square of Mahalanobis distance for a
given point using the following equation:

D (x)=(x- )?)T (S’l)(x - X)

The x values are taken from the predictors, x is the mean of
a given set of predictors, and S is the concentration matrix from
Step 1. The Mahalanobis distance for the shop at Yumenooka is
shown here:

+(x, =%, ) (%, — X,) 8" +(x, — %, )(x, —X,) 8 +--+(x, - X, ) (x, - X, ) S
_ v Sll v ¥ Sl2

(x, xlj(xl xi) * (% xQ(xZ xzz (number of individuals — 1)

+(x, = X,) (X%, — %, ) 8™ +(x, - X,)(x, - X,)S*

(10-7.7)(10 - 7.7)x 0.0657 + (10 — 7.7) (80 — 156) x 0.0004 }( |

+(80-156)(10 - 7.7)x 0.0004 + (80 — 156 )(80 —156) x 0.00001
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STEP 3

Now we can calculate the confidence interval, as illustrated here:

This is the confidence interval.

A
| 1
M Monthly sales
453.2 — 35 = 418 a; x10+ay; x80+b 453 + 35 = 488
=41.5 x 10 - 0.3 x 80 + 65.3

=453

The minimum value of the confidence interval is the same distance from
the mean as the maximum value of the interval. In other words, the confidence
interval “straddles” the mean equally on each side. We calculate the distance
from the mean as shown below (D? stands for Mahalanobis distance, and x rep-
resents the total number of predictors, not a value of some predictor):

1 D? j S,
X

F(1,sample size — x —1;.05) x — + - :
sample size sample size—-1) sample size —x -1

- [P(L10-2-1;.05) x| = + 24 |, 21730
10 10-1 10-2-1

=35

As with simple regression analysis, when obtaining the predic-
tion interval, we add 1 to the second term:

1 D? ] S,

F(1,sample size — x —1;.05) x| 1+ — + - x L
sample size sample size—-1) sample size—x -1

If the confidence rate is 99%, just change the .05 to .01:

F(1,sample size - x -1;.05) = F (1,10 -2-1;.05) = 5.6
F(1,sample size - x - 1;.01) = F (1,10 -2 - 1;.01) = 12.2

You can see that if you want to be more confident that the pre-
diction interval will include the actual outcome, the interval needs
to be larger.
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USING CATEGORICAL DATA IN MULTIPLE REGRESSION ANALYSIS

Recall from Chapter 1 that categorical data is data that can’t be
measured with numbers. For example, the color of a store manager’s
eyes is categorical (and probably a terrible predictor variable for
monthly sales). Although categorical variables can be represented
by numbers (1 = blue, 2 = green), they are discrete—there’s no such
thing as “green and a half.” Also, one cannot say that 2 (green eyes)
is greater than 1 (blue eyes). So far we've been using the numeri-
cal data (which can be meaningfully represented by continuous
numerical values—110 m from the train station is further than
109.9 m) shown in Table 3-2, which also appears on page 113.

TABLE 3-2: KAZAMI BAKERY EXAMPLE DATA

Floor space Distance to the

of the shop nearest station Monthly sales
Bakery (tsubo) (meters) (¥10,000)
Yumenooka Shop 10 80 469
Terai Station Shop 8 0 366
Sone Shop 8 200 371
Hashimoto Station Shop 5 200 208
Kikyou Town Shop 7 300 246
Post Office Shop 8 230 297
Suidobashi Station Shop 7 40 363
Rokujo Station Shop 9 0 436
Wakaba Riverside Shop 6 330 198
Misato Shop 9 180 364

The predictor variable floor area is measured in tsubo, distance
to the nearest station in meters, and monthly sales in yen. Clearly,
these are all numerically measurable. In multiple regression analy-
sis, the outcome variable must be a measurable, numerical variable,
but the predictor variables can be

* all numerical variables,
¢ some numerical and some categorical variables, or
¢ all categorical variables.

Tables 3-3 and 3-4 both show valid data sets. In the first,
categorical and numerical variables are both present, and in the
second, all of the predictor variables are categorical.
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TABLE 3-3: A COMBINATION OF CATEGORICAL AND NUMERICAL DATA

Floor space Distance to the

of the shop nearest station Free Monthly sales
Bakery (tsubo) (meters) samples (¥10,000)
Yumenooka Shop 10 80 1 469
Terai Station Shop 8 0 (0} 366
Sone Shop 8 200 1 371
Hashimoto Station Shop 5 200 0 208
Kikyou Town Shop 7 300 (0] 246
Post Office Shop 8 230 0 297
Suidobashi Station Shop 7 40 0 363
Rokujo Station Shop 9 0 1 436
Wakaba Riverside Shop 6 330 0 198
Misato Shop 9 180 1 364

In Table 3-3 we've included the categorical predictor variable
Jree samples. Some Kazami Bakery locations put out a tray of free
samples (1), and others don’t (0). When we include this data in the
analysis, we get the multiple regression equation

y =30.6x, - 0.4x, + 39.5x, +135.9

where y represents monthly sales, x; represents floor area, x,
represents distance to the nearest station, and x3 represents free
samples.

TABLE 3-4: CATEGORICAL PREDICTOR DATA ONLY

Floor space Distance to the

Samples on

of the shop nearest station Samples the weekend Monthly sales
Bakery (tsubo) (meters) every day only (¥10,000)
Yumenooka Shop (0] 469
Terai Station Shop 1 (0] 0 0 366
Sone Shop 1 1 1 0 371
Hashimoto Station Shop 0 1 (0} 0 208
Kikyou Town Shop 0 1 0 0 246
Post Office Shop 1 1 0 0 297
Suidobashi Station Shop 0 0 0 0 363
Rokujo Station Shop 1 0 1 1 436
Wakaba Riverside Shop 0 1 0 0 198
Misato Shop 1 0 1 1 364
Less than 8 tsubo = z Less thanTZOO m=0 Doet not offer samIles =0

8 tsubo or more = 1

200 m or more = 1
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In Table 3-4, we’ve converted numerical data (floor space and
distance to a station) to categorical data by creating some general
categories. Using this data, we calculate the multiple regression
equation

y=50.2x, —110.1x, + 13.4x, + 75.1x, + 336.4

where y represents monthly sales, x; represents floor area, x,
represents distance to the nearest station, x3 represents samples
every day, and x, represents samples on the weekend only.

MULTICOLLINEARITY

Multicollinearity occurs when two of the predictor variables are
strongly correlated with each other. When this happens, it’s hard to
distinguish between the effects of these variables on the outcome
variable, and this can have the following effects on your analysis:

* Less accurate estimate of the impact of a given variable on the
outcome variable

¢ Unusually large standard errors of the regression coefficients
¢ Failure to reject the null hypothesis

* Overfitting, which means that the regression equation describes
a relationship between the outcome variable and random error,
rather than the predictor variable

The presence of multicollinearity can be assessed by using an
index such as tolerance or the inverse of tolerance, known as the
variance inflation factor (VIF). Generally, a tolerance of less than
0.1 or a VIF greater than 10 is thought to indicate significant multi-
collinearity, but sometimes more conservative thresholds are used.

When you're just starting out with multiple regression analysis,
you don’t need to worry too much about this. Just keep in mind
that multicollinearity can cause problems when it’s severe. There-
fore, when predictor variables are correlated to each other strongly,
it may be better to remove one of the highly correlated variables
and then reanalyze the data.

DETERMINING THE RELATIVE INFLUENCE OF PREDICTOR
VARIABLES ON THE OUTCOME VARIABLE

Some people use multiple regression analysis to examine the rela-
tive influence of each predictor variable on the outcome variable.
This is a fairly common and accepted use of multiple regression
analysis, but it’s not always a wise use.
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The story below illustrates how one researcher used multiple
regression analysis to assess the relative impact of various factors
on the overall satisfaction of people who bought a certain type of
candy.

Mr. Torikoshi is a product development researcher in a confec-
tionery company. He recently developed a new soda-flavored candy,
Magic Fizz, that fizzes when wet. The candy is selling astonishingly
well. To find out what makes it so popular, the company gave free
samples of the candy to students at the local university and asked
them to rate the product using the following questionnaire.

MAGIC FIZZ QUESTIONNAIRE
Please let us know what you thought of Magic Fizz by
answering the following questions. Circle the answer that
best represents your opinion.
Flavor 1. Unsatisfactory
2. Satisfactory
3. Exceptional
Texture 1. Unsatisfactory
2. Satisfactory
3. Exceptional
Fizz sensation 1. Unsatisfactory
2. Satisfactory
3. Exceptional
Package design 1. Unsatisfactory
2. Satisfactory
3. Exceptional
Overall satisfaction | 1. Unsatisfactory
2. Satisfactory
3. Exceptional

Twenty students returned the questionnaires, and the results
are compiled in Table 3-5. Note that unlike in the Kazami Bakery
example, the values of the outcome variable—overall satisfaction—
are already known. In the bakery problem, the goal was to predict
the outcome variable (profit) of a not-yet-existing store based on the
trends shown by existing stores. In this case, the purpose of this
analysis is to examine the relative effects of the different predictor
variables in order to learn how each of the predictors (flavor, tex-
ture, sensation, design) affects the outcome (satisfaction).
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TABLE 3-5: RESULTS OF MAGIC FIZZ QUESTIONNAIRE

Fizz Package Overall
Respondent Flavor Texture sensation design satisfaction

1 2 2 3 2 2
1 1 3 3

3 2 2 1 1 3
3 2 2 1 1 1
4 3 3 3 2 2
5 1 1 2 2 1
6 1 1 1 1 1
7 3 3 1 3 3
8 3 3 1 2 2
9 3 3 1 2 3
10 1 1 3 1 1
11 2 3 2 1 3
12 2 1 1 1 1
13 3 3 3 1 3
14 3 3 1 3 3
15 3 2 1 1 2
16 1 1 3 3 1
17 2 2 2 1 1
18 1 1 1 3 1
19 3 1 3 3 3
20 3 3 3 3 3

Each of the variables was normalized before the multiple
regression equation was calculated. Normalization reduces the
effect of error or scale, allowing a researcher to compare two vari-
ables more accurately. The resulting equation is

y=0.41x, +0.32x, + 0.26x; + 0.11x,

where y represents overall satisfaction, x; represents flavor, x,
represents texture, x; represents fizz sensation, and x, represents
package design.

If you compare the partial regression coefficients for the four
predictor variables, you can see that the coefficient for flavor is the
largest. Based on that fact, Mr. Torikoshi concluded that the flavor
has the strongest influence on overall satisfaction.

