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Preface

This book is an introduction to regression analysis, covering simple, multiple, 
and logistic regression analysis.

Simple and multiple regression analysis are statistical methods for predicting 
values; for example, you can use simple regression analysis to predict the number 
of iced tea orders based on the day’s high temperature or use multiple regression 
analysis to predict monthly sales of a shop based on its size and distance from 
the nearest train station.

Logistic regression analysis is a method for predicting probability, such as 
the probability of selling a particular cake based on a certain day of the week. 

The intended readers of this book are statistics and math students who’ve 
found it difficult to grasp regression analysis, or anyone wanting to get started 
with statistical predictions and probabilities. You’ll need some basic statistical 
knowledge before you start. The Manga Guide to Statistics (No Starch Press, 
2008) is an excellent primer to prepare you for the work in this book. 

This book consists of four chapters:

•	 Chapter 1: A Refreshing Glass of Math

•	 Chapter 2: Simple Regression Analysis

•	 Chapter 3: Multiple Regression Analysis

•	 Chapter 4: Logistic Regression Analysis

Each chapter has a manga section and a slightly more technical text section. 
You can get a basic overview from the manga, and some more useful details and 
definitions from the text sections. 

I’d like to mention a few words about Chapter 1. Although many readers may 
have already learned the topics in this chapter, like differentiation and matrix 
operations, Chapter 1 reviews these topics in context of regression analysis, 
which will be useful for the lessons that follow. If Chapter 1 is merely a refresher 
for you, that’s great. If you’ve never studied those topics or it’s been a long time 
since you have, it’s worth putting in a bit of effort to make sure you understand 
Chapter 1 first. 

In this book, the math for the calculations is covered in detail. If you’re good 
at math, you should be able to follow along and make sense of the calculations. If 
you’re not so good at math, you can just get an overview of the procedure and use 
the step-by-step instructions to find the actual answers. You don’t need to force 
yourself to understand the math part right now. Keep yourself relaxed. However, 
do take a look at the procedure of the calculations.



xii  Preface

We’ve rounded some of the figures in this book to make them easier to 
read, which means that some of the values may be inconsistent with the values 
you will get by calculating them yourself, though not by much. We ask for your 
understanding.

I would like to thank my publisher, Ohmsha, for giving me the opportunity 
to write this book. I would also like to thank TREND-PRO, Co., Ltd. for turning 
my manuscript into this manga, the scenario writer re_akino, and the illustra-
tor Iroha Inoue. Last but not least, I would like to thank Dr. Sakaori Fumitake of 
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Prologue



2  Prologue

I love this 
tea shop.

Everything is 
Delicious!

It's our 
new chef.

What brings 
you by today?  

Studying as usual?

oh...

well...
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...I just 
like it here.

Yes?

smirk

If you say so... 
Enjoy your tea.

What's 
wrong, 

Miu?
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It's just... 
you can talk 
to anyone!

Oh? Are you 
jealous, Miu?

No! Of 
course not!

 
Don't be 

embarrassed.

Peek!

He must be a 
good student.

He's always 
reading books 
about advanced 

mathematics.

Hey! We're 
economics 

majors, too, 
aren't we?
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My grades 
aren't good 
like yours, 

Risa.

So ask 
him to 

help you 
study.

I can't do that! 
I don't even 

know his name. Then ask 
him that 
first!

Besides, 
he always 

seems busy.

blush

Jingle

Nice place!

Hi!

Welcome 
to the Tea 

Room!

Please take 
any seat 
you like.

Oh, 
Customers!

Can I get you 
something 
to drink?

I wonder if 
he'll come in 
again soon...

What's 
this?

Closing 

time!

Jingle

W 
o 
w 
! 
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He left 
his book.

Did he 
drop it?

What?

What was he 
reading?

shuff
le

shuff
le

Here.

Umm...

Regression 
analysis?

That's a 
method of 
statistical 
analysis!

I've never 
heard 
of it.

Miu, do you check 
the weather 

forecast in the 
morning?

Yes, of 
course.

*

* 
In

t
r
o

d
u
c
t
io

n
 t

o
 r

e
g

r
e
ss

io
n
 a

n
a
l
y
s
is

Dazzled
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Suppose we were keeping a 
record of the high temperature 
and the number of orders of 
iced tea at our shop every day.

Using linear regression analysis, 
you can estimate the number of 
orders of iced tea based on 

the high temperature!

Wow! 
That's 
really 
cool.

There's also a 
similar type of 
analysis called 
multiple linear 
regression.

Multiple linear? 
Lots of lines??

But in multiple linear regression analysis, 
we use several factors, like temperature, 

price of iced tea, and number of 
students taking classes nearby.

WE use linear 
regression to 
estimate the 

number of iced 
tea orders based 
on one factor—

temperature.

Today's high 
will be 31°C.

31°C

High 
of 

31°C...

Today's high 
will be 27°C.

bing!

today, we 
predict 61 
orders of 
iced tea!

iced tea

iced tea

not quite.

factor Estimation

Factors
Estimation

Regression 
analysis

multiple linear 
regression analysis

?
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Mr. Guyman is the CEO of a 
chain store. In addition to 

tracking sales, he also keeps 
the following records for 

each of his stores:

•	Distance to the nearest 
competing store

•	Number of houses within 
a mile of the store

•	advertising expenditure

Distance 
to nearest 
competing 
store (m)

Houses 
within a 
mile of 

the store

Advertising 
expenditure 

(yen)
Sales 
(yen)

Mr. 
Guyman

When he is considering 
opening a new shop...

New shop?

should I 
open it?

...He can estimate 
sales at the new 
shop based on 
how the other 
three factors 

relate to sales 
at his existing 

stores.
Amazing!

I should 
totally 

open a new 
store!

There are other 
methods of analysis, 

too, like logistic 
regression  

analysis. There 
are so 
many...

If I 
study 
this 

book...

then 
maybe...

One day I 
can talk 
to him 

about it.

Let's look at an 
example of multiple 
linear regression 

analysis. 

Store
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I'll just 
hold onto this 
book until he 
comes back.

Risa,  
Can I ask 

you a 
favor?

Will you teach me 
regression analysis? 

Huh? pretty 
please?

Sure, okay.

REally?

Well...
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But only if you 
agree to give that 
book back to him 
yourself, okay?

That would 
be very kind 

of you.

You 
think?

You think he'll 
know where 

to look?

I'm sure 
he'll figure 

it out.

well, see you 
tomorrow!

Yeah... 
good night...

I'm sure 
he'll be 

back soon.

Blush!

Yes, 
soon!

Well, uh...I guess 
I should keep 
it safe until he 
comes in again. 



1
A Refreshing 
Glass of Math
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Building a Foundation

Phew!

The boss has 
finally gone home, 
and so should we!

Um, Risa, 
could we 
start the 
lesson 

tonight?

You want 
to start 
now?!

Seriously?

nod

I've never seen 
you so excited 

to learn! Usually 
you nap in class.

Yeah, 
it's just...  

I ...

I didn't 
mean to 

embarrass 
you.

Sorry...
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so we’ll start 
with that.

All right, 
Whatever 
you say!

I’ll write out the 
lessons, to make 
them more clear.

On the menu 
board?

Sure, you can 
rewrite the 
menu after 
the lesson.

Eep! I 
already 

forgot the 

specials!

Notation rules

Computers can do a 
lot of the math for 
us, but if you know 

how to do it yourself, 
you’ll have a deeper 

understanding of 
regression.

Got it.

Sure, let’s do it.  
Regression depends 

on some math...
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First, I'll explain inverse 
functions using the 

linear function y = 2x + 1 
as an example.

When x is 
zero, what 
is the value 

of y?

It's 1.

How about 
when x is 3?

It's 7.

So We call y 
the outcome, or 

dependent variable, 
and x the predictor, 

or independent 
variable.

Yes.

You could say that  
x is the boss of y.

I'm thirsty!
Your drink, 

sir.

What's 2 
cubed? 8.

Boss SErvant

The value of 
y depends 

on the value 
of x. 

Inverse Functions
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x would be 
the boss, and 

y would be 
his servant.

Shine my 
money!

Yes,  
sir.

Anyway,
Gleam

in inverse 
functions...

...the boss and the 
servant switch 

places.

I’m queen for a day!

So the servant is 
now the boss?

Yup. 
the servant 
takes the 

boss’s seat.

Yes, 
ma’am!

fill 
’er up!

In other 
words, if they 
were people... 

ha ha, you're right.

Our uniforms 
make us look 
kind of like 
housemaids, 
don't they?
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so for the example 
y = 2x + 1, the inverse 

function is...

...One in which 
y and x have 

switched seats.

However,

We want y all 
by itself, so...

We 
reorganize 
the function 

like this.

You transposed 
it and divided by 
2, so now y is 

alone.

That's right. To 
explain why this is 
useful, let's draw 

a graph.
Transpose

scritch

scratch
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Miu, can 
you grab 
a marker?

Okay, 
Hold on.

draw a graph 
for y = 2x + 1.

Um, let's 
see.

Drawing 
neatly on 
a napkin is 

hard!

Like this? Write y on the 
x axis and x 

on the y axis.

Done!

That's it. Huh?

What?

Great job! 
Now, we'll 
turn it into 
the inverse 
function.

Transp

Transpose
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...
It’s the  

same thing! Turn 
it around so 

that x is on the 
bottom, like it 

usually is.

You 
mean...

...turn it 
like this?

Yes, but now zero 
is on the right. 
It should be on 

the left.

There 
we go!

Now it's a graph 
for the function 

y x= −1
2

1
2

. 

should I 
flip the 

napkin over?

erm...
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Exponents and Logarithms

on to the next 
lesson. These are 

called exponential 
functions.

Right! Now, have 
you seen this e 

before?

This e is the base of the 
natural logarithm and has 

a value of 2.7182.

I've heard 
of it.

They all 
cross the 
point (0,1) 

because any 
number to the 
zero power 

is 1.

log
e
y = x 

is the 
inverse 
of the 

exponential 
equation  

y = ex.
Ah! More 
inverse 

Functions!

flip!

Okay... 

It’s called 
Euler’s number. 
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x = ey is the inverse 
function of y = logex, 
which is the natural 
logarithm function.

To find the inverse of y = ex,  
we’ll switch the variables 
x and y and then take their 

logarithm to isolate y.  
When we simplify log

e
(ey),  

it’s just y!

Remember 
this—you'll 

need it later!

I'm 
taking 
notes!

flipped 
again!

We 
flipped 

the 
equation 
to put y 
back on 
the left.

Switch the 
varibles!

Next, I'll go  
over the rules 
of exponential 
and logarithmic 

functions. 



Rules for Exponents and Logarithms  21

1. Power rule (ea)b and ea × b are equal.

Let’s try this. We’ll confirm that (ea)b and ea × b are equal 
when a = 2 and b = 3.

2. quotient rule

Now let’s try this, too. We’ll confirm that 
e
e

a

b  and ea b−
 

are equal when a = 3 and b = 5.

e
e

a

b  and ea b−  are equal.

 )e e e e e e e e e e e e e2 3 2 2 2

3
3

= × × = ×( ) × ×( ) × ×( ) = × × ×× × × = ×e e e e
6

2  ( 3

e
e

e e e
e e e e e

e e e
e e e e e e

e e
3

5 2
2 3 51= × ×

× × × ×
= × ×

× × × ×
= = =− −

This also means (ea)b = ea × b = (eb)a.

Rules for Exponents 
and Logarithms
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3. Canceling 
Exponentials Rule a and log

e
(ea) are equal.

As mentioned page 20, y = log
e
x and x = ey are equivalent. First we 

need to look at what a logarithm is. An exponential function of base 
b to a power, n, equals a value, x. The logarithm function inverts 
this process. That means the logarithm base b of a value, x, equals 
a power, n.

We see that in log
e
(ea) = n, the base b is e and the value x is ea,  

so en = ea and n = a.

4. Exponentiation 
Rule

log
e
(ab) and b × log

e
(a) 

are equal.

Let’s confirm that log
e
(ab) and b × log

e
(a) are equal. We’ll start by 

using b × log
e
(a) and e in the Power Rule:

e eb a a b
e e× ( ) ( )= ( )log log

And since e is the inverse of log
e
, we can reduce eb ae× ( )log  on the 

right side to just a:

eb × loge(a) = ab

Now we’ll use the rule that bn = x also means log
b
x = n, where:

b = e
x = ab

n = b × log
e
(a)

This means that eb ae× ( )log  = ab, so we can conclude that log
e
(ab) is 

equal to b × log
e
(a).

So bn = x also means log
b
x = n.

base value power
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5. Product Rule
log

e
(a) + log

e
(b) and  

log
e
(a × b) are equal.