Mr. Torikoshi’s reasoning does make sense. The outcome vari-
able is equal to the sum of the predictor variables multiplied by
their partial regression coefficients. If you multiply a predictor vari-
able by a higher number, it should have a greater impact on the final
tally, right? Well, sometimes—but it’s not always so simple.
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Let’s take a closer look at Mr. Torikoshi’s reasoning as
depicted here:

TEXTURE | PACKAGE DESIGN

| Fizz sensATION |

| OVERALL SATISFACTION |

In other words, he is assuming that all the variables relate
independently and directly to overall satisfaction. However, this is
not necessarily true. Maybe in reality, the texture influences how
satisfied people are with the flavor, like this:

| TEXTURE |

v
Fizz seNsATION | |FLAVOR| | PACKAGE DESIGN

v
| ovERALL sATISFACTION |

Structural equation modeling (SEM) is a better method for
comparing the relative impact of various predictor variables on an
outcome. This approach makes more flexible assumptions than
linear regression does, and it can even be used to analyze data sets
with multicollinearity. However, SEM is not a cure-all. It relies on
the assumption that the data is relevant to answering the ques-
tion asked.

SEM also assumes that the data is correctly modeled. It’s worth
noting that the questions in this survey ask each reviewer for a
subjective interpretation. If Miu gave the candy two “satisfactory”
and two “exceptional” marks, she might rate her overall satisfac-
tion as either “satisfactory” or “exceptional.” Which rating she
picks might come down to what mood she is in that day!

Risa could rate the four primary categories the same as Miu,
give a different overall satisfaction rating from Miu, and still be
confident that she is giving an unbiased review. Because Miu and
Risa had different thoughts on the final category, our data may
not be correctly modeled. However, structural equation modeling
can still yield useful results by telling us which variables have an
impact on other variables rather than the final outcome.
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I'VE GOT
DAD'S
COFFEE
BEANS...

..AND THE
CROISSANTS FOR
BREAKFAST.

OH YEAH!

DOGGY
SNACKS &j
FOR

REGGIE!
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I BET HE
DOESN'T
REMEMBER
ME.

risA wouLp || -\,
TELL ME TO
BE BOLD.

TLLTELLHMI
HAVE HIS BOOK!

= E
= HE'LL WANT E
3 TO KNOW. E
= HENEEDSIT.
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1S RISA
DOING WITH

YOU WERE
DAYDREAMING
AGAIN. DO YOU
WANT TO LEARN

REGRESSION

ANALYSIS

OR NOT?

53 M %

I CAME IN EARLY
JUST TO TEACH YOU.
THE SUN'S NOT
EVEN UP YET.

I'M SORRY...
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YOU SHOULD BE
CELEBRATING.
THIS IS THE FINAL

THAT'S

MAYBE

/T WAS
SOMEBODY
ELSE.

THANKS
FOR
CHEERING
ME UP.

WE USED SIMPLE
REGRESSION ANALYSIS
(AND MULTIPLE

REGRESSION ANALYSIS)
TO PREDICT THE VALUE OF
AN OUTCOME VARIABLE.

REMEMBER HOW WE
PREDICTED THE NUMBER

OF ICED TEA SALES?

/ BINOMIAL LOGISTIC

REGRESSION ANALYS/S
IS A LITTLE DIFFERENT.

]

50 WHAT'S IT
USED FOR?

» THE PROBABILITY OF JOHN
GETTING ADMITTED TO
HARVARD UNIVERSITY

* THE PROBABILITY OF
WINNING THE LOTTERY

IT'S USED
TO PREDICT

WHETHER
OR NOT
SOMETHING
WILL HAPPEN!

PROBABILITIES:

LIKE YES
AND NO, OR
SUccESS AND
FAILURE?

T
Q
N\

YOU GOT IT.
PROBABILITIES ARE
CALCULATED AS A
PERCENTAGE, WHICH
IS A VALUE BETWEEN
ZERO AND 1.
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L

THE LOGISTIC
/‘ REGRESSION
EQUATION...

BUT 70% |S GREATER
THAN 1, ISN'T IT?

gfl'r////‘y\

l/‘ 7 ACTUALLY, 70% 15
_¥= EQUAL TO .7, WHEN
- WE DO LOGISTIC

L
REGRESSION ANALYSIS,

THE ANSWER WILL BE AN
LESS THAN 1. \

TO EXPRESS IT AS A
PERCENTAGE, MULTIPLY

BY 100 AND USE THE
PERCENT SYMBOL. {wuwa\]ﬂﬂﬂ/]

@' = —(QiZ1+ Q22+ + G2t b)

el

OUTCOME PREDICTOR REGRESSION  INTERCEPT
VARIABLE (1) VARIABLE (x) COEFFICIENT

THAT'S ONE
BIG EXPONENT!
THIS LOOKS
COMPLICATED.

DON'T WORRY, T'LL SHOW YOU A

SIMPLER WAY TO WRITE IT. WE'LL

TAKE IT STEP-BY-STEP, AND IT
WON'T SEEM SO TOUGH.

158 CHAPTER 4 LOGISTIC REGRESSION ANALYSIS



THE GRAPH FOR

THE EQUATION
LOOKS LIKE THIS:

05 - ' o
4= |+e-(a.x.+aa,+~-+a,1,,+b) - He'ﬁ

IT'S SHAPED _ = 0 !
LIKE AN 5. 10 5 0 s

(0

T'VE REWRITTEN THE EQUATION USING Z TO REPRESENT THE EXPONENT, —
f(Z) 15 THE PROBABILITY OF OUR OUTCOME!

NO MATTER WHAT
Z 15, THE VALUE OF
y 15 NEVER GREATER
THAN 1 OR LESS YEAH! IT LOOKS
THAN ZERO. LIKE THE 5 WAS
SMOOSHED
MAXIMUM LIKELIHOOD 15 TO EXPLAN, T'LL
NOW, BEFORE WE CAN USED TO ESTIMATE THE USE A HYPOTHETICAL
GO ANY FURTHER WITH VALUES OF PARAMETERS SITUATION
LOGISTIC REGRESSION OF A POPULATION USING A STARRING Us!
ANALYSIS, YOU NEED TO REPRESENTATIVE SAMPLE.
UNDERSTAND MAXIMUM THE ESTIMATES ARE MADE
LIKELIHOOPD. BASED ON PROBABILITY.
o woRE 1 DON'T KNOW
: % IF T'M CUT OUT
LIKELIHOOD? ): PROBABILITY! ‘ TO BE A 5TAR.
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THE MAXIMUM LIKELIHOOD METHOD

S

..WE WENT TO
SCHOOL WEARING
OUR NORNS
UNIFORMS.

THEN WE
RANDOMLY PICKED
10 STUDENTS AND
ASKED IF THEY
LIKE THE UNIFORM.

WHAT DO YOU
THINK OF THIS /48
UNIFORM?

7
THAT'D BE SO

EMBARRASSING.

WOW! MOST
PEOPLE SEEM
TO LIKE OUR

UNIFORM.

HERE ARE THE

IMAGINARY RESULTS.

DO YOU LIKE THE
NORNS UNIFORM?

YES
NO
YES
NO
YES
YES
YES
YES
NO
YES

STUDENT

>

Q H TQ@ T WmUIO®

IF THE POPULARITY

OF OUR UNIFORMS

THROUGHOUT THE
ENTIRE STUDENT BODY
15 THE PARAMETER p...
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..THEN THE PROBABILITY
BASED ON THE IMAGINARY
SURVEY RESULTS 1S THIS:

YES NO YES NO YES YES YES  YES YES

Px(l—p)x P x((-—P) xP xP xp xP x(lfp)xp
= P”( '—p)s ITS AN

EQUATION?

YES, WE SOLVE IT BY
FINDING THE MOST '7( [- )3
LIKELY VALUE OF p. pLi-p

OR

log {p —pf} *

WE USE ONE OF
THESE LIKELIHOOD
FUNCTIONS.

EITHER WAY,
THE ANSWER IS
THE SAME.

* TAKING THE LOG OF THIS FUNCTION CAN MAKE LATER CALCULATIONS EASIER.

P”(‘_P)" 00025
0.0020
o0olE AS YOU CAN SEE, WHEN
‘ WE PLOT THE EQUATIONS,
0.0010 THEY BOTH PEAK AT .7.
THAT'S THE MOST LIKELY
0-0005 VALUE FOR p!

0.0000°* —+

0 o0l 02 03 0% 05 06 08 of

v (o™

+ N
—

(og{p"(l—P)’} 0? Ofl ;2 o:.a o.'l.t o5 0. o?? 09

~

PERCENTAGE,
WE MULTIPLY BY
100, 50 IT'S 70%,
RIGHT?
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THAT'S RIGHT. WE TAKE THE LOG
OF THIS FUNCTION BECAUSE IT
MAKES IT EASIER TO CALCULATE THE
DERIVATIVE, WHICH WE NEED TO FIND
THE MAXIMUM LIKELIHOOD.

IN THE GRAPHS, THIS (&) N*\'\@)oov
PEAK IS THE VALUE OF \ AN AN
p THAT MAXIMIZES THE et S y
VALUE OF THE FUNCTION. 55
IT'S CALLED THE g 0 v
MAXIMUM LIKELIHOOD o O Z—9
ESTIMATE. T 02 /) 0%
5 ot b : .
) °® \
0 o LA
0.k -
T o
n(\"ﬂ -
A 2z 4

..SINCE THE FUNCTIONS
PEAK AT THE SAME
PLACE, EVEN THOUGH
THEY HAVE A DIFFERENT
SHAPE, THEY GIVE US
THE SAME ANSWER.

NOW, LET'S REVIEW THE
MAXIMUM LIKELIHOOD
ESTIMATE FOR THE
POPULARITY OF OUR
Q UNIFORMS,
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FINDING THE MAXIMUM LIKELIHOOD
USING THE LIKELIHOOD FUNCTION

i

T

Find the likelihood function. Here, p stands for Yes, and 1 — p
stands for No. There were 7 Yeses and 3 Nos.

px(1-p)xpx(1-p)xpxpxpxpx(l-p)xp
=p’(1-p)

@ Obtain the log-likelihood function and rearrange it.
L= log{p7 (1- p)s}

3
=log P7 +1log (1 - P) <—— Take the log of each component.

=7 log p+3 log (1 - p) <—— Use the Exponentiation Rule from page 22.

WE'LL USE L TO MEAN THE LOG-LIKELIHOOD
FUNCTION FROM NOW ON.

@ Differentiate L with respect to p and set the expression equal ]
to 0. Remember that when a function’s rate of change is 0, we're
finding the maxima.

£:7xl+3x 1 ><(—1)z7><l—3>< 1
dp p 1-p p 1-p

=0

@ Rearrange the equation in Step 3 to solve for p.

7% l -3x 1 =0
p 1-p

1 - _ — _ Multiply both sides of
[7X; 3X1—prP(1 p)—OXp(l P) <_theequationbyp(l—p).
7(1-p)-3p=0 i
7-7p-3p=0

_ - " AND HERE'S THE

7-10p=0 MAXIMUM LIKELIHOOD S

7 ESTIMATE! _ v\»
pP= 10 = YEF, 70%. O %

I il
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ES

..THE NORNS
SPECIAL!

CHOOSING PREDICTOR VARIABL

Rl
i
ey
O
B W :
ek

NEXT, WE'LL
CONTINUE THE
LESSON WITH A
VERY SPECIAL
EXAMPLE.