Let’s confirm that log
e
(a) + log

e
(b) and log

e
(a × b) are equal. Again, 

we’ll use the rule that states that bn = x also means log
b
x = n.

Let’s start by defining em = a and en = b. We would then have  
emen = em+n = a × b, thanks to the Product Rule of exponents. We can 
then take the log of both sides,

which on the left side reduces simply to

We also know that m + n = log
e
a + log

e
b, so clearly 

Here I have summarized the rules 
I've explained so far.

Rule 1 (ea)b and eab are equal.

Rule 2
e
e

a

b  and ea−b are equal.

Rule 3 a and log
e
(ea) are equal.

Rule 4 log
e
(ab) and b × log

e
(a) are equal.

Rule 5 log
e
(a) + log

e
(a) and log

e
(a × b) are equal.

log
e
(em+n)  = log

e
(a × b),

m + n = log
e
(a × b). 

log
e
(a) + log

e
(b) = log

e
(a × b). 

In fact, one could replace the natural number e in these equations with 
any positive real number d. Can you prove these rules again using d as 
the base?



Differential Calculus

Now, on to 
differential 
calculus!

faint

Oh no! I'm 
terrible at 
calculus!

Trust me, 
you'll do fine.

Come 
on!

Really?

stare

you must 
be about 
156 cm.

155.7 cm, 
to be 

precise.

wow, 

good 

guess!

Let me write 
that down, 
155.7 cm.

skrtch
skrtch

don't 
worry!

It looks bad, 
but it's not that 
hard. I'll explain 
it so that you can 

understand. 

*

* Differential Calculus
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This is a table 
showing your 
height from 

age 4 up to now.

How did you 
get that 

information?!
that's top 
secret.

Make this 
data into a 

scatter plot.

Like this?
That 

looks 
good.

okay, 
hold 
on.

Miu’s age and height

Age Height

Scatter Plot of Miu’s Age and Height

h
e
ig

h
t

age

I made it 
all up! shh.

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

100.1 

107.2 

114.1 

121.7 

126.8 

130.9 

137.5 

143.2 

149.4 

151.1 

154.0 

154.6 

155.0 

155.1 

155.3 

155.7
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Let's compare 
your height at 
ages 6 and 7.

I grew 7.6 cm 
(121.7 − 114.1) 
in one year, 

between ages 
6 and 7.

You have 
grown taller, miu!

Yes, I 
have, 

Papa!

Roughly speaking, the 
relationship between 
your age and height 
from ages 4 to 19...

...Can be described 
by this function.

age

h
e
ig

h
t

The line 
represents 

this function.

Here's the point. 

Scatter Plot of Miu’s Age and Height
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Where did that 

y
x

= − +326 6
173 3

.
.

function come from?!

Just assume it 
describes the 
relationship 

between your 
age and your 

height.

Okay, 
Risa.

For now, I'll just believe 
that the relationship is 

 y
x

= − +326 6
173 3

.
. .

Great.

Now, can you see 
that "7 years old" 
can be described 
as "(6 + 1) years 

old"?

Well 
yeah, 
that 

makes 
sense.

So using the equation, your increase in 
height between age 6 and age (6 + 1) 

can be described as...

Height at age (6 + 1)+1 Height at age 6

We replace x 
with your age. I 

see.

That is a regression 
equation! Don’t worry 
about how to get it 

right now. 

Shocked

hee 
hee
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We can show the rate of 
growth as centimeters 
per year, since there 
is one year between 
the ages we used.

Oh! you divided  
the previous 
formula by 1 

because the interval 
is one year.

Next, let's 
think about the 

increase in height 
in half a year.

What is age six 
and a half in 
terms of the 

number 6?
Let me see... 
(6 + 0.5) Years 

old?

CORRECT!

The increase in height in 0.5 years, 
between age 6 and age (6 + 0.5)...

And this is the increase in height 
per year, between age 6 and 

age (6 + 0.5).

CM/yEAR

CM/yEAR

Height at age 
(6 + 0.5) Height at age 6

...can be 
written like 

this.
I see.

MUST 
MEASURE 

mIU! This time you divided 
the formula by 0.5 

because the interval is 
half a year. I get it!



Finally...

let’s think about the 
height increase over 
an extremely short 

period of time.

It describes the extremely 
short period of time between 
the age of 6 and right after 
turning 6. Using our equation, 

we can find the change in 
height in that period.

Must measure, 

must measure, 

keep measuring!

Oh, Miu, 
you are 
growing 
so fast!

P-Papa?

DELTA

in  
mathematics, 
we use this 
symbol ∆ 
(delta) to 
represent 
change.

Like this. Oh!

That means “the increase in 
height per year, between 

age 6 and immediately 
after turning 6" can be 

described like this:

I see.
Follow me as 
I rearrange 
this equation 

in a snap!

CM/yEAR
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CM/yEAR

I changed the 
remaining ∆ to zero 
because virtually no 

time has passed.

Are you following 
so far? There are a 
lot of steps in this 
calculation, but it’s 
not too hard, is it?

No, I think 
I can handle 

this.
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Great, then sit 
down and try 
this problem.

Can you describe the increase in height 
per year, between age x and immediately 

after age x , in the same way?

Let me 
see...

Is this 
right?

Yes,  
indeed!

cm/year

Now,  
simplify it.

Hmm...

Will do.
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The answer is 

326 6
1

2
. ×

x
.

There's a 
special name 
for what you 

just did.

Very 
good.

We call it differentiating—as in 
differential calculus. Now we 
have a function that describes 

your rate of growth!

I did 
calculus!

By the way, 
derivatives can be 
written with the 
prime symbol (’)  

or as 
dy
dx

= 1.

The prime  
symbol Looks  

like a long 
straight 
apos

trophe!

or

Now! I challenge you 
to try differentiating 

other functions.  
What do you say?

Challenge 
accepted!
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Differentiate y = x with respect to x.

Differentiate y = x2 with respect to x.

Differentiate y
x

= 1
 with respect to x.

1 1
1 1 1

0
1
2

x x

x x

x x

x x x x x x x
+ ∆

−

∆
=

− + ∆( )
+ ∆( )
∆

= −∆
+ ∆( ) ∆

= −
+ ∆( ) ≈ −

+( ) = −× == − −x 2

1 1
1 1 1

0
1
2

x x

x x

x x

x x x x x x x
+ ∆

−

∆
=

− + ∆( )
+ ∆( )
∆

= −∆
+ ∆( ) ∆

= −
+ ∆( ) ≈ −

+( ) = −× == − −x 2
dy
dx

x= − −2
so

x x x x x x
x

+ ∆( ) −
∆

= + ∆ + ∆ −
∆

=
+ ∆( ) ∆
∆

= + ∆
2 2 2 2 22 2

2

≈ + =2 0 2x x
dy
dx

x= 2so

x x+ ∆( ) −
∆

= ∆
∆
= 1

dy
dx

= 1

It’s a constant rate of change!

so
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Differentiate y
x

= 1
2  with respect to x.

1 1

1 1

1 1 1 1

2 2

2 2

x x

x x

x x x x

+ ∆( )
−

∆

= + ∆






− 





∆

=
+ ∆

+



 + ∆

−





∆

=

+ + ∆( )
+ ∆( )

− +( )
+ ∆( )

∆

x x

x x

x x

x x
×

=

+ ∆
+ ∆( )

−∆
+ ∆( )

∆

x
x x x x

×2

∆

=
+ ∆

+ ∆( )
−∆
+ ∆( ) ∆

=
− + ∆( )

+ ∆( ) 

− +( )
+( )

2 1

2

2 0

0

2

x
x x x x

x

x x

x

x x

× ×

≈


=
−

=
−

= − −

2

4

3

3

2

2

2

x
x

x

x

So
 

dy
dx

x= − −2 3

Based on these examples,  

you can see that when you differentiate y = xn 

with respect to x , the result is 
dy
dx

nxn= −1.
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differentiate y x= −( )5 7
2

 with respect to x.

5 7 5 7

5 7 5 7 5 7 5 7

2 2
x x

x x x x

+ ∆( ) −{ } − −( )
∆

=
+ ∆( ) −{ } + −( )  + ∆( ) −{ } − −( )) 

∆

=
−( ) + ∆  ∆

∆

= −( ) + ∆ 

≈ −( ) + 

2 5 7 5 5

2 5 7 5 5

2 5 7 5 0

x

x

x

×

×

× 

= −( )

×

×

5

2 5 7 5x

so
 

dy
dx

x= −( )2 5 7 5×

when you differentiate 
y ax b

n= +( )
 with 

respect to x , the result is 
dy
dx

n ax b a
n= +( ) −1 × .
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Here are some other examples of 
common derivatives:

•	 when you differentiate y = ex, 
dy
dx

ex= .

•	 when you differentiate y = logx, 
dy
dx x

= 1
.

•	 when you differentiate y ax b= +( )log , 
dy
dx

a
ax b

=
+

.

•	 when you differentiate y eax b= +( )+log 1 , 

 

dy
dx

a
a
eax b

= −
+ +1

.

Still 
with me?

I think so!

Great!
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The last topic 
we'll cover 
tonight is 
matrices.

...

Matrices look 
like apartment 
buildings made 

of numbers.

You look 
nervous. 
Relax!

In math, a matrix is 
a way to organize a 
rectangular array 

of numbers. Now I'll 
go over the rules 
of matrix addition, 
multiplication, and 

inversion. Take 
careful notes,  

okay?

okay.

* Matrices

*
Matrices
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A matrix can be used to write equations quickly. 
Just as with exponents, mathematicians have 

rules for writing them.

 
x x

x x
1 2

1 2

2 1

3 4 5

+ = −
+ =



  
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1 2

3 4

1

5
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


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

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
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




x
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x x
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

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
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
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
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

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





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
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
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
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
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
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

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
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Summary

a x a x a x b
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q q

q q
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


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Example

Just like an ordinary table, we 
say matrices have columns and 
rows. Each number inside of 
the matrix is called an element.

If you don’t know the values of the expressions, you write the expressions 
and the matrix like this:
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Example 2

Next, I'll explain the addition of matrices. 

consider this: 
1 2

3 4

4 5

2 4








 + −











Now just add the numbers in the same 
position: Top left plus top left, and so on. 

 
1 4 2 5

3 2 4 4

+ +
+ − +









( ) =

 

5 7

1 8










You can only add matrices that have 
the same dimensions, that is, the same 

number of rows and columns.

Example problem  1

5 1

6 9

1 3

3 10

5 1 1 3

6 3 9 10

4 4

3−








 +

−
−









 =

+ − +
+ − − +




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


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( )

( ) ( ) 11



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




What is

 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

7 2 3

1 7 4

7 3 10

8 2 1

7 1























+
− −
− −

−
−−





















9

?

What is 
5 1

6 9

1 3

3 10−








 +

−
−









?

Answer

Example problem 2

Adding Matrices
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Summary

Here are two generic 
matrices.

You can add them 
together, 

like this:

a a a

a a a
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b b bq

q

p p pq
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q q

q q
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�
�

� � � �
++ +

















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7 8 9
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13 14 15
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
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




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


+
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−
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9

1 7 2 2 3 3
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7 7 8 3 9

( ) ( )

( ) ( ) 110
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+ + + −
+ + + −


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





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


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

=
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20 15 6
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

















Answer

And of course, matrix subtraction works the same way. Just subtract 
the corresponding elements!

On to matrix multiplication! We don’t multiply 
matrices in the same way as we add and 
subtract them. It’s easiest to explain by 
example, so let’s multiply the following:

1 2

3 4
1 1

2 2




















x y

x y

Multiplying Matrices
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1 2

3 4

4

2

1 4 2 2

3 4 4 2

0

4








 −








 =

+ −
+ −









 =











× ×
× ×

( )

( )

What is
 

1 2

3 4

4 5

2 4








 −








 ?

1 2

3 4

5

4

1 5 2 4

3 5 4 4

13

31

















 =

+
+









 =











× ×
× ×

So the answer is                                         .
1 2

3 4

4 5

2 4

0 13

4 31








 −








 =











Example problem  1

Answer

We know to multiply the elements and then add the terms to simplify. 
When multiplying, we take the right matrix, column by column, and 
multiply it by the left matrix.*

* Note that The resulting matrix will have the same number of rows as 
the first matrix and the same number of columns as the second matrix. 

First column

Second column

We multiply each element in the first column 
of the left matrix by the top element of the 

first column in the right matrix, then the second 
column of the left matrix by the second 

element in the first column of the right matrix. 
Then we add the products, like this:

1 2

3 4
1 2

1 2

x x

x x

+
+

And then we do the same with the 
second column of the right matrix to get:

1 2

3 4
1 2

1 2

y y

y y

+
+

So the final result is:

1 2 1 2

3 4 3 4
1 2 1 2

1 2 1 2

x x y y

x x y y

+ +
+ +











In Matrix multiplication, first you multiply 
and then you add to get the final result. 

Let’s try this out.
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1 2

4 5

7 8

10 11

2

4 5

7 8

10

1

2

1 2

1 2

1 2

1



























 =

+
+
+
+

m

m

m m

m m

m m

m 111 2m



















k k l l m m

k k l l m m

k k l l m

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1

2 2 2

4 5 4 5 4 5

7 8 7 8 7 8

+ + +
+ + +
+ + + mm

k k l l m m
2

1 2 1 2 1 210 11 10 11 10 11+ + +



















What is

 

1 2

4 5

7 8

10 11

1 1 1

2 2 2





























k l m

k l m ?

1 2

4 5

7 8

10 11

2

4 5

7 8

10

1

2

1 2

1 2

1 2

1



























 =

+
+
+
+

k

k

k k

k k

k k

k 111 2k



















1 2

4 5

7 8

10 11

2

4 5

7 8

10

1

2

1 2

1 2

1 2

1



























 =

+
+
+
+

l

l

l l

l l

l l

l 111 2l



















Example problem 2

Multiply the first column of the 
second matrix by the respective 
rows of the first matrix.

Do the same with the second 
column.

And the third column.

The final answer is just a concatenation of the three answers above.

Answer



Matrices  43

Example 2

When multiplying matrices, there are three 
things to remember:

•	 The number of columns in the first 
matrix must equal the number of rows 
in the second matrix.

•	 The result matrix will have a number of 
rows equal to the first matrix.

•	 The result matrix will have a number of 
columns equal to the second matrix.

Can the following pairs of matrices can be multiplied? 
If so, how many rows and columns will the resulting matrix have?

Example problem  1

Yes! The resulting matrix will have 2 rows and 1 column:

2 3 4

5 3 6

2

7

0
−









 −
















Answer

2 3 4

5 3 6

2

7

0

2 2 3 7 4 0

5 2 3 7 6−








 −















=

× + × −( ) + ×
−( ) × + × −( ) + × 00

17

31









 =

−
−










Example problem  2

9 4 1

7 6 0

5 3 8

2 2 1

4 9 7

−
−

−

















−
−











No. The number of columns in the first matrix is 3, but the number of 
rows in the second matrix is 2. These matrices cannot be multiplied.

Answer

The Rules of Matrix Multiplication



Example 2

The last things I'm going to explain tonight 
are identity matrices and inverse matrices.

An identity matrix is a square matrix with 
ones across the diagonal, from top left to 
bottom right, and zeros everywhere else.

Here is a 2 × 2 identity matrix: 
1 0

0 1










And here is a 3 × 3 identity matrix: 

1 0 0

0 1 0

0 0 1

















1 2

3 4

2 1

1 5 0 5

1 2 2 1 5 1 1 2 0 5

3 2










−
−









 =

− + + −
− +. .

( ) . ( . )

( )

× × × ×
× 44 1 5 3 1 4 0 5

1 0

0 1× × ×. ( . )+ −








 =











psst! hey miu, 
wake up.

We're finished 
for today.

Identity and Inverse Matrices

Some square matrices (a matrix that has the same number of rows as col-
umns) are invertible. A square matrix multiplied by its inverse will equal 
an identity matrix of the same size and shape, so it’s easy to demonstrate 
that one matrix is the inverse of another.

For example:

So 
−

−










2 1

1 5 0 5. .  is the inverse of 
1 2

3 4








 .
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Be sure to review 
your notes so 

you'll be ready for 
the next lesson:  

Regression 
Analysis!

Oh! Let me 

do that!

Risa...

Thank you 
so much for 
teaching me.

Oh?

No problem! 
I'm happy 
to help.
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Statistical Data Types

Now that you’ve had a little general math refresher, it’s time for a 
refreshing chaser of statistics, a branch of mathematics that deals 
with the interpretation and analysis of data. Let’s dive right in. 

We can categorize data into two types. Data that can be mea-
sured with numbers is called numerical data, and data that cannot 
be measured is called categorical data. Numerical data is some-
times called quantitative data, and categorical data is sometimes 
called qualitative data. These names are subjective and vary based 
on the field and the analyst. Table 1-1 shows examples of numerical 
and categorical data.

Table 1-1: Numerical vs. Categorical Data

Number of 
books read 
per month

Age  
(in years)

Place where 
person most 
often reads Gender

Person A 4 20 Train Female

Person B 2 19 Home Male

Person C 10 18 Café Male

Person D 14 22 Library Female

Number of books read per month and Age are both examples 
of numerical data, while Place where person most often reads and 
Gender are not typically represented by numbers. However, cate
gorical data can be converted into numerical data, and vice versa. 
Table 1-2 gives an example of how numerical data can be converted 
to categorical.

Table 1-2: converting Numerical Data to Categorical Data

Number of 
books read 
per month

Number of 
books read 
per month

Person A 4 Few

Person B 2 Few

Person C 10 Many

Person D 14 Many

Numerical 
Data

Categorical 
Data
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In this conversion, the analyst has converted the values 1 to 5 
into the category Few, values 6 to 9 into the category Average, and 
values 10 and higher into the category Many. The ranges are up to 
the discretion of the researcher. Note that these three categories 
(Few, Average, Many) are ordinal, meaning that they can be ranked 
in order: Many is more than Average is more than Few. Some cate-
gories cannot be easily ordered. For instance, how would one easily 
order the categories Brown, Purple, Green? 

Table 1-3 provides an example of how categorical data can be 
converted to numerical data. 

Table 1-3: converting Categorical Data to Numerical Data

Favorite 
season Spring Summer Autumn Winter

Person A Spring 1 0 0 0

Person B Summer 0 1 0 0

Person C Autumn 0 0 1 0

Person D Winter 0 0 0 1

In this case, we have converted the categorical data Favorite 
season, which has four categories (Spring, Summer, Autumn, 
Winter), into binary data in four columns. The data is described 
as binary because it takes on one of two values: Favorite is repre-
sented by 1 and Not Favorite is represented by 0.

It is also possible to represent this data with three columns. 
Why can we omit one column? Because we know each respondent’s 
favorite season even if a column is omitted. For example, if the first 
three columns (Spring, Summer, Autumn) are 0, you know Winter 
must be 1, even if it isn’t shown.

In multiple regression analysis, we need to ensure that our data 
is linearly independent; that is, no set of J columns shown can be 
used to exactly infer the content of another column within that set. 
Ensuring linear independence is often done by deleting the last col-
umn of data. Because the following statement is true, we can delete 
the Winter column from Table 1-3:

(Winter) = 1 – (Spring) – (Summer) – (Autumn)

In regression analysis, we must be careful to recognize which 
variables are numerical, ordinal, and categorical so we use the vari-
ables correctly. 
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Hypothesis Testing

Statistical methods are often used to test scientific hypotheses. A 
hypothesis is a proposed statement about the relationship between 
variables or the properties of a single variable, describing a phe-
nomenon or concept. We collect data and use hypothesis testing to 
decide whether our hypothesis is supported by the data.

We set up a hypothesis test by stating not one but two hypoth-
eses, called the null hypothesis (H

0
) and the alternative hypothesis 

(H
a
). The null hypothesis is the default hypothesis we wish to dis-

prove, usually stating that there is a specific relationship (or none 
at all) between variables or the properties of a single variable. The 
alternative hypothesis is the hypothesis we are trying to prove. 
If our data differs enough from what we would expect if the null 
hypothesis were true, we can reject the null and accept the alter-
native hypothesis. Let’s consider a very simple example, with the 
following hypotheses: 

H
0
: Children order on average 10 cups of hot chocolate per month.

H
a
: Children do not order on average 10 cups of hot chocolate per 

month.

We’re proposing statements about a single variable—the num-
ber of hot chocolates ordered per month—and checking if it has a 
certain property: having an average of 10. Suppose we observed five 
children for a month and found that they ordered 7, 9, 10, 11, and 
13 cups of hot chocolate, respectively. We assume these five chil-
dren are a representative sample of the total population of all hot 
chocolate–drinking children. The average of these five children’s 
orders is 10. In this case, we cannot prove that the null hypothesis 
is false, since the value proposed in our null hypothesis (10) is 
indeed the average of this sample.

However, suppose we observed a sample of five different chil-
dren for a month and they ordered 29, 30, 31, 32, and 35 cups of hot 
chocolate, respectively. The average of these five children’s orders 
is 31.4; in fact, not a single child came anywhere close to drinking 
only 10 cups of hot chocolate. On the basis of this data, we would 
assert that we should reject the null hypothesis.

In this example, we’ve stated hypotheses about a single vari-
able: the number of cups each child orders per month. But when 
we’re looking at the relationship between two or more variables, 
as we do in regression analysis, our null hypothesis usually states 
that there is no relationship between the variables being tested, 
and the alternative hypothesis states that there is a relationship.
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Measuring Variation

Suppose Miu and Risa had a karaoke competition with some friends 
from school. They competed in two teams of five. Table 1-4 shows 
how they scored.

Table 1-4: Karaoke Scores for Team Miu and Team Risa

Team member Score Team member Score

Miu 48 Risa 67

Yuko 32 Asuka 55

Aiko 88 Nana 61

Maya 61 Yuki 63

Marie 71 Rika 54

Average 60 Average 60

There are multiple statistics we can use to describe the “center” 
of a data set. Table 1-4 shows the average of the data for each team, 
also known as the mean. This is calculated by adding the scores of 
each member of the group and dividing by the number of members 
in the group. Each of the karaoke groups has a mean score of 60. 

We could also define the center of these data sets as being the 
middle number of each group when the scores are put in order. This 
is the median of the data. To find the median, write the scores in 
increasing order (for Team Miu, this is 32, 48, 61, 71, 88) and the 
median is the number in the middle of this list. For Team Miu, 
the median is Maya’s score of 61. The median happens to be 61 
for Team Risa as well, with Nana having the median score on this 
team. If there were an even number of members on each team, we 
would usually take the mean of the two middle scores.

So far, the statistics we’ve calculated seem to indicate that the 
two sets of scores are the same. But what do you notice when we 
put the scores on a number line (see Figure 1-1)?

0 10 20 30 40 50 60 70 80 90 100

Yuko Miu

Maya

Marie Aiko

Score

Team Miu

  

0 10 20 30 40 50 60 70 80 90 100

Asuka

Rika

Nana

Yuki

Risa

Score

Team Risa

Figure 1-1: Karaoke scores for Team Miu and Team Risa on number lines
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Team Miu’s scores are much more spread out than Team 
Risa’s. Thus, we say that the data sets have different variation.

There are several ways to measure variation, including the sum 
of squared deviations, variance, and standard deviation. Each of 
these measures share the following characteristics:

•	 All of them measure the spread of the data from the mean.

•	 The greater the variation in the data, the greater the value of the 
measure.

•	 The minimum value of the measures is zero—that happens only 
if your data doesn’t vary at all!

Sum of Squared Deviations

The sum of squared deviations is a measure often used during 
regression analysis. It is calculated as follows:

sum of (individual score − mean score)2,

which is written mathematically as

x x−( )∑ 2
.

The sum of squared deviations is not often used on its own to 
describe variation because it has a fatal shortcoming—its value 
increases as the number of data points increases. As you have 
more and more numbers, the sum of their differences from the 
mean gets bigger and bigger.

Variance

This shortcoming is alleviated by calculating the variance:

x x

n

−( )
−

∑ 2

1 , where n = the number of data points.

This calculation is also called the unbiased sample variance, 
because the denominator is the number of data points minus 1 
rather than simply the number of data points. In research studies 
that use data from samples, we usually subtract 1 from the number 
of data points to adjust for the fact that we are using a sample of the 
population, rather than the entire population. This increases the 
variance. 

This reduced denominator is called the degrees of freedom, 
because it represents the number of values that are free to vary. 
For practical purposes, it is the number of cases (for example, obser-
vations or groups) minus 1. So if we were looking at Team Miu and 
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Team Risa as samples of the entire karaoke-singing population, 
we’d say there were 4 degrees of freedom when calculating their 
statistics, since there are five members on each team. We subtract 
1 from the number of singers because they are just a sample of all 
possible singers in the world and we want to overestimate the vari-
ance among them.

The units of the variance are not the same as the units of the 
observed data. Instead, variance is expressed in units squared, in 
this case “points squared.”

Standard Deviation

Like variance, the standard deviation shows whether all the data 
points are clustered together or spread out. The standard deviation 
is actually just the square root of the variance:

variance

Researchers usually use standard deviation as the measure of 
variation because the units of the standard deviation are the same 
as those of the original data. For our karaoke singers, the standard 
deviation is reported in “points.”