HUH? WHAT
KIND OF
SPECIAL

EXAMPLE?

. oo 4 THE ONE-OF-A-KIND,
YOU MEAN THE SN i g TOTALLY AMAZING CAKE
NORNS SPECIAL? | ! =4 '\ THAT THE SHOP OWNER

INVENTS EACH DAY.




//é

NORNS DOESN'T SELL A
SPECIAL CAKE EVERY DAY.
PEOPLE ONLY BUY IT
FOR A REALLY SPECIAL
OCCASION, LIKE A
BIRTHDAY.

OR AN
ANNIVERSARY...

\‘H]”///
o

T

SO TODAY WE'RE GOING TO
FIND A LOGISTIC REGRESSION
EQUATION TO PREDICT
WHETHER THE NORNS SPECIAL
WILL SELL ON A GIVEN DAY.

OH BOY! THIS IS
REALLY EXCITING!

I GUESS WE'LL NEED A
DATA SAMPLE. BUT WHAT
SHOULD WE MEASURE?
WHAT AFFECTS IF IT
SELLS OR NOT? <
T A

THAT'S A GREAT
QUESTION.

.

I'VE BEEN TRYING
TO FIGURE THAT
OUT FOR A WHILE.
I'VE NOTICED THAT
MORE PEOPLE SEEM
TO BUY THE NORNS
SPECIAL WHEN THE
TEMPERATURE IS HIGH,
AND ON WEDNESDAYS,
SATURDAYS, AND
SUNDAYS.

YEP. THERE ARE WAY
MORE CUSTOMERS
ON THE WEEKEND...

\=2 S ..AND ON WEDNESDAYS,
- ‘ A LARGE MANGA FAN
CLUB MEETS HERE,
AND THEY REALLY LIKE
TO GO BlG.
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WED, SAT,
OR SUN

HIGH TEMP (°C)

SALES OF
NORNS SPECIAL

I'VE BEEN
KEEPING RECORDS
OF THE SALES AND
HIGH TEMPERATURE
OVER THE PAST
THREE WEEKS.

WOW! YOU
DESERVE A

~~ 00 00 -~~~ 0 ~-90O90 ~~00~00°

2§
24
26
pLa
23

18
4.
26

5
28
Z/

pod
27
26
z6
va

2/

27
Z3
2z
24.

(

Ny

1 MEANS WEDNESDAY,
SATURDAY, OR SUNDAY.
O MEANS OTHER DAYS.

=0 TO0O T 00V~ VOO~~~ ~-D00CTCC

1 MEANS IT WAS SOLD.

O MEANS IT WAS
NOT SOLPD.

IT JUST LOOKS LIKE A
LIST OF NUMBERS, BUT
SOON WE'LL TURN IT
INTO AN EQUATION AND
MAKE A PREDICTION.

ANALYSIS!

THAT'S RIGHT!
THE MAGIC OF
REGRESSION
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WE USED 1 TO MEAN
SOLD AND O TO
MEAN UNSOLPD...

| =50LD
0=UNSOLD

WELL, IN LOGISTIC REGRESSION ANALYSIS,
THESE NUMBERS AREN'T JUST LABELS—
THEY ACTUALLY MEASURE THE PROBABILITY
THAT THE CAKE WAS SOLD. THAT'S
BECAUSE 1 MEANS 100% AND O MEANS O%.

..WHICH 1S HOW
WE REPRESENT
CATEGORICAL
DATA AS
NUMBERS, RIGHT?

P WE SURE
WE AL5O , _ ,

KNOW FOR
SURE IF IT WAS
WEDNESDAY,
SATURDAY, OR
SUNDAY.

S

OH! SINCE WE
KNOW IT WAS SOLD,
THERE'S A 100%
PROBABILITY THAT
IT WAS SOLD.

IN THIS CASE, HIGH TEMPERATURE
IS MEASURABLE DATA, SO WE
USE THE TEMPERATURE, JUST
LIKE IN LINEAR REGRESSION
ANALYSIS. CATEGORICAL DATA
ALSO WORKS IN BASICALLY
THE SAME WAY AS IN LINEAR
REGRESSION ANALYSIS, AND
ONCE AGAIN WE CAN USE ANY

COMBINATION OF CATEGORICAL

AND NUMERICAL DATA.

BUT CATEGORICAL
DATA CAN HAVE
MEASURABLE
PROBABILITIES.
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LOGISTIC REGRESSION ANALYSIS IN ACTION!

WILL WE CALCULATE
THE EQUATION AND
THEN GET R*2 AND
THEN FIND CONFIDENCE
AND PREDICTION
INTERVALS? OH, AND
THE HYPOTHESIS

% “""%"’E
NOW, LET'S
ANALYZE THE
SALES OF THE
NORNS SPECIAL.
1 TYPED UP THE

SOMETHING
LIKE THAT.

LOGISTIC REGRESSION ANALYSIS PROCEDURE

DRAW A SCATTER PLOT OF THE PREDICTOR VARIABLES
STEP 1 AND THE OUTCOME VARIABLE TO SEE WHETHER THEY
APPEAR TO BE RELATED.

>

CALCULATE THE LOGISTIC REGRESSION EQUATION.

"

ASS5ESS THE ACCURACY OF THE EQUATION.

~

CONDUCT THE HYPOTHESIS TESTS.

.

MAKE A PREDICTION!

THAT'S
NOT SO
DIFFERENT.

HERE ARE THE FIVE
BASIC STEPS OF
LOGISTIC REGRESSION
ANALYSIS.




STEP 1: DRAW A SCATTER PLOT OF THE PREDICTOR VARIABLES AND THE
OUTCOME VARIABLE TO SEE WHETHER THEY APPEAR TO BE RELATED.

AND THIS TIME,
THIS 15 THE 5EVEN-|| PUT THE OUTCOME
VARIABLE ON THE
MILLIONTH GRAPH
’ HORIZONTAL AXIS.
I'VE DRAWN SINCE
WE STARTED. THE RESULT WILL
LOOK DIFFERENT,
YOU'LL SEE.

JUsT PO
IT, OKAY? y

SALES OF THE NORNS SPECIAL BY DAY OF THE WEEK SALES OF THE NORNS SPECIAL BY TEMPERATURE

CORRELATION RATIO = .5095 CORRELATION RATIO = .4828

~
'Y

K
S

HIGH TEMP (°C)
X
:
*

WEDNESDAY, SATURDAY,
OR SUNDAY

} X!
o+ - ZOO /
5ALES OF THE NORNS SPECIAL / 5ALES OF THE NORNS SPECIAL

AND JUST AS I THOUGHT—
IT SEEMS WE SELL MORE
SPECIALS WHEN IT'S HOT
AND ON WEDNESDAY,
SATURDAY, OR SUNDAY.

THESE GRAPHS DO
LOOK DIFFERENT!

I PUT DOTS WITH THE
SAME VALUE NEXT
TO EACH OTHER, SO
WE CAN SEE THE
DISTRIBUTION.
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STEP 2: CALCULATE THE LOGISTIC REGRESSION EQUATION.

1 WAS UP FOR DAYS,
SUBSISTING ON COFFEE
AND PUDDING. MY
ROOMMATE FOUND
ME PERCHED ON THE
COUNTER, WEARING
FAIRY WINGS...

50 THEN T'LL START
CALCULATING THE
LOGISTIC REGRESSION
EQUATION!

..BUT I GOT
MY ANSWER!

/
SHOULD 1 GO NO NEED.
FIND SOME WE CAN
FAIRY WINGS? JUST USE MY

LAPTOP!

FIRST, LET'S
ENTER THE SAMPLE
OH, THANK DATA INTO A
GOODNESS., SPREADSHEET.
50 HOW DO
WE DO IT? 5
N /
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@ Determine the binomial logistic equation for each sample.

Wednesday, Sales of the
Saturday, or High Sales of the Norns special
Sunday temperature Norns special A 1
X1 x, y y 1+e—(a,x,+a2xz+b)
1
0 28 1 1+ e (@X0rar2s:h)
1
0 24 0 1+e—(a,><0+a2><24+b)
1
1 24 0 o)

Obtain the likelihood function. The equation from Step 1 represents
a sold cake, and (1 - the equation) represents an unsold cake.

1 1 1
1+ e (@r0ra28:b) XL 1+ @ @ 0ray24+D) XX 1+ @ (@d+a24:)

Sold Unsold Sold

@ Take the natural log to find the log-likelihood function, L.

1 1 1
L - loge |:1 ¥ e—(a1x0+a2><28+b) X [1 - 1 + e—(a1><0+a2><24+b) j X X 1 + e—(al><1+a2><24+b) :|

=1lo, 1 +log,|1- 1 +---+lo 1
- ge 1+ e—(a1><0+a2><28+b) ge 1+ e—(a1><0+a2x24+b) ge 1+ e—(a1><1+a2><24+b)
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@ Find the maximum likelihood coefficients

. These coefficients
maximize log-likelihood function L.

The values are:*

a, =2.44
a, =0.54
b =-15.20

~
We can plug these values into the likelihood function to calculate L,
which we’ll use to calculate R?.
B 1 1 1 ] 1
L =log, 1+ g >4407055:25-15.20) +log, | 1- 1+ o (2460:05624-15.20) +--+log, 1+ o (246170552415.20)
=-8.9
N\ J

*See page 210 for a more detailed explanation of these calculations.

@ Calculate the logistic regression equation.

We fill in the coefficients calculated in Step 4 to get the follow-
ing logistic regression equation:

1

= —(2.44x,+0.54 x,-15.20
l+e ! ?
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5

EQUATION THAT WE =+
CAN USE TO PREDICT
WHETHER WE'LL SELL
TODAY'S SPECIAL!

50 THIS 15 THe - (T \

442_4_1'0.5412‘

YEP, THIS
IS IT. |

NOW WE NEED TO
MAKE SURE THAT THE
EQUATION IS A GO0D
FIT FOR OUR DATA.

OKAY. SO WE FIND R*> AND
TEST THE REGRESSION
COEFFICIENTS, RIGHT?

THAT'S RIGHT,
ALTHOUGH LOGISTIC
REGRESSION ANALYSIS
WORKS SLIGHTLY
DIFFERENTLY.

HUH? HOW
COME?

IN LOGISTIC
REGRESSION
ANALYSIS, WE
CALCULATE A
PSEUDO-R>*

* IN THIS EXAMPLE, WE USE MCFADDEN'S
PSEUDO-R? FORMULA.




HERE'S THE EQUATION THAT
WE USE TO CALCULATE R?
IN LOGISTIC REGRESSION

ANALYSIS.

MAXIMUM VALUE OF LOG-LIKELIHOOD FUNCTION £

2: e ——
R=1 71:'037114-7{0‘03710—(7’(:’*7’(0) 109 (Mi+ 7o)

ACKIL IT'S < (7N

THE n VARIABLES ARE d
A TALLY OF THE CAKES guég :g\l/'vl'-rhcl)ogse
THAT ARE SOLD (n;) OR THIS EQUATION

UNSOLD (ny). WITH THE NORNS
SPECIAL DATA.