Let’s calculate the sum of squared deviations, variance, and 
standard deviation for Team Miu (see Table 1-5).

Table 1-5: Measuring variation of scores for Team Miu

Measure of variation Calculation

Sum of squared 
deviations

( ) ( ) ( ) ( ) ( )

( ) ( )

48 60 32 60 88 60 61 60 71 60

12 28

2 2 2 2 2

2 2

− + − + − + − + −
= − + − ++ + +
=

28 1 11

1834

2 2 2

Variance 1834
5 1

458 8
−

= .

Standard deviation 458 5 21 4. .=

Now let’s do the same for Team Risa (see Table 1-6).

Table 1-6: Measuring variation of scores for Team Risa

Measure of variation Calculation

Sum of squared 
deviations

( ) ( ) ( ) ( ) ( )

( )

67 60 55 60 61 60 63 60 54 60

7 5 1 3

2 2 2 2 2

2 2 2

− + − + − + − + −
= + − + + 22 26

120

+ −
=

( )

Variance 120
5 1

30
−

=

Standard deviation 30 5 5= .
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We see that Team Risa’s standard deviation is 5.5 points, 
whereas Team Miu’s is 21.4 points. Team Risa’s karaoke scores 
vary less than Team Miu’s, so Team Risa has more consistent 
karaoke performers.

Probability Density Functions

We use probability to model events that we cannot predict with 
certainty. Although we can accurately predict many future events—
such as whether running out of gas will cause a car to stop run-
ning or how much rocket fuel it would take to get to Mars—many 
physical, chemical, biological, social, and strategic problems are so 
complex that we cannot hope to know all of the variables and forces 
that affect the outcome. 

A simple example is the flipping of a coin. We do not know all 
of the physical forces involved in a single coin flip—temperature, 
torque, spin, landing surface, and so on. However, we expect that 
over the course of many flips, the variance in all these factors will 
cancel out, and we will observe an equal number of heads and tails. 
Table 1-5 shows the results of flipping a billion quarters in number 
of flips and percentage of flips.

Table 1-5: Tally of a Billion Coin Flips

Number of flips Percentage of flips

Heads 499,993,945 49.99939%

Tails 500,006,054 50.00061%

Stands on its edge 1 0.0000001%

As we might have guessed, the percentages of heads and tails 
are both very close to 50%. We can summarize what we know about 
coin flips in a probability density function, P(x), which we can apply 
to any given coin flip, as shown here:

P(Heads) = .5, P(Tails) = .5, P(Stands on its edge) < 1 × 10–9

But what if we are playing with a cheater? Perhaps someone has 
weighted the coin so that P(x) is now this:

P(Heads) = .3, P(Tails) = .7, P(Stands on its edge) = 0

What do we expect to happen on a single flip? Will it always be 
tails? What will the average be after a billion flips?
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Not all events have so few possibilities as these coin examples. 
We often wish to model data that can be continuously measured. 
For example, height is a continuous measurement. We could mea-
sure your height down to the nearest meter, centimeter, millimeter, 
or . . . nanometer. As we begin dealing with data where the possi-
bilities lie on a continuous space, we need to use continuous func-
tions to represent the probability of events.

A probability density function allows us to to compute the prob-
ability that the data lies within a given range of values. We can plot 
a probability density function as a curve, where the x-axis repre-
sents the event space, or the possible values the result can take, 
and the y-axis is f(x), or the probability density function value of x. 
The area under the curve between two possible values represents 
the probability of getting a result between those two values.

Normal Distributions

One important probability density function is the normal distri
bution (see Figure 1-2), also called the bell curve because of its 
symmetrical shape, which researchers use to model many events.

Figure 1-2: A normal distribution

The standard normal distribution probability density function 
can be expressed as follows:

f x e
x

( ) ==
−−1

2

2

2

ππ
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The mean of the standard normal distribution function is zero. 
When we plot the function, its peak or maximum is at the mean 
and thus at zero. The tails of the distribution fall symmetrically 
on either side of the mean in a bell shape and extend to infinity, 
approaching, but never quite touching, the x-axis. The standard 
normal distribution has a standard deviation of 1. Because the 
mean is zero and the standard deviation is 1, this distribution is 
also written as N(0,1).

The area under the curve is equal to 1 (100%), since the value 
will definitely fall somewhere beneath the curve. The further from 
the mean a value is, the less probable that value is, as represented 
by the diminishing height of the curve. You may have seen a curve 
like this describing the distribution of test scores. Most test takers 
have a score that is close to the mean. A few people score excep-
tionally high, and a few people score very low.

Chi-Squared Distributions

Not all data is best modeled by a normal distribution. The chi-
squared (χ2) distribution is a probability density function that fits 
the distribution of the sum of squares. That means chi-squared 
distributions can be used to estimate variation. The chi-squared 
probability density function is shown here: 

f x x e dx

x e
x

k k
x

k x

( ) ,=










− −∞

− −

∫

1

2

0

2 2
1

0

2
1

2× ×

          

 >> 0

0x, ≤

The sum of squares can never be negative, and we see that f(x) 
is exactly zero for negative numbers. When the probability density 
function of x is the one shown above, we say, “x follows a chi-
squared distribution with k degree(s) of freedom.” 

The chi-squared distribution is related to the standard normal 
distribution. In fact, if you take Z

1
, Z

2
, . . . , Z

k
, as a set of indepen-

dent, identically distributed standard normal random variables and 
then take the sum of squares of these variables like this,

X Z Z Zk== ++ ++ ++1
2

2
2 2
 ,

then X is a chi-squared random variable with k degrees of freedom. 
Thus, we will use the chi-squared distribution of k to represent 
sums of squares of a set of k normal random variables.

When k = 2
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In Figure 1-3, we plot two chi-squared density curves, one for 
k = 2 degrees of freedom and another for k = 10 degrees of freedom. 

0
0

5 10 15 20

0.1

0.2

0.3

0.4

                   
0

0
1510 2520

0.05

0.1

5 30 35 40

Figure 1-3: Chi-squared density curves for 2 degrees of freedom (left) and 10 degrees of 

freedom (right)

Notice the differences. What is the limit of the density functions 
as x goes to infinity? Where is the peak of the functions? 

Probability Density Distribution Tables

Let’s say we have a data set with a variable X that follows a chi-
squared distribution, with 5 degrees of freedom. If we wanted to 
know for some point x whether the probability P of X > x is less 
than a target probability—also known as the critical value of the 
statistic—we must integrate a density curve to calculate that prob-
ability. By integrate, we mean find the area under the relevant por-
tion of the curve, illustrated in Figure 1-4.

χ2

P

Figure 1-4: The probability P that a value X exceeds  

the critical chi-squared value x

When k = 2 When k = 10
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Since that is cumbersome to do by hand, we use a computer or, 
if one is unavailable, a distribution table we find in a book. Distri-
bution tables summarize features of a density curve in many ways. 
In the case of the chi-squared distribution, the distribution table 
gives us the point x such that the probability that X > x is equal to 
a probability P. Statisticians often choose P = .05, meaning there is 
only a 5% chance that a randomly selected value of X will be greater 
than x. The value of P is known as a p-value.

We use a chi-squared probability distribution table (Table 1-6) 
to see where our degrees of freedom and our p-value intersect. This 
number gives us the value of c2 (our test statistic). The probability 
of a chi-squared of this magnitude is equal to or less than the p at 
the top of the column.

Table 1-6: Chi-Squared Probability Distribution Table

.995 .99 .975 .95 .05 .025 .01 .005

1 0.000039 0.0002 0.0010 0.0039 3.8415 5.0239 6.6349 7.8794

2 0.0100 0.0201 0.0506 0.1026 5.9915 7.3778 9.2104 10.5965

3 0.0717 0.1148 0.2158 0.3518 7.8147 9.3484 11.3449 12.8381

4 0.2070 0.2971 0.4844 0.7107 9.4877 11.1433 13.2767 14.8602

5 0.4118 0.5543 0.8312 1.1455 11.0705 12.8325 15.0863 16.7496

6 0.6757 0.8721 1.2373 1.6354 12.5916 14.4494 16.8119 18.5475

7 0.9893 1.2390 1.6899 2.1673 14.0671 16.0128 18.4753 20.2777

8 1.3444 1.6465 2.1797 2.7326 15.5073 17.5345 20.0902 21.9549

9 1.7349 2.0879 2.7004 3.3251 16.9190 19.0228 21.6660 23.5893

10 2.1558 2.5582 3.2470 3.9403 18.3070 20.4832 23.2093 25.1881

To read this table, identify the k degrees of freedom in the first 
column to determine which row to use. Then select a value for p. 
For instance, if we selected p = .05 and had degrees of freedom 
k = 5, then we would find where the the fifth column and the fifth 
row intersect (highlighted in Table 1-6). We see that x = 11.0705. 
This means that for a chi-squared random variable and 5 degrees 
of freedom, the probability of getting a draw X = 11.0705 or greater 
is .05. In other words, the area under the curve corresponding to 
chi-squared values of 11.0705 or greater is equal to 11% of the total 
area under the curve.

If we observed a chi-squared random variable with 5 degrees 
of freedom to have a value of 6.1, is the probability more or less 
than .05? 

degrees 
of freedom

p

When v
1
 = 5 and v

2
 = 10
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F Distributions

The F distribution is just a ratio of two separate chi-squared dis-
tributions, and it is used to compare the variance of two samples. 
As a result, it has two different degrees of freedom, one for each 
sample. 

This is the probability density function of an F distribution: 
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If the probability density function of X is the one shown above, 
in statistics, we say, “X follows an F distribution with degrees of 
freedom v

1
 and v

2
.”

When v
1
 = 5 and v

2
 = 10 and when v

1
 = 10 and v

2
 = 5, we get 

slightly different curves, as shown in Figure 1-5.
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Figure 1-5: F distribution density curves for 5 and 10 respective degrees of freedom (left) 
and 10 and 5 respective degrees of freedom (right)

Figure 1-6 shows a graph of an F distribution with degrees of 
freedom v

1
 and v

2
. This shows the F value as a point on the hori-

zontal axis, and the total area of the shaded part to the right is 
the probability P that a variable with an F distribution has a value 
greater than the selected F value.

When v
1
 = 5 and v

2
 = 10 When v

1
 = 10 and v

2
 = 5
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F(first degree of freedom, second degree of freedom; P)

P

Figure 1-6: The probability P that a value x exceeds the critical F value

Table 1-7 shows the F distribution table when p = .05.

Table 1-7: F Probability Distribution Table for p = .05

1 2 3 4 5 6 7 8 9 10

1 161.4 199.5 215.7 224.6 230.2 264.0 236.8 238.9 240.5 241.9
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4
3 10.1 9.6 9.3 9.1 9.0 8.9 8.9 8.8 8.8 8.8
4 7.7 6.9 6.6 6.4 6.3 6.2 6.1 6.0 6.0 6.0
5 6.6 5.8 5.4 5.2 5.1 5.0 4.9 4.8 4.8 4.7
6 6.0 5.1 4.8 4.5 4.4 4.3 4.2 4.1 4.1 4.1
7 5.6 4.7 4.3 4.1 4.0 3.9 3.8 3.7 3.7 3.6
8 5.3 4.5 4.1 3.8 3.7 3.6 3.5 3.4 3.4 3.3
9 5.1 4.3 3.9 3.6 3.5 3.4 3.3 3.2 3.2 3.1
10 5.0 4.1 3.7 3.5 3.3 3.2 3.1 3.1 3.0 3.0
11 4.8 4.0 3.6 3.4 3.2 3.1 3.1 2.9 2.9 2.9
12 4.7 3.9 3.5 3.3 3.1 3.0 2.9 2.8 2.8 2.8

Using an F distribution table is similar to using a chi-squared 
distribution table, only this time the column headings across the 
top give the degrees of freedom for one sample and the row labels 
give the degrees of freedom for the other sample. A separate table 
is used for each common p-value.

In Table 1-7, when v
1
 = 1 and v

2
 = 12, the critical value is 4.7. 

This means that when we perform a statistical test, we calculate 
our test statistic and compare it to the critical value of 4.7 from this 
table; if our calculated test statistic is greater than 4.7, our result 
is considered statistically significant. In this table, for any test sta-
tistic greater than the number in the table, the p-value is less than 
.05. This means that when v

1
 = 1 and v

2
 = 12, the probability of an 

F statistic of 4.7 or higher occurring when your null hypothesis is 
true is 5%, so there’s only a 5% chance of rejecting the null hypoth-
esis when it is actually true.

v1

v2
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Let’s look at another example. Table 1-8 shows the F distribu-
tion table when p = .01. 

Table 1-8: F Probability Distribution Table for p = .01

1 2 3 4 5 6 7 8 9 10

1 4052.2 4999.3 5403.5 5624.3 5764.0 5859.0 5928.3 5981.0 6022.4 6055.9
2 98.5 99.0 99.2 99.3 99.3 99.3 99.4 99.4 99.4 99.4
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2
4 21.2 18.8 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5
5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1
6 13.7 10.9 9.8 9.1 8.7 8.5 8.3 8.1 8.0 7.9
7 12.2 9.5 8.5 7.8 7.5 7.2 7.0 6.8 6.7 6.6
8 11.3 8.6 7.6 7.0 6.6 6.4 6.2 6.0 5.9 5.8
9 10.6 8.0 7.0 6.4 6.1 5.8 5.6 5.5 5.4 5.6
10 10.0 7.6 6.6 6.0 5.6 5.4 5.2 5.1 4.9 4.8
11 9.6 7.2 6.2 5.7 5.3 5.1 4.9 4.7 4.6 4.5
12 9.3 6.9 6.0 5.4 5.1 4.8 4.6 4.5 4.4 4.3

Now when v
1
 = 1 and v

2
 = 12, the critical value is 9.3. The prob

ability that a sample statistic as large or larger than 9.3 would 
occur if your null hypothesis is true is only .01. Thus, there is a 
very small probability that you would incorrectly reject the null 
hypothesis. Notice that when p = .01, the critical value is larger 
than when p = .05. For constant v

1
 and v

2
, as the p-value goes down, 

the critical value goes up.

v1

v2
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Simple 

Regression 
Analysis



there is a 
connection 
between the 
two, right?

That means...

Exactly!

Where did you 
learn so much 

about regression 
analysis, miu?

Miu!

blink
blink

Earth to 
Miu! Are you 

there?

First Steps
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You were staring 
at that couple.

Ack, you 
caught me!

I got it!

It’s just...
they're studying 

together.

I wish I 
could study with 

him like that.

that's why I am 
Teaching you! And 
there’s no crying 

in statistics!

There, 
there.

pat

pat

We're finally 
doing regression 

analysis today. 
Doesn't that 

cheer you up?

Yes. I want 
to learn.

sigh

I’m
 

sorr
y!
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All right  
then, let’s go!  

This table shows the 
high temperature and 
the number of iced 

tea orders every day 
for two weeks.

High temp. (°C) Iced tea orders

22nd (Mon.) 29 77

23rd (Tues.) 28 62

24th (Wed.) 34 93

25th (Thurs.) 31 84

26th (Fri.) 25 59

27th (Sat.) 29 64

28th (Sun.) 32 80

29th (Mon.) 31 75

30th (Tues.) 24 58

31st (Wed.) 33 91

1st (Thurs.) 25 51

2nd (Fri.) 31 73

3rd (Sat.) 26 65

4th (Sun.) 30 84

Now...

...we'll first 
make this into a 
scatter plot...

...Like this. I see.

See how the dots 
roughly line up? That 

suggests these variables 
are correlated. The 

correlation coefficient, 
called R, indicates 
how strong the  
correlation is. 

R ranges from +1 to 
-1, and the further it is 

from zero, the stronger 
the correlation.* I’ll show 
you how to work out the 
correlation coefficient 

on page 78.
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R = 0.9069

Plotting the Data

* A positive R value indicates a 
positive relationship, meaning as 

x increases, so does y. A negative 
R value means as the x value 

increases, the y value decreases. 
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Here, R is large, 
indicating iced 

tea really does 
sell better on 
hotter days. 

Yes, That 
makes sense!

but it’s not really 
surprising.

Obviously more 
people order 
iced tea when 
it's hot out.

True, this 
information isn't 
very useful by 

itself. You mean 
there's 
more?

Sure! We 
haven't even 
begun the 

regression 
analysis.

you can predict 
the number of 

iced tea orders 
from the high 
temperature.

oh, yeah...
but how?

today's high 
will be 31° C

today's high 
will be 27° C

31°C

Bing!

today, there 
will be 61 
orders of 
iced tea!

iced tea

iced tea

high  
of  
31°...

rEmember what 
I told you the 

other day? Using 
regression 
analysis...
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Basically, 
the goal of 
regression 
analysis is...

...To obtain the 
regression equation...

...in the form of  
y = ax + b.

If you input a high 
temperature for x...

What can that tell us?

...You can predict 
how many 

orders of iced 
tea there will 

be (y).

Ic
e
d
 t

e
a
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r
d
e
r
s

High temp. (°C) High temp. (°C)

Ic
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e
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s
c
r
a
tc

h

Hold on! 
Let me grab 

a pencil.

s
c
r
it
c
h

The Regression Equation

Are you 
ready?
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I see! Regression 
analysis doesn't 
seem too hard.

Just 
you 

wait...

As I said earlier, y is the 
dependent (or outcome) 

variable and x is the 
independent (or predictor) 

variable. 

dependent variable Independent variable

a is the regression coefficient, 
which tells us the slope of 

the line we make.

That leaves 
us with b, the 
intercept. This 
tells us where 

our line crosses 
the y-axis.

okay, got it. So how do I get the 
regression equation? 

Hold on, Miu.

Finding the 
equation is 

only part of 
the story.

You also need to 
learn how to verify 

the accuracy of 
your equation by 

testing for certain 
circumstances. Let’s 
look at the process 

as a whole. 
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Here's an 
overview of 
regression 

analysis.

Draw a scatter plot of the independent variable 
versus the dependent variable. If the dots line up, 

the variables may be correlated.

Calculate the regression equation.

Calculate the correlation coefficient (R) and 
assess our population and assumptions. 

Conduct the analysis of Variance.

Calculate the confidence intervals.

Make a prediction!

What’s R ?

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

r
e
g

r
e
ss

io
n
 

d
ia

g
n
o

s
t
ic

s

General Regression 
Analysis Procedure
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High temp. (°C) Iced tea orders

22nd (Mon.) 29 77

23rd (Tues.) 28 62

24th (Wed.) 34 93

25th (Thurs.) 31 84

26th (Fri.) 25 59

27th (Sat.) 29 64

28th (Sun.) 32 80

29th (Mon.) 31 75

30th (Tues.) 24 58

31st (Wed.) 33 91

1st (Thurs.) 25 51

2nd (Fri.) 31 73

3rd (Sat.) 26 65

4th (Sun.) 30 84

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

55

60

65

70
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80

85
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100

High temp. (°C)
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We have to 
do all these 

steps?

For a 
thorough 

analysis, yes.

What do steps 4 and 5 
even mean?

we'll go over 
that later.

confidence?

diagnostics?

It's easier to 
explain with an 

example. let's use 
sales data from 

Norns.

all 
right!

independent 
variable

dependent 
variable

Step 1: Draw a scatter plot of the independent 
variable versus the dependent variable. If the 
dots line up, the variables may be correlated.

We’ve 
done that 
already.

First, draw a 
scatter plot of the 
independent variable 
and the dependent 

variable.

Variance?
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And we know from 
earlier that the 

value of R is 0.9069, 
which is pretty  

high.

It looks like 
these variables 
are correlated.

Do you really 
learn anything 

from all 
those dots? 
Why not just 
calculate R ? The shape 

of our 
data is 

important!
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y = 0.2x + 69.5

Look at this chart. Rather 
than flowing in a line, 

the dots are scattered 
randomly.

You can still find a 
regression equation, 

but it's meaningless. The 
low R value confirms 
it, but the scatter plot 

lets you see it with 
your own eyes.

always draw a 
plot first to 

get a sense of 
the data's shape.

Oh, I see.  
Plots...are...
important!

When we plot 
each day’s high 

temperature against 
iced tea orders, they 

seem to line up.



General Regression Analysis Procedure  71

Step 2: Calculate the regression equation.

Now, let's make 
a regression 

equation!

Let's find 
a and b!

Finally, 
the time 

has come.

Let’s draw a 
straight line, 

following the 
pattern in the data 

as best we can.

The little arrows are 
the distances from the 
line, which represents 
the estimated values 

of each dot, which are 
the actual measured 
values. The distances 
are called residuals. 
The goal is to find the 
line that best minimizes 

all the residuals.

This is called 
Linear Least 

Squares 
regression.

High temp. (°C)

Ic
e
d
 t

e
a
 o

r
d
e
r
s

We square the 
residuals to 

find the sum of 
squares, which 
we use to find 
the regression 

equation.

I'll add 
this to my 

notes.

Steps within 

steps?!Differentiate Se with respect to a 
and b, and set it equal to 0.

Separate out a and b.

Isolate the a component.

Find the regression equation.

Calculate Sxx (sum of squares of 
x), Syy (sum of squares of y), and 
Sxy (sum of products of x and y).

Calculate Se (residual sum of 
squares).
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Okay, let's start 
calculating!

Gulp

High temp. 
in °C 

x

Iced tea 
orders 

y x x−− y y−− x x−−(( ))2 y y−−(( ))2 x x y y−−(( )) −−(( ))
22nd (Mon.) 29 77 −0.1 4.4 0.0 19.6 −0.6

23rd (Tues.) 28 62 −1.1 −10.6 1.3 111.8 12.1

24th (Wed.) 34 93 4.9 20.4 23.6 417.3 99.2

25th (Thurs.) 31 84 1.9 11.4 3.4 130.6 21.2

26th (Fri.) 25 59 −4.1 −13.6 17.2 184.2 56.2

27th (Sat.) 29 64 −0.1 −8.6 0.0 73.5 1.2

28th (Sun.) 32 80 2.9 7.4 8.2 55.2 21.2

29th (Mon.) 31 75 1.9 2.4 3.4 5.9 4.5

30th (Tues.) 24 58 −5.1 −14.6 26.4 212.3 74.9

31st (Wed.) 33 91 3.9 18.4 14.9 339.6 71.1

1st (Thurs.) 25 51 −4.1 −21.6 17.2 465.3 89.4

2nd (Fri.) 31 73 1.9 0.4 3.4 0.2 0.8

3rd (Sat.) 26 65 −3.1 −7.6 9.9 57.8 23.8

4th (Sun.) 30 84 0.9 11.4 0.7 130.6 9.8

Sum 408 1016 0 0 129.7 2203.4 484.9

Average 29.1 72.6

yx Sxx Syy Sxy

Note: The bar over a variable (like x ) is a notation that means 
average. We can call this variable x-bar.

Find

•	 The sum of squares of x, Sxx: x x−−(( ))2

•	 The sum of squares of y, Syy: y y−−(( ))2

•	 The sum of products of x and y, Sxy: x x y y−−(( )) −−(( ))

* Some of the figures in this chapter are rounded 
for the sake of printing, but calculations are 

done using the full, unrounded values resulting 
from the raw data unless otherwise stated.
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Find the residual sum of squares, Se.

•	 y is the observed value.

•	 ŷ  is the the estimated value based on our regression equation.

•	 y − ŷ  is called the residual and is written as e.

The sum of the residuals squared is 
called the residual sum of squares. 

It is written as Se or RSS.

High 
temp. 
in °C 

x

Actual iced 
tea orders 

y

Predicted 
iced tea 
orders Residuals (e) Squared residuals

 2ˆy y

22nd (Mon.) 29 77 a × 29 + b 77 − (a × 29 + b) [77 − (a × 29 + b)]2

23rd (Tues.) 28 62 a × 28 + b 62 − (a × 28 + b) [62 − (a × 28 + b)]2

24th (Wed.) 34 93 a × 34 + b 93 − (a × 34 + b) [93 − (a × 34 + b)]2

25th (Thurs.) 31 84 a × 31 + b 84 − (a × 31 + b) [84 − (a × 31 + b)]2

26th (Fri.) 25 59 a × 25 + b 59 − (a × 25 + b) [59 − (a × 25 + b)]2

27th (Sat.) 29 64 a × 29 + b 64 − (a × 29 + b) [64 − (a × 29 + b)]2

28th (Sun.) 32 80 a × 32 + b 80 − (a × 32 + b) [80 − (a × 32 + b)]2

29th (Mon.) 31 75 a × 31 + b 75 − (a × 31 + b) [75 − (a × 31 + b)]2

30th (Tues.) 24 58 a × 24 + b 58 − (a × 24 + b) [58 − (a × 24 + b)]2

31st (Wed.) 33 91 a × 33 + b 91 − (a × 33 + b) [91 − (a × 33 + b)]2

1st (Thurs.) 25 51 a × 25 + b 51 − (a × 25 + b) [51 − (a × 25 + b)]2

2nd (Fri.) 31 73 a × 31 + b 73 − (a × 31 + b) [73 − (a × 31 + b)]2

3rd (Sat.) 26 65 a × 26 + b 65 − (a × 26 + b) [65 − (a × 26 + b)]2

4th (Sun.) 30 84 a × 30 + b 84 − (a × 30 + b) [84 − (a × 30 + b)]2

Sum 408 1016 408a + 14b 1016 − (408a + 14b)  Se

Average 29.1 72.6 29.1a + b 

= xa b+
72.6 − (29.1a + b) 

= y xa b− +( ) = Se

14

ŷ ax b  ˆy y

yx S a b a be = − × +( )  + + − × +( ) 77 29 84 30
2 2


Note: The caret in ŷ is affectionately called a hat, so we call this 
parameter estimate y-hat.
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Rearrange u and v from the previous step.