DON'T
WORRY, IT'S
NOT THAT

THE NUMBER OF DATA POINTS WHOSE
OUTCOME VARIABLE'S VALUE 15 1

THE NUMBER OF DATA POINTS WHOSE
OUTCOME VARIABLE'S VALUE IS O

AND HERE'S A
MORE GENERAL
DEFINITION.

MAXIMUM VALUE OF LOG-LIKELIHOOD
WE JUST FILL IN FUNCTION L
OF THe NORN RZ:_/._%/ Tt o log Po-(hi+70) fog. Gt 7o)
FOR THE NORNS + —(h .+ +
SPECIAL... 11og Nt Noled it Po) log (R

-89

& log§+(3(og (3-(8+)(g (88)

WHOA,
I WASN'T
EXPECTING
THAT.
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BUT THERE'S NO SET |
RULE FOR HOW HIGH
R* NEEDS TO BE,
RIGHT?

HMMM... .367
THAT'S LOW,

JUST LIKE IN LINEAR
REGRESSION ANALYSIS,
A HIGHER R> MEANS
THE EQUATION IS MORE

ACCURATE.

THAT'S
TRUE.

AND TO BE FAIR, THE R?
IN LOGISTIC REGRESSION
ANALYSIS DOES TEND TO

BE LOWER. BUT AN R?

AROUND .4 15 USUALLY A

PRETTY GOOD RESULT.

S0 1S OUR
EQUATION
USEFUL?

/

WE'RE NOT SURE YET.
WE'LL HAVE TO USE A

DIFFERENT METHOD
TO FIND OUT.

THERE'S
ANOTHER
WAY?
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Wednesday,

Saturday, or High temp.
Sunday (°C) Actual sales Predicted sales

Day x, x; y ]
5 0 28 1 .51 sold
6 0 24 0 .11 unsold
7 1 26 0 .80 sold THIS TABLE
8 0 24 0 11 unsold SHOWS THE ACTUAL
o 0 23 0 06 unsold SALES DATA FOR THE
10 1 28 1 .92 sold NORNS SPECIAL AND
11 1 24 0 .58 sold O':Jg E:gg:g:g:.llg
12 0 26 1 .26 unsold ;RE AT AN 50,
13 0 25 0 .17 unsold WE SAY IT SOLD.
14 1 28 1 .92 sold
15 0 21 0 .02 unsold BUT THE TABLE
16 0 22 0 .04 unsold SHOWS SOMETHING
17 1 27 1 .87 sold ELSE. CAN YOU
18 1 26 1 .80 sold SEE IT?
19 0 26 0 .26 unsold
20 0 21 0 .02 unsold
21 1 21 1 .21 unsold
22 0 27 0 .38 unsold
23 0 23 0 .06 unsold
24 1 22 0 .31 unsold
25 1 24 1 .58 sold

M

Z(2.44x1+0.54x24-15.20)

=.58
l+e

FOR ONE THING, THE
NORNS SPECIAL DID NOT
SELL ON THE 7TH AND
THE 11TH, EVEN THOUGH
WE PREDICTED THAT

IT WOULD. =

{#

‘ ‘«\N
i:

A

Day y y
7 0 .80 sold
11 0 .58 sold

GREAT!

ANYTHING
ELSE?

ON THE 12TH AND THE
215T, WE PREDICTED
THAT IT WOULDN'T SELL,
BUT IT DID! WE CAN SEE
WHERE THE EQUATION
WAS WRONG.

BRILLIANT!

BEST STUDENT
EVER!
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T

IF WE DIVIDE THE NUMBER OF
TIMES THE PREDICTION WAS
WRONG BY THE NUMBER OF

SAMPLES, LIKE THIS, WE HAVE...

|

THE NUMBER OF SAMPLES THAT
DIDN'T MATCH THE PREDICTION

TOTAL NUMBER OF SAMPLES

)— ..THE APPARENT
— ERROR RATE. |
WE'LL GET THE

SO THE APPARENT
ERROR AS A ERROR RATE IN THIS AND 19% 1S PRETTY LOW,
PERCENTAGE! CASE 15... WHICH 1S GOO0D NEWS.

I

<

OH’ AND ONE- MOZE TH[N@'" A CORRELATION COEFFICIENT = .6279
YOU CAN ALSO GET A SENSE 4 |
OF HOW ACCURATE THE 4
EQUATION 15 BY DRAWING
A SCATTER PLOT OF

y AND 3.

THE CORRELATION
COEFFICIENT IS ALSO USEFUL.
IT TELLS US HOW WELL THE
PREDICTED VALUES MATCH
ACTUAL SALES.

THANKS FOR
DRAWING IT
THIS TIME.
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STEP 4: CONDUCT THE HYPOTHESIS TESTS.

AS WE DID BEFORE, WE
NEED TO DO HYPOTHESIS
TESTING TO SEE IF OUR
REGRESSION COEFFICIENTS
ARE SIGNIFICANT.

AND SINCE WE HAVE
TWO PREDICTORS,
WE CAN TRY BOTH

WAYS AGAIN!

HYPOTHESIS TEST FOR AN INDIVIDUAL

COMPREHENSIVE HYPOTHESIS TEST REGRESSION COEFFICIENT
NULL NULL —
wpothesis | Ai=Az2=0 HYPOTHESIS Ai=0
ALTERNATIVE )
ALTERNATIVE| ONE OF THE FOLLOWING Ai# 0
HYPOTHESIS 15 TRUE: HYPOTHESIS

A% 0 amp A2 #0
‘A0 a0 Ay=0
*Ai=0 a0 A2#0

WE'LL USE .05 AS THE
SIGNIFICANCE LEVEL.
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WE'LL DO THE LIKELIHOOD RATIO TEST. THIS
TEST LETS US EXAMINE ALL THE COEFFICIENTS
AT ONCE AND AS5ESS THE RELATIONSHIPS

AMONG THE COEFFICIENTS.

THE STEPS OF THE LIKELIHOOD RATIO TEST

Step 1 Define the populations. All days the Norns Special is sold, comparing
Wednesdays, Saturdays, and Sundays against the
remaining days, at each high temperature.

Step 2 Set up a null hypothesis and Null hypothesis is A; = 0 and A, = 0.

an alternative hypothesis. Alternative hypothesis is A; # 0 or Ay # 0.
Step 3 Select which hypothesis test =~ We’ll perform the likelihood ratio test.
to conduct.
Step 4 Choose the significance level. We’ll use a significance level of .05.
Step 5 Calculate the test statistic The test statistic is:
from the sample data. 2[L - my10g,(ny) - nologe(ng) + (M + No)L0ge(ny + o)l
When we plug in our data, we get:
2[-8.9010 - 8log.8 — 13log.13 + (8 + 13)log.(8 + 13)]
=10.1
The test statistic follows a chi-squared distribu-
tion with 2 degrees of freedom (the number of pre-
dictor variables), if the null hypothesis is true.
Step 6 Determine whether the The significance level is .05. The value of the
p-value for the test statistic test statistic is 10.1, so the p-value is .006. Finally,
obtained in Step 5 is smaller .006 < .05.*
than the significance level.

Step 7 Decide whether you can reject Since the p-value is smaller than the significance

the null hypothesis.

level, we reject the null hypothesis.

* How to obtain the p-value in a chi-squared distri-
bution is explained on page 205.
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NEXT, WE'LL USE THE WALD TEST TO SEE
WHETHER EACH OF OUR PREDICTOR VARIABLES
HAS A SIGNIFICANT EFFECT ON THE SALE OF
THE NORNS SPECIAL. WE'LL DEMONSTRATE

USING DAYS OF THE WEEK.

THE STEPS OF THE WALD TEST

Step 1

Step 2

Step 3

Step 4
Step 5

T

Step 6

Step 7

Define the population.

Set up a null hypothesis and
an alternative hypothesis.

Select which hypothesis test
to conduct.

Choose the significance level.

Calculate the test statistic
from the sample data.

Determine whether the
p-value for the test statistic
obtained in Step 5 is smaller
than the significance level.

Decide whether you can reject
the null hypothesis.

All days the Norns Special is sold, comparing
Wednesdays, Saturdays, and Sundays against the
remaining days, at each high temperature.

Null hypothesis is A = 0.
Alternative hypothesis is A = 0.
Perform the Wald test.

We’ll use a significance level of .05.

The test statistic for the Wald test is

2

a

Sll

In this example, the value of the test statistic is:

2.44° _
1.5475
The test statistic will follow a chi-squared
distribution with 1 degree of freedom, if the null

hypothesis is true.

The value of the test statistic is 3.9, so the p-value
is .0489. You can see that .0489 < .05, so the p-value
is smaller.

Since the p-value is smaller than the significance
level, we reject the null hypothesis.

Il

IN SOME REFERENCES, THIS PROCESS IS
EXPLAINED USING NORMAL DISTRIBUTION
INSTEAD OF CHI-SQUARED DISTRIBUTION. THE
FINAL RESULT WILL BE THE SAME NO MATTER

WHICH METHOD YOU CHOOSE.

I

I
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1] I

This is how we calculate the standard error matrix. The values of this
matrix are used to calculate the Wald test statistic in Step 5 on page 180.

High temperature

Wednesday, Saturday, or Sunday

(g on the 5th) X

r (1-§ on the 5th) 0 0
00 --- 1 o (Q on the Gth)x o
2824 --- 24 (1- 5 on the 6th)
- LZI0 ' : -
L f o o (Q on the 25th) X
. (1-§ on the 25th)
L e e e e e e e e e e e e e e e e e
[0 0 .. 1 0-51x0.49 0 0 0 28 1\|"
28 24...24 0 0.11x0.89 - 0 0 24 1 ! These 1s represent an !
- : : : . : immeasurable con- :
111 stant. In other words
1 v
= L 0 0 058x0.42){1 24 1 1 they are a placeholder. | [
e o - o o e e o - e - - -
1.5388
= 0.881 ---
1
Si; in Step b5 is this... ...and this is Sy,.

..THE MOST
IMPORTANT

S5O0 A=+0.
WE CAN REJECT
THE NULL!
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STEP 5: PREDICT WHETHER THE NORNS SPECIAL WILL SELL.

> 08288

WILL WE BE )|
ABLE TO.

..5ELL THE NORNS
SPECIAL TODAY?

TODAY 15 SUNDAY
AND THE HIGH IS
23°C, 50 THIS
IS THE EQUATION.

l .

—(2.447%, +0.5472~(5.20)
N e
l 23

T'LL USE MY

COMPUTER

TO FIND THE
ANSWER.

DR
("
AWESOME.
| B A

* THIS CALCULATION WAS MADE USING ROUNDED NUMBERS. IF YOU USE THE FULL,—UNROUNDED NUMBERS, THE RES

LOOKS LIKE IT
WON'T SELL.

IT'S LESS
THAN .5.

" 1 GUESS
WE'LL HAVE
TO EAT IT.
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7 WELL, THAT'S IT—
THE LAST LESSON.