Rearrange u.

Rearrange v.

Differentiate Se with respect to a and b, and set it equal to 0. 
When differentiating y ax b

n= +( ) −1
 with respect to x, the result is 

dy
dx

n ax b a
n= +( ) ×−1

.

•	 Differentiate with respect to a.

•	 Differentiate with respect to b.

dS

da
a b a be = − +( )  × −( ) + + − +( )  × −( ) =2 77 29 29 2 84 30 30 0 u

dS

db
a b a be = − +( )  × −( ) + + − +( )  × −( ) =2 77 29 1 2 84 30 1 0 v

2 77 29 29 2 84 30 30 0

77 29

− +( )  × −( ) + + − +( )  × −( ) =
− +( )

a b a b

a b



  × −( ) + + − +( )  × −( ) =
+( ) −  + +

29 84 30 30 0

29 29 77 30 30





a b

a b aa b

a b a b

+( ) −  =

× + × − ×( ) + + × + × − ×( ) =
84 0

29 29 29 29 77 30 30 30 30 84 0

229 30 29 30 29 77 30 84 02 2+ +( ) + + +( ) − × + + ×( ) =  a b

Divide both sides by 2.

w

2 77 29 1 2 84 30 1 0

77 29

− +( )  × −( ) + + − +( )  × −( ) =
− +( ) 

a b a b

a b

�

 × −( ) + + − +( )  × −( ) =
+( ) −  + + +( ) −

1 84 30 1 0

29 77 30 84

�

�

a b

a b a b  =

+ +( ) + + + − + +( ) =

+ +( ) + −

0

29 30 77 84 0

29 30 14 7
14

� �� �� �� �

�

a b b

a b 77 84 0

14 77 84 29 30

77 84
14

29 30
14

+ +( ) =
= + +( ) − + +( )

=
+ +

−
+ +

�

� �
� �

b a

b a

b == −y xa

x

Multiply by -1.

multiply.

separate out  
a and b.

separate out  
a and b.

subtract 14b from both sides 
and multiply by -1.

Isolate b on the left side of the equation.

The components in x are the 
averages of y and x.

y

2 77 29 1 2 84 30 1 0

77 29

− +( )  × −( ) + + − +( )  × −( ) =
− +( ) 

a b a b

a b

�

 × −( ) + + − +( )  × −( ) =
+( ) −  + + +( ) −

1 84 30 1 0

29 77 30 84

�

�

a b

a b a b  =

+ +( ) + + + − + +( ) =

+ +( ) + −

0

29 30 77 84 0

29 30 14 7
14

� �� �� �� �

�

a b b

a b 77 84 0

14 77 84 29 30

77 84
14

29 30
14

+ +( ) =
= + +( ) − + +( )

=
+ +

−
+ +

�

� �
� �

b a

b a

b == −y xa

Divide both sides by 2.

Multiply by -1.
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Plug the value of b found in x into line w (w and x are the results 
from Step 4).

29 30 29 30
77 84

14
29 30

14
29 77 32 2+ +( ) + + +( ) + +

−
+ +







 − × + + 

 

a a 00 84 0

29 30
29 30 77 84

14

29 30

14
22 2

2

×( ) =

+ +( ) +
+ +( ) + +( )

−
+ +( )

−

  

a a 99 77 30 84 0

29 30
29 30

14

29 30
2 2

2

× + + ×( ) =

+ +( ) − + +( )











+
+ +





 

a
(( ) + +( )

− × + + ×( ) =

+ +( ) − + +( )



77 84

14
29 77 30 84 0

29 30
29 30

14
2 2

2


















= × + + ×( ) −
+ +( ) + +( )

a 29 77 30 84
29 30 77 84

14


 

x

w

Rearrange the right side of the equation.

Rearrange the left side of the equation.

29 30
29 30

14

29 30 2
29 30

14

29 3

2 2

2

2 2

2

+ +( ) − + +( )

= + +( ) − ×
+ +( )

+
+ +







  00

14

29 30 2 29 30
29 30

14
29 30

14

2

2 2
2

( )

= + +( ) − × + +( )× + + + + +





 

  ××14

We add and subtract 
29 30

14

2+ +( )

.

= + +( ) − × + +( )× + ( ) ×29 30 2 29 30 142 2 2
  x x

= + +( ) − × + +( )× + ( ) + + ( )

= − × ×

29 30 2 29 30

29 2 29

2 2 2 2

14

2

� � �
� ��� ���

x x x

x ++ ( )




+ + − × × + ( )





= −( ) + + −( )
=

x x x

x x

Sxx

2 2 2

2 2

30 2 30

29 30

�

�

29 77 30 84
29 30 77 84

14

29 77 30 84
29

× + + ×( ) − + +( ) + +( )

= × + + ×( ) − + +

�
� �

� � 330
14

77 84
14

14

29 77 30 84 14

29 77 30 84

× + + ×

= × + + ×( ) − × ×

= × + + ×( ) −

�

�

�

x y

xx y x y x y

y x

× × − × × + × ×

= × + + ×( ) − + + × × − × +

14 14 14

29 77 30 84
29 30

14
14

77� � ��

� � �

+ × + × ×

= × + + ×( ) − + +( ) − + +( ) + ×

84
14

14 14

29 77 30 84 29 30 77 84

x y

y x x yy

y x x y x y

×

= × + + ×( ) − + +( ) − + +( ) + × + + ×

14

29 77 30 84 29 30 77 84
14

� � � �� ����� ����

�= −( ) −( ) + + −( ) −( )
=

29 77 30 84x y x y

Sxy

S a S

a
S

S

xx xy

xy

xx

=

=

We add and subtract x y× ×14 .

isolate a on the left side of the equation.

Combine the 
a terms.

Transpose.

Now a is the 
only variable.

z

x = + +29 30
14


The last term is 

multiplied by 
14
14

.
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the relationship between the 
residuals and the slope a and 

intercept b is always

this is true for any 
linear regression.

we did it! 
we actually 

did it!

nice 
job!

Ic
e
d
 t

e
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r
d
e
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s

High temp. (°C)

Calculate the regression equation.

From z in Step 5, a
S

S
xy

xx

= . From y in Step 4, b y xa= − .

If we plug in the values we calculated in Step 1,

                                                 

a
S
S

b y xa

xx

xy

= = =

= − = − × = −









484 9
129 7

3 7

72 6 29 1 3 7 36 4

.

.
.

. . . .

then the regression equation is

                                                   y x= −3 7 36 4. . .

It’s that simple!

Note: The values shown are rounded for the sake of printing, but 
the result (36.4) was calculated using the full, unrounded values.

a
x y

x

S

S

b y

xy

xx

= =

= −

sum of products of  and 
sum of squares of 

xxa
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So, Miu, What 
are the average 
values for the 

high temperature 
and the iced tea 

orders?

The regression 
equation can be...

Now, if we 
set x to  the 

average value 
( x )  we found 

before... see what 
happens?

when x is the 
average, so is y!

...rearranged 
like this.

I see!

It does!

That’s from Step 4!

Remember, 
the average 

temperature is x  
and the average 

number of orders 
is y . Now for a 

little magic. 

29.1°C and  
72.6 orders.

Without 
looking, I can 

tell you that the 
regression equation 

crosses the point 
(29.1, 72.6).

Ic
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d
 t

e
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 o
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d
e
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s

High temp. (°C)

Let me 
see...
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next, we'll 
determine the 
accuracy of 

the regression 
equation we have 

come up with.

why? what will 
that tell us?

the dots are 
closer to the 

regression line 
in the left graph.

hmm...

right!
anything 

else?

well, the 
graph on 

the left has 
a steeper 
slope...

miu, can you see a 
difference between 
these two graphs?

r-square?

Step 3: Calculate the correlation coefficient (R ) and 
assess our population and assumptions.

example data and its regression equationOur data and its regression equation
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When a regression 
equation is 

accurate, the 
estimated values 

(the line) are 
closer to the 

observed values 
(dots).

that's why we 
need R !

The correlation 
coefficient from 

earlier, right? 

Right! we use R to represent an 
index that measures the accuracy 

of a regression equation. The index 
compares our data to our predictions—

in other words, the measured x and y 
to the estimated x̂ and ŷ .

so 
accurate 

means 
realistic?

right. Accuracy 
is important, but 
determining it by 

looking at a graph 
is pretty subjective.

the dots 
are 

close.

yes, that's true.

the dots 
are kind 
of far.

Ta-da!

R is also called 
the pearson 

product moment 
correlation 
coefficient 
in honor of 

mathematician 
karl pearson.

I see!

Correlation 
Coefficient
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Actual 
values 

y

Estimated 
values  

ŷ = 3.7x − 36.4 y y− ŷ y− ˆ y y−( )2 ŷ y−( )2ˆ y y y y−( ) −( )ˆ ˆ y y−( )ˆ 2

22nd (Mon.) 77 72.0 4.4 –0.5 19.6 0.3 –2.4 24.6

23rd (Tues.) 62 68.3 −10.6 –4.3 111.8 18.2 45.2 39.7

24th (Wed.) 93 90.7 20.4 18.2 417.3 329.6 370.9 5.2

25th (Thurs.) 84 79.5 11.4 6.9 130.6 48.2 79.3 20.1

26th (Fri.) 59 57.1 −13.6 –15.5 184.2 239.8 210.2 3.7

27th (Sat.) 64 72.0 −8.6 –0.5 73.5 0.3 4.6 64.6

28th (Sun.) 80 83.3 7.4 10.7 55.2 114.1 79.3 10.6

29th (Mon.) 75 79.5 2.4 6.9 5.9 48.2 16.9 20.4

30th (Tues.) 58 53.3 −14.6 –19.2 212.3 369.5 280.1 21.6

31st (Wed.) 91 87.0 18.4 14.4 339.6 207.9 265.7 16.1

1st (Thurs.) 51 57.1 −21.6 –15.5 465.3 239.8 334.0 37.0

2nd (Fri.) 73 79.5 0.4 6.9 0.2 48.2 3.0 42.4

3rd (Sat.) 65 60.8 −7.6 –11.7 57.3 138.0 88.9 17.4

4th (Sun.) 84 75.8 11.4 3.2 130.6 10.3 36.6 67.6

Sum 1016 1016 0 0 2203.4 1812.3 1812.3 391.1

Average 72.6 72.6

Here’s the equation. 
We calculate these 
like we did Sxx and 

Sxy before.

this looks 
familiar.

Se isn't necessary for 
calculating R, but I included 

it because we'll need it later.

THAT’S NOT 
TOO BAD!

ŷy S S SeSyy ŷŷ ŷŷ

Regression function!

R
y y

y
=

×

sum of products  and 

sum of squares of sum of squar

ˆ

ees of ˆ

.

. .
.

ˆ

ˆ ˆy

S

S S
yy

yy yy

=
×

=
×

=
1812 3

2203 4 1812 3
0 9069
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if we square R, 
it's called the 
coefficient of 

determination and 
is written as R2.

i am a 
correlation coefficient.

lowest... 
.5...

sure 
thing.

i am a correlation coefficient, 
too.

i am a 
coefficient of 
determination.

now try finding the 
value of R2.

It's .8225.

the higher the 
accuracy of the 

regression equation, 
the closer the R2 value 
is to 1, and vice versa.

unfortunately, there 
is no universal 

standard in statistics.

so how high does R2 
need to be for the 

regression equation 
to be considered 

accurate?

but generally we 
want a value of at 

least .5.

...how much 
variance is 

explained by 
our regression 

equation.

R2 can be an 
indicator of...

An R2 of zero indicates that 
the outcome variable can’t 
be reliably predicted from 

the predictor variable.



82  Chapter 2 S imple Regression Analysis

the value  
of R2 for our 

regression equation 
is well over .5, so our 

equation should be 
able to estimate iced 
tea orders relatively 

accurately.

Jot this equation 
down. R2 can be 

calculated directly 
from these values. 

Using our Norns data, 
1 − (391.1 / 2203.4) = 

.8225 ! 

Ic
e
d
 t

e
a
 o

r
d
e
r
s

High temp. (°C)

R 2 = .8225

Yay R 2!

That’s 
handy!

Now to assess the 
population and  
verify that our 

assumptions  
are met!

oh...

I meant to ask 
you about that. 

what population? 
japan? earth?

actually, the 
population 

we're talking 
about isn't 
people— 
it's data.

we've finished the 
first three steps.

hooray!

Samples and Populations

R
a S

S
S
S

xy

yy

e

yy

2

2

1=








 =

×
= −

correlation

coefficient



here, look 
at the tea 
room data 

again.

how many days 
are there 
with a high 

temperature  
of 31°C?

the 25th, 29th, 
and 2nd... 
so three.

I can make a 
chart like this 

from your 
answer.

now, 
consider 

that...

...these three days 
are not the only 
days in history 

with a high of 31°C, 
are they?

there must have been 
many others in the 
past, and there will 
be many more in the 

future, right?

of course.

So...

25th

29th

2nd

 High temp. (°C) Iced tea orders

22nd (Mon.) 29 77

23rd (Tues.) 28 62

24th (Wed.) 34 93

25th (Thurs.) 31 84

26th (Fri.) 25 59

27th (Sat.) 29 64

28th (Sun.) 32 80

29th (Mon.) 31 75

30th (Tues.) 24 58

31st (Wed.) 33 91

1st (Thurs.) 25 51

2nd (Fri.) 31 73

3rd (Sat.) 26 65

4th (Sun.) 30 84
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thanks, risa. 
I get it now.

good! on to 
diagnostics, 

then.

samples 
represent the 

population.
I see!

Population

Population

Population

Population

Population
Population

Population

high of 25°

high of 26°

high of 29°

high of 33°

high of 34°

high of 30°

high of 32°

high of 28°
23rd

3rd

28th

26th   1st

22nd  27th

4th

31st

3oth

25th
25th

29th

29th

2nd
2nd

3o
th 26 th

4 th

29 th

2
9
th

2
9
th

27 th

25 th

2
5

th

2
5

th

24
th

31 st

28 th

23 rd

22 nd

3 rd

2
nd

2
n
d

2
n
d

1 st

24th

Population

Population

Population

sample

sample

sample

sample
sampling

sample

sample

sample

sample

sample

sample
days with 

high of 24°

these three 
days are a 
sample...

...from the population of all 
days with a high temperature of 
31°C. We use sample data when it’s 
unlikely we’ll be able to get the 
information we need from every 
single member of the population.

That makes 
sense.

Ic
ed te

a o
rders

Iced te
a 

orders

Iced te
a o

rders

Iced te
a o

rders

Hig
h te

m
p. 

(°C)

all days with high 
temperature of 31°

for days with the 
same number of 
orders, the dots 

are stacked.

High temp. (°C)

High temp. (°C)

High temp. (°C)

flip



Ic
ed

 t
ea

 o
rd

er
s

Same 
shape

a regression 
equation is 

meaningful only 
if a certain 

hypothesis is 
viable.

here it is:

Let’s take it slow.  
first look at the 

shapes on this graph.

These shapes 
represent the entire 

population of iced tea 
orders for each high 
temperature. Since we 

can’t possibly know the 
exact distribution for each 

temperature, we have to 
assume that they must all 

be the same: a normal,  
bell-shaped curve.

alternative hypothesis

the number of orders of iced tea on 
days with temperature x°C follows a 

normal distribution with mean Ax+B and 
standard deviation σ (sigma).

High temp. (°C)

Like 
what?

Assumptions of Normality
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“must all be 
the same”?

could they differ 
according to 
temperature?

won’t the 
distributions 
be slightly 
different?

they’re never 
exactly the same.

but we must assume 
that they Are! 

regression depends 
on the assumption 

of normality!

just believe it, 
okay?

by the way, Ax+B is called 
the population regression. 
The expression ax+b is the 

sample regression.

I can 
do that.

good 
point.

C
o
ld

 
d
ay

Ho
t 

d
ay

You’re 
a sharp 
one...

 population regression

i’ll
 p

ut
 

th
at

 

in
 m

y 

no
te

s.
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now, let’s 
return to the 
story about 
A, B, and s.

perfect!

well, the 
regression 

equation was 
y = 3.7x - 36.4, 

so... 

A, B, and s are 
coefficients 
of the entire 
population.

Do you recall a, b, 
and the standard 
deviation for 
our Norns 

data?

A, like a, 
is a slope. 

B, like b, is an 
intercept. And s 
is the standard 

deviation.

population 

regress
ion is 

also near here?

Step 4: Conduct the analysis of variance.

•	 A is about 3.7

•	 B is about –36.4

•	 s is about 
391 1
14 2

391 1
12

5 7
. .

.
−

 

Is that right?

•	 a should be close to A

•	 b should be close to B

•	
Se

number of individuals − 2

if the regression equation is

should be 

close to s
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"close to" seems 
so vague. Can’t we 
find A, B, and s with 

more certainty?

however...

...we can determine 
once and for all 

whether A = 0!

you should 
look more 
excited! this 
is important!

... imagine if A 
were zero...

since A, B, and s are 
coefficients of the 

population, we’d 
need to use all the 
Norns iced tea and 

high temperature data 
throughout history! we 
could never get it all.

Tah-ruh!
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null hypothesisthe number of orders of 
iced tea on days with high 
temperature x °C follows 

a normal distribution with mean B and standard deviation σ.(A is absent!)

that would 
make this 
dreaded 

hypothesis 
true!

A is 
gone!

if the slope A = 0, the line is 
horizontal. That means iced 
tea orders are the same, 
no matter what the high 

temperature is!

the temperature 
doesn't matter!

sample 

regress
ion is 

about equal 

to population 

regress
ion

Ic
ed te

a o
rders

High Temp. (°C)

population regression

sample regression

How do we 
find out 
about A?

we can do an 
Analysis of 

Variance (ANOVA)!

Let’s do the 
analysis and see 
what fate has in 

store for A. 

this is 
getting 
exciting.

anova
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So A ≠ 0, 
what a relief!

Step 1 Define the population. The population is “days with a high temperature of 
x degrees.”

Step 2 Set up a null hypothesis and 
an alternative hypothesis.

Null hypothesis is A = 0.
Alternative hypothesis is A ≠ 0.

Step 3 Select which hypothesis test 
to conduct.

We’ll use analysis of one-way variance.

Step 4 Choose the significance level. We’ll use a significance level of .05.

Step 5 Calculate the test statistic 
from the sample data.

The test statistic is:

Plug in the values from our sample regression 
equation:

The test statistic will follow an F distribution 
with first degree of freedom 1 and second degree of 
freedom 12 (number of individuals minus 2), if the null 
hypothesis is true.

Step 6 Determine whether the 
p-value for the test statistic 
obtained in Step 5 is smaller 
than the significance level.

At significance level .05, with d1 being 1 and d2 being 12, 
the critical value is 4.7472. Our test statistic is 55.6.

Step 7 Decide whether you can reject 
the null hypothesis.

Since our test statistic is greater than the critical value, 
we reject the null hypothesis.

a

S

S

xx

e
2

1 2









÷
−number of individuals

3 7
1

129 7

391 1
2

55 6
2.

.

.
.






÷

−


14

the F statistic lets us test 
the slope of the line by 

looking at variance. if the 
variation around the line 
is much smaller than the 

total variance of Y, that’s 
evidence that the line 

accounts for Y’s variation, 
and the statistic will be 

large. if the ratio is small, 
the line doesn’t account 

for much variation in Y, and 
probably isn’t useful!

The Steps of ANOVA



Step 5: Calculate the confidence intervals.

now, let’s take 
a closer look 
at how well 

our regression 
equation 

represents the 
population.

in the 
population...

...lots of  
days have a  
high of 31°C,  

and the number 
of iced tea 
orders on 
those days 
varies. Our 
regression 

equation 
predicts only 

one value 
for iced tea 

orders at that 
temperature.

how do we 
know that 

it’s the right 
value?

we can’t know 
for sure. We 

choose the most 
likely value: the 
population mean.

If the population has a 
normal distribution...

huh? the ranges 
differ, depending 
on the value of x !

the mean number 
of orders is 

somewhere in here.

okay, i’m 
ready!

Ic
ed

 t
ea

 o
rd

er
s

Ic
ed

 t
ea

 o
rd

er
s

High temp. (°C)

High temp. (°C)

maximum 
mean 

orders

regression 
equation

minimum 
mean 

orders

days with a high 
of 31°C can expect 
approximately the 

mean number of iced 
tea orders. We can’t 
know the exact mean, 
but we can estimate 
a range in which it 

might fall. 
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we calculate an 
interval for each 

temperature.

even this interval 
isn’t absolutely 
guaranteed to 

contain the true 
population mean. 
Our confidence 
is determined by 
the confidence 

coefficient.

as you noticed, the 
width varies. It’s 

smaller near x– 
, which 

is the average high 
temperature value.

now, 
confidence... ...is no ordinary 

coefficient.

You choose 
the confidence 
coefficient, and 
you can make it 
any percentage 

you want. 

you would then say “a 42% 
confidence interval for iced tea 

orders when the temperature is 31°C 
is 30 to 35 orders,” for example!

?

confidence 

int
erval

m
o

r
e
 

o
r
d
e
r
s

f
e
w

e
r
 

o
r
d
e
r
s

sounds 
familiar!

I choose?

I will make it 42%.

there is no 
equation to 
calculate it, 
no set rule. 

when calculating a confidence 
interval, you choose the 

confidence coefficient first. 
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well, most 
people 

choose either 
95% or 99%.

42% is too 
low to 
be very 

meaningful.

Hey, if our 
confidence is based 
on the coefficient, 
isn’t higher better?

true, our confidence 
is higher when we 

choose 99%, but the 
interval will be much 

larger, too.

oh sure...

Sweet!

now, shall we 
calculate the 

confidence interval 
for the population 
of days with a high 

temperature of 31°C?

Yes, 
let’s!

Hmm, I see.

however, if the 
confidence coefficient 
is too low, the result is 

not convincing.

the number of orders 
of iced tea is probably 

between 40 and 80!

the number of orders 
of iced tea is almost 

certainly between 
0 and 120!

which should I choose?

well, not 
necessarily.

that’s not 
surprising.
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to calculate a 99% confidence interval, 
just change

F(1,14 – 2;.05) = 4.7

to

F(1,14 – 2;.01) = 9.3

here’s how to calculate a 95% 
confidence interval for iced tea 

orders on days with a high of 31°C.

(Refer to page 58 for an explanation of F(1,n–2;.05) = 4.7, and so on.)

where n is the number of data points in our sample and F is a ratio of 
two chi-squared distributions, as described on page 57.

So we are 95% sure 
that, if we look at the 

population of days 
with a high of 31°C, the 
mean number of iced 

tea orders is between 
76 and 83.

exactly!

Number of  
orders of iced tea

This is the confidence interval.

79.5 + 3.9 = 83.479.5* - 3.9 = 75.6

Distance from the estimated mean is 

   31 × a + b
= 31 × 3.7 - 36.4
= 79.5

    F n
n

x x

S
S

n

F

xx

e1 2 05
1

2

1 14 2 05

0

2

, ;.

, ;.

−( ) × +
−( )










×

−

= −( ) ×× +
−( )










×

−

=

1
14

31 29 1

129 7
391 1
14 2

3 9

2
.

.
.

.

* The value 79.5 was calculated using unrounded numbers.
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Step 6: Make a prediction!

at last, we 
make the 

prediction.
the final 

step!

If tomorrow’s 
high temperature 

is 27°C...

...how many iced 
tea orders will 

we get at the shop 
tomorrow?

hmm, the 
regression 
equation is 

y = 3.7x - 36.4...

bingo!

...so 
it’s 64!*

to
morrow’s 

weath
er

fair

high	
27°C

 

Low	 20°C 

Rain	
0%

* This calculation was performed using rounded figures. 
If you’re doing the calculation with the full,  

unrounded figures, you should get 64.6.
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but will there 
be exactly 
64 orders?

that's a great 
question.

We should 
get close to 

64 orders because 
the value of R2 is 

0.8225, but... 
how close? 

How can we 
possibly know 

for sure?

we'll pick a 
coefficient and 
then calculate a 

range in which iced 
tea orders will 
most likely fall.

didn't we 
just do 
that?

not quite. before, we 
were predicting the 
mean number of iced 
tea orders for the 
population of days 
with a certain high 

temperature, but now 
we're predicting the 
likely number of iced 
tea orders on a given 

day with a certain 
temperature.