- LINEAR REGRESSION

- BINOMIAL LOGISTIC

NOW YOU KNOW:

ANALYSIS

- MULTIPLE REGRESSION

ANALYSIS

REGRESSION ANALYSIS

THANK YOU SO
MUCH, RISA.

YOU WERE A
GREAT STUDENT.

NOW GIVE HIM HIS
BOOK BACK. AND
KNOCK HIS SOCKS
OFF WITH YOUR

KNOWLEDGE.

»
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I SAW YOU AT
THE MALL...

I WANTED TO
ASK YOU...

..WALKING WITH HIM.

IT'S OKAY IF

]
OH, NO, MIL! YOU LIKE HIM,

NO, WE'RE NOT—

YOU LOOKED
SO HAPPY.
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OPEN YET?

AL

] INTRODUCE YOU
| TO HIROTO...

MY COUSIN.

A \
40 </ é/{ /

¥ At
QA

YES, MIU?
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WHY DIDN'T
YOU JUsT
TELL ME?

YOU WOULDN'T

LET ME GET BUT YOU KNOW NOW, \« /%

AND HE'S RIGHT
OUTSIDE. GO AND
TALK TO HIM!

A WORD IN

EDGEWISE. ER, YEAH,

1...OKAY.
D) ,}l

HE CAME ALL
THE WAY OUT HERE
TO SEE YOU!
GO AND GIVE HIM
BACK THAT BOOK.
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THANKS.

MY COUSIN SAID I REALLY
THAT YOU WERE APPRECIA
KEEPING IT SAFE AR PRECIATE IT
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I'M MIU

IGARASH.. I'M HIROTO

FUKAZAWA.

WOULD YOU
LIKE TO STUDY
TOGETHER
SOMETIME?

I WAS ABOUT
7A TO ASK YOU THE
SAME THING. L

"""""" L
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WELCOME TO
OUR SHOP!

CARE FOR
SOME TEA?
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LOGISTIC REGRESSION ANALYSIS IN THE REAL WORLD

On page 68, Risa made a list of the all the steps of regression analy-
sis, but later it was noted that it's not always necessary to perform
each of the steps. For example, if we're analyzing Miu’s height over
time, there’s just one Miu, and she was just one height at a given
age. There's no population of Miu heights at age 6, so analyzing the
“population” wouldn’t make sense.

In the real world too, it’s not uncommon to skip Step 1, draw-
ing the scatter plots—especially when there are thousands of
data points to consider. For example, in a clinical trial with many
participants, researchers may choose to start at Step 2 to save
time, especially if they have software that can do the calculations
quickly for them.

Furthermore, when you do statistics in the real world, don’t just
dive in and apply tests. Think about your data and the purpose of
the test. Without context, the numbers are just numbers and sig-
nify nothing.

LOGIT, ODDS RATIO, AND RELATIVE RISK

Odds are a measure that suggests how closely a predictor and
an outcome are associated. They are defined as the ratio of the
probability of an outcome happening in a given situation (y) to
the probability of the outcome not happening (1 - y):

1-y

LoGeIT

The logit is the log of the odds. The logistic function is its inverse,
taking a log-odds and turning it into a probability. The logit is math-
ematically related to the regression coefficients: for every unit of
increase in the predictor, the logit of the outcome increases by the
value of the regression coefficient.

The equation for the logistic function, which you saw earlier
when we calculated that logistic regression equation on page 170,
is as follows:

1
l+e?

y

where z is the logit and y is the probability.
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To find the logit, we invert the logistic equation like this:

y =Z.

lo
gl—y

This inverse function gives the logit based on the original logis-
tic regression equation. The process of finding the logit is like find-
ing any other mathematical inverse:

y- 1 1 y e e
l+e* 1+e” e e“+1
z
y x (eZ + 1) =" (ez + 1) MULTIPLY BOTH SIDE OF THE EQUATION BY (€” +1).
e’ +

yxe‘+y=e”*

y=e*-yxe* TRANSPOSE TERMS.

y=(1-y)e’
z 1
yx 1xy = (1 - y)e 1-y MULTIPLY BOTH SIDE OF THE EQUATION Bym.
Yy —e?
1-y
log—ly =loge* =z

Therefore, the logistic regression equation for selling the Norns
Special (obtained on page 172),

1

2.44x, +0.54x,-15.20) ’

_1+e’(

can be rewritten as

log - Y _92.44x +0.54x, -15.20.
-y

So the odds of selling the Norns Special on a given day, at
a given temperature are e>****%*%132° and the logit is 2.44x; +
0.54x, — 15.20.

ODDS RATIO

Another way to quantify the association between a predictor and an
outcome is the odds ratio (OR). The odds ratio compares two sets
of odds for different conditions of the same variable.
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Let’s calculate the odds ratio for selling the Norns Special on
Wednesday, Saturday, or Sunday versus other days of the week:

sales rate of Wed, Sat, or Sun j (6/ 9) (6/ 9)
1 - sales rate of Wed, Sat, or Sun 1- (6/9)

(3/9)

1 - sales rate of days other than Wed, Sat, or Sun

sales rate of days other than Wed, Sat, or Sun J { (2/12) } I: (2/12)
(

1-(212)| |(10/12)

(63) 6.2 _6.10_, o 19
(210) 3710 3 2

This shows that the odds of selling the Norns special on one
of those three days are 10 times higher than on the other days of
the week.

ADJUSTED ODDS RATIO

So far, we’ve used only the odds based on the day of the week. If we
want to find the truest representation of the odds ratio, we would
need to calculate the odds ratio of each variable in turn and then
combine the ratios. This is called the adjusted odds ratio. For the
data collected by Risa on page 176, this means finding the odds
ratio for two variables—day of the week and temperature—at the
same time.

Table 4-1 shows the logistic regression equations and odds
when considering each variable separately and when consider-
ing them together, which we’ll need to calculate the adjusted
odds ratios.

TABLE 4-1: THE LOGISTIC REGRESSION EQUATIONS AND ODDS FOR THE DATA ON PAGE 176

Predictor variable Logistic regression equation Odds
“Wed, Sat. Sun” onl = 1 (2.30x,-1.61)
€d, sat, or sun” only y= 1+ e (30516 e
1
“High temperature” only y= [+ o @ e(052x-13.44)
“Wed, Sat, or Sun” and 1

2.44x, +0.54x,-15.20)

y

el
2.44x,+0.54x,-15.20)

“High temperature” Tltel
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The odds of a sale based only on the day of the week are calcu-
lated as follows:

odds of a sale on Wed, Sat, or Sun e230a-1.61

odds of a sale on days other than Wed, Sat, or Sun - e

2.30x0-1.61

2.30x1-1.61-(2.30x0-1.61 2.30
e ( —

This is the unadjusted odds ratio for “Wednesday, Saturday, or
Sunday.” If we evaluate that, we get e>*° = 10, the same value we got
for the odds ratio on page 192, as you would expect!

To find the odds of a sale based only on temperature, we look at
the effect a change in temperature has. We therefore find the odds
of making a sale with a temperature difference of 1 degree calcu-
lated as follows:

odds of a sale with high temp of (k +1) degrees s> (+1) 154
odds of a sale with high temp of k degrees = ®52% 134

0.52x(k+1)-13.44-(0.52xk-13.44 0.52
0-52cr1)-13.44( ) _e

This is the unadjusted odds ratio for a one degree increase in
temperature.

However, the logistic regression equation that was calculated
from this data considered both of these variables together, so
the regression coefficients (and thus the odds ratios) have to be
adjusted to account for multiple variables.

In this case, when the regression equation is calculated using
both day of the week and temperature, we see that both exponents
and the constant have changed. For day of the week, the coefficient
has increased from 2.30 to 2.44, temperature increased from 0.52
to 0.54, and the constant is now -15.20. These changes are due to
interactions between variables—when changes in one variable
alter the effects of another variable, for example if the day being
a Saturday changes the effect that a rise in temperature has on
sales. With these new numbers, the same calculations are per-
formed, first varying the day of the week:

2.44x1+0.54xk-15.20
e _ 2.44x1+0.54xk-15.20—(2.44x0+0.54xk-15.20) __ e

e2444><0+0.54><k—15.20 -

This is the adjusted odds ratio for “Wednesday, Saturday,
or Sunday.” In other words, the day-of-the-week odds have been
adjusted to account for any combined effects that may be seen
when temperature is also considered.
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Likewise, after adjusting the coefficients, the odds ratio for tem-
perature can be recalculated:

2.44x1+0.54x(k+1)-15.20 2.44x0+0.54x(k+1)-15.20
e e 0.54x(Ic+1)-15.20-(0.54xk-15.20) _ ,0.54

eZ.44><1+0.54><k—15.20 - e2.44><0+0.54><k—15.20

This is the adjusted odds ratio for “high temperature.” In this
case, the temperature odds ratio has been adjusted to account for
possible effects of the day of the week.

HYPOTHESIS TESTING WITH ODDS

As you’ll remember, in linear regression analysis, we perform a
hypothesis test by asking whether A is equal to zero, like this:

Null hypothesis A;=0
Alternative hypothesis A;#0

In logistic regression analysis, we perform a hypothesis test by
evaluating whether coefficient A as a power of e equals e°:

Null hypothesis et =e’=1

Alternative hypothesis et ze’ =1

Remember from Table 4-1 that e**** %" js the odds of sell-
ing the Norns Special based on the day of the week. If, instead, the
odds were found to be e '®, it would mean the odds of selling the
special were the same every day of the week. Therefore, the null
hypothesis would be true: day of the week has no effect on sales.
Checking whether A; = 0 and whether e* = e° = 1 are effectively the
same thing, but because logistic regression analysis is about odds
and probabilities, it is more relevant to write the hypothesis test in
terms of odds.

CONFIDENCE INTERVAL FOR AN ODDS RATIO

Odds ratios are often used in clinical studies, and they’re gener-
ally presented with a confidence interval. For example, if medical
researchers were trying to determine whether ginger helps to alle-
viate an upset stomach, they might separate people with stomach
ailments into two groups and then give one group ginger pills and
the other a placebo. The scientists would then measure the dis-
comfort of the people after taking the pills and calculate an odds
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ratio. If the odds ratio showed that people given ginger felt better
than people given a placebo, the researchers could use a confidence
interval to get a sense of the standard error and the accuracy of the
result.

We can also calculate a confidence interval for the Norns Special
data. Below, we calculate the interval with a 95% confidence rate.

e

4

eai—1.96 Sy, e2-44 =11.5 eai+1.96 Sy,
— e2.44—1.96\/1.5388 — eZ.44+1.96\/1.5388
=1.0 =130.5

If we look at a population of all days that a Norns Special was
on sale, we can be sure the odds ratio is somewhere between 1 and
130.5. In other words, at worst, there is no difference in sales based
on day of the week (when the odds ratio = 1), and at best, there is
a very large difference based on the day of the week. If we chose a
confidence rate of 99%, we would change the 1.96 above to 2.58,
which makes the interval 0.5 to 281.6. As you can see, a higher
confidence rate leads to a larger interval.

RELATIVE RISK

The relative risk (RR), another type of ratio, compares the probabil-
ity of an event occurring in a group exposed to a particular factor to
the probability of the same event occurring in a nonexposed group.
This ratio is often used in statistics when a researcher wants to
compare two outcomes and the outcome of interest is relatively
rare. For example, it’s often used to study factors associated with
contracting a disease or the side effects of a medication.

You can also use relative risk to study something less seri-
ous (and less rare), namely whether day of the week increases the
chances that the Norns Special will sell. We’ll use the data from
page 166.

First, we make a table like Table 4-2 with the condition on one
side and the outcome on the other. In this case, the condition is
the day of the week. The condition must be binary (yes or no), so
since Risa thinks the Norns special sells best on Wednesday, Satur-
day, and Sunday, we consider the condition present on one of those
three days and absent on any other day. As for the outcome, either
the cake sold or it didn’t.
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TABLE 4-2: CROS5-TABULATION TABLE OF “WEDNESDAY,
SATURDAY, OR SUNDAY” AND “SALES OF NORNS SPECIAL”

Sales of Norns Special
Sum
Yes No
Wed, Sat, | Yes 6 3 9
or Sun No 2 10 12
Sum 8 13 21

To find the relative risk, we need to find the ratio of Norns
Specials sold on Wednesday, Saturday, or Sunday to the total num-
ber offered for sale on those days. In our sample data, the number
sold was 6, and the number offered for sale was 9 (3 were not sold).
Thus, the ratio is 6:9.

Next, we need the ratio of the number sold on any other day
to the total number offered for sale on any other day. This ratio
is 2:12.

Finally, we divide these ratios to find the relative risk:

sales rate of Wed, Sat, or Sun (6/9) 6 2 6.12_2 . ,
the sales rate of days other than Wed, Sat, or Sun (2/12) 9 12 9 2 3

So the Norns Special is 4 times more likely to sell on Wednes-
day, Saturday or Sunday. It looks like Risa was right!

It’s important to note that often researchers will report the
odds ratio in lieu of the relative risk because the odds ratio is more
closely associated with the results of logistic regression analysis
and because sometimes you aren’t able to calculate the relative risk;
for example, if you didn’t have complete data for sales rates on all
days other than Wednesday, Saturday, and Sunday. However, rela-
tive risk is more useful in some situations and is often easier to
understand because it deals with probabilities and not odds.
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APFPENDIX

REGRESSION CALCULATIONS
WITH EXCEL




This appendix will show you how to use Excel functions to calcu-
late the following:

* Euler’s number (e)

*  Powers

¢ Natural logarithms

*  Matrix multiplication

*  Matrix inverses

¢ Chi-squared statistic from a p-value

* p-value from a chi-squared statistic

¢ F statistic from a p-value

* p-value from an F statistic

¢ Partial regression coefficient of a multiple regression analysis
* Regression coefficient of a logistic regression equation

We'll use a spreadsheet that already includes the data for the
examples in this appendix. Download the Excel spreadsheet from
http://www.nostarch.com/regression/.

EULER'S NUMBER

Euler’s number (e), introduced on page 19, is the base number of
the natural logarithm. This function will allow you to raise Euler’s
number to a power. In this example, we’ll calculate e'.

1. Go to the Euler’s Number sheet in the spreadsheet.

2. Select cell B1.

B1 - fe |
A B c D

3. Click Formulas in the top menu bar and select Insert Function.

Home Insert Page Layout Formulas Data Review View

- s - - _.-._. - - o= on
f T @ BB R P @
Insert AutoSum Recently Financial Logical Text Date & Lookup & Math Mare

Function o Used = > . i Time ~ Reference = & Trig = Functions =
Function Library
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4. From the category drop-down menu, select Math & Trig. Select
the EXP function and then click OK.

Insert Function g @M

Search for a function:

Type a brief description of what you want to do and then dick

Go
Or select a category: | Math & Trig IZ|

Select a function:

CcosH ~
DEGREES i

EVEM

S e e e R s e e P e S|
FACT

FACTDOUBLE

FLOOR.

EXP(number)

Returns e raised to the power of a given number.

Help on this function

5. You'll now see a dialog where you can enter the power to which
you want to raise e. Enter 1 and then click OK.

=

Function Arguments

EXP
Number |1 el = 1
= 2718281828
Returns e raised to the power of a given number.

Mumber is the exponent applied to the base e. The constant e equals
2.71828182845904, the base of the natural logarithm.

Formula result = 2.718281828

Help on this function [ OK. ] [ Cancel ]

Because we've calculated Euler’s number to the power of 1,
you’ll just get the value of e (to a few decimal places), but you can
raise e to any power using the EXP function.

B1 - (" fe | =Exp(1)
A B c D E

1 |e* 2.718282

2

NOTE You can avoid using the Insert Function menu by entering =EXP(X)
into the cell. For example, entering =EXP(1) will also give you the
value of e. This is the case for any function: after using the Insert
Function menu, simply look at the formula bar for the function you
can enter directly into the cell.
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POWERS

This function can be used to raise any number to any power. We’ll
use the example question from page 14: “What’s 2 cubed?”

1. Go to the Power sheet in the spreadsheet.
2. Select cell B1 and type =2"3. Press ENTER.

B1 - (- £ | =3
B c D

A
T‘zg 8
2

In Excel, we use the * symbol to mean “to the power of,” so 23
is 23, and the result is 8. Make sure to include the equal sign (=) at
the start or Excel will not calculate the answer for you.

NATURAL LOGARITHMS

200

This function will perform a natural log transformation (see
page 20).
1. Go to the Natural Log sheet in the spreadsheet.

2. Select cell Bl. Click Formulas in the top menu bar and select
Insert Function.

3. From the category drop-down menu, select Math & Trig. Select
the LN function and then click OK.

Insert Function

Search for a function:

Type a brief description of what you want to do and then dick

Go
Or select a category: | Math & Trig

Select a function:

LOG10
MDETERM

LM{number)
Returns the natural logarithm of a number.

Help on this function
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4. Enter exp(3) and click OK.

Number |exp(3) (] = 20.08553692

3

Returns the natural logarithm of a number.
Mumber is the positive real number for which you want the natural logarithm.

Formula result = 3

Help on this function

You should get the natural logarithm of e*, which, according to
Rule 3 on page 22, will of course be 3. You can enter any number
here, with a base of e or not, to find its natural log. For example,
entering exp(2) would produce 2, while entering just 2 would give

0.6931.

MATRIX MULTIPLICATION

This function is used to multiply matrices—we’ll calculate the mul-

tiplication example shown in Example Problem 1 on page 41.

1. Go to the Matrix Multiplication sheet in the spreadsheet.

2. Select cell G1. Click Formulas in the top menu bar and select
Insert Function.

3. From the category drop-down menu, select Math & Trig. Select
the MMULT function and then click OK.

Search for a function:
Type a brief description of what you want to do and then didk ‘ Go
Go

Or select a category: | Math & Trig IZ|

Select a function:

LOG10
MDETERM
MINVERSE

MMULT A
MOD

MROUND
MULTINOMIAL e

MMULT(arrayl,array2)
Returns the matrix product of two arrays, an array with the same number of rows
as array 1 and columns as array2.

-

| [ cancel

Help on this function oK
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4. Click in the Arrayl field and highlight all the cells of the first
matrix in the spreadsheet. Then click in the Array2 field and
highlight the cells containing the second matrix. Click OK.

MMULT v (» X f-\ =MMULT(A1:B2,D1:E2)

A B c D E F G H 1 J K
1 1 2 4 5 |, D1:E2)
2 3 -2
3
a
= Function Arguments | ? = |
6
7 MMULT
2 Arrayl [a1E2 B = wzse
9 Array2 |DLE2 | = 4529
10

= {0,13;4,31}

11

Returns the matrix product of two arrays, an array with the same number of rows as array1 and columns as array2.

o
¥

Array2 is the first array of numbers to multiply and must have the same number of
columns as Array?2 has rows.

=)

Formulz result = 0

= [
~ @

=
ta

I

5. Starting with G1, highlight a matrix of cells with the same
dimensions as the matrices you are multiplying—G1 to H2
in this example. Then click in the formula bar.

MMULT ~ (* % v £ =MmuLT(A1:B2,D1:E2)|
B c D E F sl bl I

A
1 1 2 4 5 =MMULT(s
& 2 4 -2 4

3

6. Press CTRL-SHIFT-ENTER. The fields in your matrix should fill with
the correct values.

L14 - £ |
A B c D E F G H I
1 1 2 4 5 0 13
2 | 3 4 -2 4 4 31
3

You should get the same results as Risa gets at the bottom of
page 41. You can do this with any matrices that share the same
dimensions.

MATRIX INVERSION

This function calculates matrix inverses—we’ll use the example
shown on page 44.
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1. Go to the Matrix Inversion sheet in the spreadsheet.
2. Select cell D1. Click Formulas in the top menu bar and select
Insert Function.

3. From the category drop-down menu, select Math & Trig. Select
the MINVERSE function and then click OK.

Search for a function:
Type a brief description of what you want to do and then didk ‘ Go
Go

Or select a category: | Math & Trig IZ|

Select a function:

N
LOG

LOG1D

MDETERM

VS St S U D e |
MMULT

MOD

MINVERSE(array)
Returns the inverse matrix for the matrix stored in an array.

Help on this function

4. Select and highlight the matrix in the sheet—that’s cells Al to
B2—and click OK.

MINVERSE (" XKV A \ =MINVERSE(A1:B2)
A B C D E F G H | ] K
1 il % (A1:B2)
2 3
&
q
-
5 Function Arguments | ? RS |
6
7 MINVERSE .
2 Array |ALB2 =] = w3
El = {Z415-0.5
10 Returns the inverse matrix for the matrix stored in an array.
n Array is a numeric array with an equal number of rows and columns, either a cell
12 range or an array constant.,
13
14 Formula result = -2
15 Help on this function E Cancel
16
17

5. Starting with D1, select and highlight a matrix of cells with the
same dimensions as the first matrix—in this case, D1 to E2.
Then click in the formula bar.

MINVERSE ~(» X v f=| =MINVERSE(A1:B2)
A B c o —r F

1 1 2 =MINVER:
2 3 4
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Press CTRL-SHIFT-ENTER. The fields in your matrix should fill with
the correct values.

B23 - fe |
A B c D E F
1 1 2 2 1
5 3 a 1.5 0.5
3

You should get the same result as Risa does on page 44. You

can use this on any matrix you want to invert; just make sure the
matrix of cells you choose for the results has the same dimensions
as the matrix you're inverting.

CALCULATING A CHI-SQUARED STATISTIC FROM A P-VALUE

This function calculates a test statistic from a chi-squared distri-
bution, as discussed on page 54. We'll use a p-value of .05 and
2 degrees of freedom.

1.

2.

Go to the Chi-Squared from p-Value sheet in the spreadsheet.
Select cell B3. Click Formulas in the top menu bar and then
select Insert Function.

From the category drop-down menu, select Statistical. Select
the CHISQ.INV.RT function and then click OK.

Insert Function '_ &u

Search for a function:

Type a brief description of what you want to do and then dick

Go
Or select a category: | Statistical IZ|

Select a function:

CHISQ.DIST -
CHISQ.DIST.RT L3

CHISE.INV [
Q

CHISQ.TEST
CONFIDENCE.NORM
CONFIDENCE. T

CHISQ.INV.RT(probability,deg_freedom)

Returns the inverse of the right-tailed probability of the chi-squared distribution.

Help on this function

Click in the Probability field and enter B1 to select the prob-
ability value in that cell. Then click in the Deg_freedom field
and enter B2 to select the degrees of freedom value. When (B1,B2)
appears in cell B3, click OK.
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Function Arguments

CHISQ.INV.RT
Probability |51
Deg_freedom B2

H

= 0.05

i

H

= 2

i

= 5.991454547
Returns the inverse of the right-tailed probability of the chi-squared distribution.

Deg_freedom is the number of degrees of freedom, a number between 1 and 1010,
exduding 1010,

Formula result =  5.991464547

Help on this function [ OK. ] [ Cancel ]

You can check this calculation against Table 1-6 on page 56.

CALCULATING A P-VALUE FROM A CHI-SQUARED STATISTIC

This function is used on page 179 in the likelihood ratio test
to obtain a p-value. We’re using a test statistic value of 10.1 and
2 degrees of freedom.

1.

2.

Go to the p-Value from Chi-Squared sheet in the spreadsheet.

Select cell B3. Click Formulas in the top menu bar and select
Insert Function.

From the category drop-down menu, select Statistical. Select

the CHISQ.DIST.RT function and then click OK.

Search for a function:

Type a brief description of what you want to do and then dick

Go

Or select a category: | Statistical IZ|

Select a function:

BETA.INV ~
BINOM.DIST g
BINOM.INV 4

CHISQ.DIST
Q

CHISQ.INV
CHISQ.INV.RT YA

CHISQ.DIST.RT(x,deg_freedom)
Returns the right-tailed probability of the chi-squared distribution.

Help on this function
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4. Click in the X field and enter B1 to select the chi-squared value
in that cell. Then click the Deg_freedom field and enter B2 to
select the degrees of freedom value. When (B1,B2) appears in

cell B3, click OK.

Function Arguments

=T

CHISQ.DIST.RT
X |B1
Deg_freedom B2

Returns the right-tailed probability of the chi-squared distribution.

exduding 1010,

Formula result = 0.006409333

Help on this function

0.006409333

Deg_freedom is the number of degrees of freedom, a number between 1and 1010,

—

][ Cancel ]

We get 0.006409, which on page 179 has been rounded down to

0.006.
B3 - fe | =CHISQ.DIST.RT(B1,B2)
A B C D E
1 |Chi-squared 10.1
2 |Freedom 2
3 [Probability || 0.006409
4

CALCULATING AN F STATISTIC FROM A P-VALUE

This function gives us the F statistic we calculated on page 58.

1. Go to the F Statistic from p-Value sheet in the spreadsheet.
2. Select cell B4. Click Formulas in the top menu bar and select

Insert Function.

3. From the category drop-down menu, select Statistical. Select
the F.INV.RT function and then click OK.
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- &
e

Search for a function:
Type a brief description of what you want to do and then didk ‘ Go

Go

Or select a category: | Statistical IZ|

Select a function:

F.DIST

F.DIST.RT

F.INV

F.TEST

FISHER

FISHERINV
F.INV.RT(probability,deg_freedom1,deg_freedom2)

Returns the inverse of the (right-tailed) F probability distribution: if p =
F.DIST.RT(x,...}, then F.INV.RT(p,...) = x.

Help on this function

4. Click in the Probability field and enter B1 to select the probabil-
ity value in that cell. Click in the Deg_freedoml field and enter
B2 and then select the Deg_freedom?2 field and enter B3. When
(B1,B2,B3) appears in cell B3, click OK.

(2] = |

Function Arguments

F.INV.RT
Probability |51
Deg_freedom1 |52
Deg_freedom2 |53

= 4.747225347
Returns the inverse of the (right-tailed) F probability distribution: if p = F.DIST.RT{x,...}, then F.INV.RT{p,...) =
X

Deg_freedom2 is the denominator degrees of freedom, a number between 1 and
1010, exduding 1010,

Formula result = 4.747225347

Lo ][ conl |

Help on this function

We get 4.747225, which has been rounded down to 4.7 in
Table 1-7 on page 58.

B4 - (= fe | =F.INV.RT(B1,B2,B2)
A B C D
1 |Probability 0.05
2 |1 degree of freedom 1
3 |2 degrees of freedom 12
alr 4.747225
5
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CALCULATING A P-VALUE FROM AN F STATISTIC

This function is used on page 90 to calculate the p-value in an
ANOVA.

1.

2.

Go to the p-Value for F Statistic sheet in the spreadsheet.
Select cell B4. Click Formulas in the top menu bar and select

Insert Function.
From the category drop-down menu, select Statistical. Select
the F.DIST.RT function and then click OK.

Insert Function

RELL =

Search for a function:

Type a brief description of what you want to do and then dick

Go
Or select a category: | Statistical IZ|

Select a function:

DEVSQ ~
EXPON.DIST

F.DIST F
l_l
F.INV

F.INV.RT

F.TEST <

F.DIST.RT(x,deg_freedoml,deg_freedom2)
Returns the (right-tailed) F probability distribution (degree of diversity) for two
data sets.

Help on this function [ OK. ] [ Cancel

]

Click in the X field and enter B1 to select the F value in that
cell. Click in the Deg_freedoml1 field and enter B2, and then
click in the Deg_freedom?2 field and enter B3. When (B1,B2,B3)

appears in cell B3, click OK.

Function Arguments

Al =l

exduding 1010,

Formula result = 7.66775E-06

Help on this function

F.DIST.RT
X Bl 55.6
Deg_freedoml |B2 1
Deg_freedom2 |B3 12
= 7.66775E-06

Returns the (right-tailed) F probability distribution (degree of diversity) for two data sets.
Deg_freedom2 is the denominator degrees of freedom, a number between 1 and 10410,

oK ] [ Cancel
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The result, 7.66775E-06, is the way Excel presents the value
7.66775 x 10-°. If we were testing at the p = .05 level, this would be a
significant result because it is less than .05.

B4 - S | =F.DIST.RT(B1,B2,B3)
A B C D
1|F 55.6
2 1 degree of freedom 1
3 2 degrees of freedom 12
4 |Probability 7.66775E-06
5

PARTIAL REGRESSION COEFFICIENT OF A
MULTIPLE REGRESSION ANALYSIS

This function calculates the partial regression coefficients for the
data on page 113, giving the results that Risa gets on page 118.

1. Go to the Partial Regression Coefficient sheet in the
spreadsheet.

2. Select cell G2. Click Formulas in the top menu bar and select
Insert Function.

3. From the category drop-down menu, select Statistical. Select
the LINEST function and then click OK.

?| K

Insert Function

Search for a function:

Type a brief description of what you want to do and then didk Go
Go

Or select a category: | Statistical IZ|

Select a function:

INTERCEFT o
KURT
LARGE

LOGEST

LOGNORM.DIST

LOGNORM.INV -
LINEST(known_y's known_x's,const,stats)

Returns statistics that describe a linear trend matching known data points, by
fitting a straight line using the least squares method.

Help on this function OK. | | Cancel
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4. Click in the Known_y’s field and highlight the data cells for your
outcome variable—here it’s D2 to D11. Click in the Known_Xx’s
field and highlight the data cells for your predictor variables—
here B2 to C11. You don’t need any values for Const and Stats,
so click OK.

Function Arguments | ? RS |
LINEST
Known_y's D2:011 BRE| = {469;366;371;208;246;297;363;436...
Known_x's |B2:C11 FR| = {10,80;8,0;8,200;5,200;7,300;8,23...
Const EE| = logical
Stats EE| = logical

= {-0.340882685663619,41.51347825...

Returns statistics that describe a linear trend matching known data peints, by fitting a straight line using the least
squares method.

Known_y's is the set of y-values you already know in the relationship y = mx +b.

Formula result = -0.340882636

Help on this function Cancel

5. The full function gives you three values, so highlight G1 to I1
and click the function bar. Press CTRL-SHIFT-ENTER, and the high-
lighted fields should fill with the correct values.

G2 - Je |i:LINEST(D2:D11,E2:C11}}
A B c D |E F G H [ 1
Distiance Distance
Floor |to nearest tonearest| Floor
space | station | Menthly station | space | Constant
il (tsubo) (meters) sales (meters) | (tsubo) term
2 Yumenooka Shop 10, 80| 469| |Partial regression coefficient -0.3409| 41.5135| 65.3239
3 Terai Station Shop 8 0| 366
4 Sone Shop 8 200 371
5 Hashimoto Station Shop 5 200 208
6 Kikyou Town Shop 7 300 246
7 Post Office Shop 8 230 297
8 Suidobashi Station Shop 7 40 363
9 Rokujo Station Shop 9 0 436
10 Wakaba Riverside Shop 6 330, 198
11 Misato Shop 9 180 364
12

You can see that the results are the same as Risa’s results on
page 118 (in the text, they have been rounded).

REGRESSION COEFFICIENT OF A
LOGISTIC REGRESSION EQUATION

There is no Excel function that calculates the logistic regression
coefficient, but you can use Excel’s Solver tool. This example cal-
culates the maximum likelihood coefficients for the logistic regres-
sion equation using the data on page 166.
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4,

Go to the Logistic Regression Coefficient sheet in the
spreadsheet.

First you’ll need to check whether Excel has Solver loaded.
When you select Data in the top menu bar, you should see a
button to the far right named Solver. If it is there, skip ahead
to Step 4; otherwise, continue on to Step 3.

Home Insert Page Layout Formulas Data Review View Acrobat
[&] connections 4l K Clear & Data validation = | & Gre
ol zv |Z|% 1 )
IS Properties [ ply 3 [ Consolidate % Ungroup = ==
& 2 |

Get External| Refresh Z| Sort | Filter . ] N
Data~ All- == Edit Links il Tp Advanc Co olicates P What-If Analysis = | B subtota
Connedtions Sort & Filter Data Tools Qutline Analysis

If the Solver button isn’t there, go to File » Options » Add-Ins
and select the Solver Add-in. Click Go, select Solver Add-in
in the Add-Ins dialog, and then click OK. Now when you select
Data in the top menu bar, the Solver button should be there.

|
o S — e

ii General View and manage Microsoft Office Add-ins.
| Formulas
Proofing Add-ins
Save MName ~ Location Type 2
Language Active Application Add-ins
Acrobat PDFMaker Office COM Addin ChFMakenOffice\wgd\PDFMOfficeAddin.dll COM Add-in
Advanced
Inactive Application Add-ins
Customize Ribbon Analysis ToolPak L e\OfficeldhLibran\Analysis\ANALYS32 XLL  Excel Add-in
Analysis ToolPak - VBA C,.Ficel #\Libran\Analysis\ATPVBAEN XLAM Excel Add-in
Quick Access Toolbar Custom XML Data ChAMicrosoft Office\Officel 4\OFFRHD.DLL Document Inspector

\..es\Microsoft Shared\Smart Tag\MOFL.DLL  Action
Office\Officel4\Librar\EUROTOOL.XLAM  Excel Add-in
s\Microsoft Shared\Smart Tag\MOFL.DLL  Action

Date ML)
Add-Ins Euro Currency Tools

Financial Symbol (ML)

Trust Center Headers and Footers C\.\Microsoft Office\Officel \OFFRHD.DLL  Document Inspector |
Hidden Rows and Columns Ch L AMicrosoft Office’\Officel4\OFFRHD.DLL Document Inspector
Hidden Worksheets CAAMicrosoft Office’\Officel4\OFFRHD.DLL Document Inspector
Invisible Content C\AMicrosoft Office\Officel4\OFFRHD.DLL Document Inspector
Microsoft Actions Pane 3 XML Expansion Pack

Solver Add-in Ch,..e\Officeld\Libran\SOLVER\SOLVER XLAM  Excel Add-in

Document Related Add-ins

Mo Document Related Add-ins

Disabled Application Add-ins —

No Disabled Application Add-ins

Add-in: Solver Add-in

Publisher:

Compatibility: Mo compatibility information available

Location: C\Program Files\Microsoft Office\Officel4\Library\ SOLVER\SOLVER XLAM

Description: Tool for optimization and equation solving

Manage: | Excel Add-ins j Go..

=]

Click the Solver button. Click in the Set Objective field and
select cell L3 to select the log likelihood data. Click in the By
Changing Variable Cells field and select the cells where you
want your results to appear—in this case L5 to L7. Click Solve.
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Solver Parameters

Set Objective: 883

To: @ Max ) Min () value OF: 0

By Changing Variable Cells:
$L§5:5L87

Subject to the Constraints:

Change

Delete

Reset All

II IIE
i i

- Load/Save

[] Make Unconstrained Variables Non-Negative

Select a Solving Method: GRG Monlinear IZ| Options

Solving Method

Select the GRG Monlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex
engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are
non-smooth.

You should get the same answers as in Step 4 on page 172 (in
the text, they’ve been rounded).
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SYMBOLS

A (delta), 29
" (prime), 32

A

accuracy. See also coeffi-
cient of determination
of logistic regression
analysis equation,
173-177
of multiple regression
equation, 119-126
adding matrices, 39-40
adjusted odds ratio,
192-194
adjusted R?, 124-126
alternative hypothesis
(H,), 48
analysis of variance
(ANOVA). See also
hypothesis testing
logistic regression
analysis, 178-181
multiple regression
analysis, 128-132
regression analysis,
87-90
apparent error rate, 177
assumptions of normality,
85-86
autocorrelation, checking
for, 102-103
average, 72

INDEX

B

bell curves, 53-54
best subsets regression,
139-140

binomial logistic regression

analysis. See logistic
regression analysis

C

calculus, differential. See
differential calculus
Canceling Exponentials
Rule, 22
categorical data, 46
converting numerical
data, 46-47
in logistic regression
analysis, 167
in multiple regression
analysis, 147-149
chi-squared (y°) distri-
butions, 54-55, 56,
204-206
coefficient of determi-
nation (RZ)
adjusted, 124-126
logistic regression
analysis, 173-177
multiple regression
analysis, 119-126
regression analysis,
81-82

coefficients. See specific
coefficients by name
columns, in matrices, 38
concentration matrix, 145
confidence coefficient,
92-93
confidence intervals,
calculating
multiple regression
analysis,
133-135, 146
for odds ratio, 194-195
regression analysis,
91-94
correlation coeffi-
cient (R), 70
general discussion,
64-65
multiple regression
analysis, 120
regression analysis,
78-82
critical value, 55

D

data. See also
categorical data
plotting, 64-65
types of, 46-47
degrees of freedom, 50-51
delta (A), 29
dependent variables, 14,
67, 149-152. See also
scatter plots



differential calculus
differentiating, 31-36
general discussion,
24-30
Durbin-Watson statistic,
102-103

E

elements, in matrices, 38
Euler’s number, 19, 198-199
event space, 53

Excel functions, 198
Exponentiation Rule, 22
exponents, 19-23, 200
extrapolation, 102

F-
F distributions, 57-59,
206-209
freedom, degrees of, 50-51
F-test, 129-133
functions. See also
probability density
functions
exponential, 19-23
inverse, 14-18
likelihood, 161-163, 171
logarithmic, 19-23
log-likelihood, 161-163,
171-172
natural logarithm, 20,
200-201

G

graphs. See also
scatter plots
for inverse functions,
17-18
logistic regression analy-
sis equation, 159

H

H, (null hypothesis), 48
H, (alternative
hypothesis), 48
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hypothesis testing, 85-90
logistic regression
analysis, 178-181
multiple regression
analysis, 128-132
with odds, 194

I

identity matrices, 44
independent variables,
14, 67
choosing best combi-
nation of, 138-140
determining influence on
outcome variables,
149-152
logistic regression
analysis, 164-167
multicollinearity, 149
structural equation
modeling, 152
interpolation, 102
inverse functions, 14-18
inverse matrices, 44,

202-204

L

likelihood function,
161-163, 171

likelihood ratio test, 179
linear equations, turning
nonlinear equations
into, 104-106
linear least squares
regression, 71-76, 115
linear regression analysis, 7
linearly independent
data, 47
logarithms, 19-23
logistic regression analysis,
8, 157
accuracy of equation,
assessing, 173-177
adjusted odds ratio,
192-194

confidence intervals
for odds ratios,
194-195
equation for, calculating,
158-159, 170-173
hypothesis testing,
178-181, 194
maximum likelihood
method, 159-163,
210-212
odds ratio, 192-194
predicting with, 182
predictor variables,
choosing, 164-167
procedure, general dis-
cussion of, 168, 190
relative risk, 195-196
scatter plot, drawing, 169
logit, 190-191
log-likelihood function,
161-163, 171-172

M

Mahalanobis distance, 133,
137, 144-146
matrices
adding, 39-40
general discussion,
37-38
identity, 44
inverse, 44, 202-204
multiplying, 40-43,
201-202
prediction intervals, cal-
culating, 144-146
maximum likelihood esti-
mate, 162-163
mean, 49
median, 49
multicollinearity, 149
multiple correlation
coefficient
accuracy of multiple
regression equa-
tion, 119-121
adjusted, 124-126
problems with, 122-123



multiple regression
analysis, 7-8, 111
accuracy of equation,
assessing, 119-126
analysis of variance,
128-132
categorical data, using
in, 147-149
confidence intervals,
calculating,
133-135
equation for, calculating,
115-119
hypothesis testing, 127
Mahalanobis distance,
144-146
multicollinearity, 149
prediction intervals,
calculating,
136-137
predictor variables,
choosing, 138-140
predictor variables,
determining influ-
ence on outcome
variables, 149-152
procedure, general dis-
cussion of, 112, 142
scatter plot, drawing,
113-114
standardized residuals,
143-144
multiplying matrices,
40-43, 201-202

N

natural logarithm function,
20, 200-201

nonlinear regression,
103-106

normal distributions, 53-54

normality, assumptions of,
85-86

null hypothesis (H,), 48

numerical data, 46-47

o)

odds, 190
hypothesis testing, 194
logit, 190-191
odds ratio (OR)
adjusted, 192-194
confidence intervals,
calculating,
194-195
general discussion,
191-192
outcome variables, 14, 67,
149-152
outliers, 101, 144
overfitting, 149

P

partial regression
coefficients
calculating with Excel,
209-210
general discussion,
116-118
hypothesis testing, 127,
129-131
Pearson product moment
correlation coefficient,
79. See also correla-
tion coefficient
plotting data, 64-65
population mean, 91
population regression, 86
populations
assessing, 82-84
confidence intervals,
calculating,
133-135
Power Rule, 21
predictions
logistic regression
analysis, 182
multiple regression
analysis, 136-137
regression analysis,
95-98

predictor variables, 14, 67
choosing best combina-
tion of, 138-140
determining influence on
outcome variables,
149-152
logistic regression
analysis, 164-167
multicollinearity, 149
structural equation
modeling, 152
prime (), 32
probability density
functions
chi-squared distribution,
54-55, 56, 204-206
F distributions, 57-59,
206-209
general discussion,
52-53
normal distribution,
53-54
tables, 55-56
Product Rule, 23
pseudo-R?, 173-177

Q

qualitative data, 46
quantitative data, 46
Quotient Rule, 21

R

R (correlation coeffi-
cient), 70
general discussion,
64-65
multiple regression
analysis, 120
regression analysis,
78-82
R? (coefficient of
determination)
adjusted, 124-126
logistic regression
analysis, 173-177
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R? (coefficient of determina-
tion), continued
multiple regression
analysis, 119-126
regression analysis,
81-82
regression analysis
analysis of variance,
87-90
assumptions of
normality, 85-86
autocorrelation, check-
ing for, 102-103
confidence intervals,
calculating, 91-94
correlation coefficient,
calculating, 78-82
equation, calculating,
71-77
equation, general
discussion, 66-67
interpolation and
extrapolation, 102
nonlinear regression,
103-104
prediction intervals,
calculating, 95-98
procedure, general dis-
cussion of, 68, 100
samples and popula-
tions, 82-84
scatter plot, drawing,
69-70
standardized residual,
100-101
regression diagnostics,
119-121
regression equation
calculating, 71-77
general discussion,
66-67
linear equations, turning
nonlinear into,
104-106
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relative risk (RR), 195-196

residual sum of squares,
73-74

residuals, 71
standardized, 100-101,

143-144

round-robin method,
139-140

rows, in matrices, 38

RR (relative risk), 195-196

S

sample regression, 86
sample variance,
unbiased, 50
samples, 82-84
scatter plots
differential calculus, 26
for logistic regression
analysis, 169
for multiple regression
analysis, 113-114
plotting data, 64-65
for regression analysis,
69-70
SEM (structural equation
modeling), 152
squared deviations,
sum of, 50
standard deviation, 51-52
standardized residuals,
100-101, 143-144
statistically significant, 58
statistics
data types, 46-47
hypothesis testing, 48
variation, measuring,
49-52
structural equation
modeling (SEM), 152
subsets regression, best,
139-140
sum of squared
deviations, 50

T

testing hypotheses, 85-90
logistic regression
analysis, 178-181
multiple regression
analysis, 128-132
with odds, 194
tolerance, 149

U

unbiased sample
variance, 50

v

variables. See dependent
variables; independent
variables; scatter plots
variance, 50-51
variance, analysis of
logistic regression
analysis, 178-180
multiple regression
analysis, 128-132
regression analysis,

87-90
variance inflation factor
(VIF), 149
w
Wald test, 180
X
x-bar, 72
Y
y-hat, 73
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