I don't 
see the 

difference.

we'll make a 
prediction interval! 
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confidence intervals 
help us assess the 

population.

prediction intervals 
give a probable range 

of future values.

the prediction 
interval looks like a 
confidence interval, 
but it’s not the same.

As with a 
confidence 
interval, we 

need to choose 
the confidence 

coefficient 
before we can do 
the calculation. 

Again, 95% and 99% 
are popular. 

I just calculated 
an interval, so 
this should be 

a snap. 

the calculation is 
very similar, with 

one important 
difference...

the prediction 
interval will be 
wider because 
it covers the 

range of 
all expected 

values, not just 
where the mean 

should be.

the future 
is always 

surprising.

now, try 
calculating 

the prediction 
interval 
for 27°C.

no sweat!

how many 
orders will 

I get?

predictio
n 

int
erval

prediction 
interval

confidence 
interval

m
in

im
u
m
 

o
r
d
e
r
s

m
a
x
im

u
m
 

o
r
d
e
r
s

r
e
g

r
e
ss

io
n
 

e
q

u
a
t
io

n

what’s the 
population 

like?
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so we're 95% confident 
that the number of 

iced tea orders will be 
between 52 and 78 when 

the high temperature 
for that day is 27°C.

that's 
the idea!

The estimated number of tea orders we 
calculated earlier (on page 95) was rounded, 

but we’ve used the number of tea orders 
estimated using unrounded numbers, 64.6, here.

Here we used the F distribution to find the 
prediction interval and population regression. 

Typically, statisticians use the T distribution 
to get the same results.

here's how we calculate a 95% prediction 
interval for tomorrow's iced tea sales.

64.6 + 13.1 = 77.7*64.6 – 13.1 = 51.5    27 × a + b
= 27 × 3.7 – 36.4
= 64.6

Number of  
orders of iced tea

This is the prediction interval.

Distance from the estimated value is

* This calculation was performed using the rounded numbers 
shown here. The full, unrounded calculation results in 77.6.
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what are you 
staring at?

how was it?

It was difficult 
at times... ...but I’m catching 

on. I think I can 
do this.

Oh! I was 
daydreaming.

and predicting 
the future 
is really 
exciting!

we can make 
all kinds of 
predictions 
about the 

future.

like, how many 
days until you 

finally talk to him.

yeah, it 
rocks!

you made 
it through 

today’s lesson. 

Heh heh!
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Which Steps Are Necessary?

Remember the regression analysis procedure introduced on  
page 68?

1.	 Draw a scatter plot of the independent variable versus the 
dependent variable. If the dots line up, the variables may be 
correlated.

2.	 Calculate the regression equation.

3.	 Calculate the correlation coefficient (R) and assess our popula-
tion and assumptions.

4.	 Conduct the analysis of variance.

5.	 Calculate the confidence intervals.

6.	 Make a prediction!

In this chapter, we walked through each of the six steps, but it 
isn’t always necessary to do every step. Recall the example of Miu’s 
age and height on page 25. 

•	 Fact: There is only one Miu in this world.

•	 Fact: Miu’s height when she was 10 years old was 137.5 cm.

Given these two facts, it makes no sense to say that “Miu’s 
height when she was 10 years old follows a normal distribution 
with mean Ax + B and standard deviation σ.” In other words, it’s 
nonsense to analyze the population of Miu’s heights at 10 years old. 
She was just one height, and we know what her height was.

In regression analysis, we either analyze the entire population 
or, much more commonly, analyze a sample of the larger popula-
tion. When you analyze a sample, you should perform all the steps. 
However, since Steps 4 and 5 assess how well the sample represents 
the population, you can skip them if you’re using data from an entire 
population instead of just a sample.

NOTE 	 We use the term statistic to describe a measurement of a char-
acteristic from a sample, like a sample mean, and parameter to 
describe a measurement that comes from a population, like a 
population mean or coefficient.

Standardized Residual

Remember that a residual is the difference between the measured 
value and the value estimated with the regression equation. The 
standardized residual is the residual divided by its estimated 
standard deviation. We use the standardized residual to assess 
whether a particular measurement deviates significantly from 
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the trend. For example, say a group of thirsty joggers stopped 
by Norns on the 4th, meaning that though iced tea orders were 
expected to be about 76 based on that day’s high temperature, cus-
tomers actually placed 84 orders for iced tea. Such an event would 
result in a large standardized residual.

Standardized residuals are calculated by dividing each residual 
by an estimate of its standard deviation, which is calculated using 
the residual sum of squares. The calculation is a little complicated, 
and most statistics software does it automatically, so we won’t go 
into the details of the calculation here.

Table 2-1 shows the standardized residual for the Norns data 
used in this chapter.

Table 2-1: Calculating the standardized residual

High 
temperature

x

Measured 
number of 
orders of 
iced tea

y

Estimated 
number of 
orders of 
iced tea Residual Standardized 

residual

22nd (Mon.) 29 77 72.0 5.0 0.9

23rd (Tues.) 28 62 68.3 –6.3 –1.2

24th (Wed.) 34 93 90.7 2.3 0.5

25th (Thurs.) 31 84 79.5 4.5 0.8

26th (Fri.) 25 59 57.1 1.9 0.4

27th (Sat.) 29 64 72.0 –8.0 –1.5

28th (Sun.) 32 80 83.3 –3.3 –0.6

29th (Mon.) 31 75 79.5 –4.5 –0.8

30th (Tues.) 24 58 53.3 4.7 1.0

31st (Wed.) 33 91 87.0 4.0 0.8

1st (Thurs.) 25 51 57.1 –6.1 –1.2

2nd (Fri.) 31 73 79.5 –6.5 –1.2

3rd (Sat.) 26 65 60.8 4.2 0.8

4th (Sun.) 30 84 75.8 8.2 1.5

As you can see, the standardized residual on the 4th is 1.5. If 
iced tea orders had been 76, as expected, the standardized residual 
would have been 0.

Sometimes a measured value can deviate so much from the 
trend that it adversely affects the analysis. If the standardized 
residual is greater than 3 or less than –3, the measurement is 
considered an outlier. There are a number of ways to handle out
liers, including removing them, changing them to a set value, 
or just keeping them in the analysis as is. To determine which 
approach is most appropriate, investigate the underlying cause 
of the outliers.

ˆ . .y x= −3 7 36 4 y y− ˆ
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Interpolation and Extrapolation

If you look at the x values (high temperature) on page 64, you can 
see that the highest value is 34°C and the lowest value is 24°C. 
Using regression analysis, you can interpolate the number of iced 
tea orders on days with a high temperature between 24°C and 34°C 
and extrapolate the number of iced tea orders on days with a high 
below 24°C or above 34°C. In other words, extrapolation is the esti-
mation of values that fall outside the range of your observed data. 

Since we’ve only observed the trend between 24°C and 34°C, we 
don’t know whether iced tea sales follow the same trend when the 
weather is extremely cold or extremely hot. Extrapolation is there-
fore less reliable than interpolation, and some statisticians avoid it 
entirely.

For everyday use, it’s fine to extrapolate—as long as you’re 
aware that your result isn’t completely trustworthy. However, avoid 
using extrapolation in academic research or to estimate a value 
that’s far beyond the scope of the measured data.

Autocorrelation

The independent variable used in this chapter was high tempera-
ture; this is used to predict iced tea sales. In most places, it’s 
unlikely that the high temperature will be 20°C one day and then 
shoot up to 30°C the next day. Normally, the temperature rises or 
drops gradually over a period of several days, so if the two variables 
are related, the number of iced tea orders should rise or drop grad-
ually as well. Our assumption, however, has been that the deviation 
(error) values are random. Therefore, our predicted values do not 
change from day to day as smoothly as they might in real life. 

When analyzing variables that may be affected by the passage of 
time, it’s a good idea to check for autocorrelation. Autocorrelation 
occurs when the error is correlated over time, and it can indicate 
that you need to use a different type of regression model. 

There’s an index to describe autocorrelation—the Durbin-
Watson statistic, which is calculated as follows:

d
e e

e

t

T
t t

t

T
t

=
−

= −

=

∑
∑
2 1

2

1
2

( )
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The equation can be read as “the sum of the square of 
each residual minus the previous residual, divided by the sum 
of each residual squared.” You can calculate the value of the  
Durbin-Watson statistic for the example in this chapter:

( . . ) ( . ( . )) ( . . )
. ( . ) .

− − + − − + + −
+ − + +

=6 3 5 0 2 3 6 3 8 2 4 2
5 0 6 3 8 2

2 2 2

2 2 2




11 8.

The exact critical value of the Durbin-Watson test differs for 
each analysis, and you can use a table to find it, but generally we 
use 1 as a cutoff: a result less than 1 may indicate the presence of 
autocorrelation. This result is close to 2, so we can conclude that 
there is no autocorrelation in our example. 

Nonlinear Regression

On page 66, Risa said:

This equation is linear, but regression equations don’t have 
to be linear. For example, these equations may also be used as 
regression equations:

 ·  y a x b

·

·

·

 

 

 

y
a
x

b

y a x b

y ax bx c

= +

= +
= + +2

log×

The regression equation for Miu’s age and height introduced on 

page 26 is actually in the form of y
a
x

b= +  rather than y = ax + b.

The goal of regression analysis 
is to obtain the regression 

equation in the form of  
y = ax + b.
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Of course, this raises the question of which type of equation 
you should choose when performing regression analysis on your 
own data. Below are some steps that can help you decide.

1.	 Draw a scatter plot of the data points, with the dependent vari-
able values on the x-axis and the independent variable values on 
the y-axis. Examine the relationship between the variables sug-
gested by the spread of the dots: Are they in roughly a straight 
line? Do they fall along a curve? If the latter, what is the shape 
of the curve?

2.	 Try the regression equation suggested by the shape in the 
variables plotted in Step 1. Plot the residuals (or standardized 
residuals) on the y-axis and the independent variable on the 
x-axis. The residuals should appear to be random, so if there 
is an obvious pattern in the residuals, like a curved shape, this 
suggests that the regression equation doesn’t match the shape 
of the relationship. 

3.	 If the residuals plot from Step 2 shows a pattern in the residuals, 
try a different regression equation and repeat Step 2. Try the 
shapes of several regression equations and pick one that appears 
to most closely match the data. It’s usually best to pick the sim-
plest equation that fits the data well.

Transforming Nonlinear Equations into Linear Equations 

There’s another way to deal with nonlinear equations: simply turn 
them into linear equations. For an example, look at the equation for 
Miu’s age and height (from page 26):

y
x

+ = − +326 6
1

.
773 3.

You can turn this into a linear equation. Remember:

If 
1
x

X= , then 
1
X

x= .

So we’ll define a new variable X, set it equal to 
1
x

X=, and use X 

in the normal y = aX + b regression equation. As shown on page 76, 

the value of a and b in the regression equation y = aX + b can be 

calculated as follows:

a
S

S

b y Xa

Xy

XX

=

= −








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We continue with the analysis as usual. See Table 2-2.

Talbe 2-2: Calculating the regression equation

Age 
x

1____
age

1
x

X=
Height 

y y y−− X X−( )2 y y−−(( ))2 X X−( ) y y−( )

4 0.2500 100.1 0.1428 −38.1625 0.0204 1456.3764 −5.4515

5 0.2000 107.2 0.0928 −31.0625 0.0086 964.8789 −2.8841

6 0.1667 114.1 0.0595 −24.1625 0.0035 583.8264 −1.4381

7 0.1429 121.7 0.0357 −16.5625 0.0013 274.3164 −0.5914

8 0.1250 126.8 0.0178 −11.4625 0.0003 131.3889 −0.2046

9 0.1111 130.9 0.0040 −7.3625 0.0000 54.2064 −0.0292

10 0.1000 137.5 −0.0072 −0.7625 0.0001 0.5814 −0.0055

11 0.0909 143.2 −0.0162 4.9375 0.0003 24.3789 −0.0802

12 0.0833 149.4 −0.0238 11.1375 0.0006 124.0439 −0.2653

13 0.0769 151.6 −0.0302 13.3375 0.0009 177.889 −0.4032

14 0.0714 154.0 −0.0357 15.7375 0.0013 247.6689 −0.5622

15 0.0667 154.6 −0.0405 16.3375 0.0016 266.9139 −0.6614

16 0.0625 155.0 −0.0447 16.7375 0.0020 280.1439 −0.7473

17 0.0588 155.1 −0.0483 16.8375 0.0023 283.5014 −0.8137

18 0.0556 155.3 −0.0516 17.0375 0.0027 290.2764 −0.8790

19 0.0526 155.7 −0.0545 17.4375 0.0030 304.0664 −0.9507

Sum 184 1.7144 2212.2 0.0000 0.0000 0.0489 5464.4575 −15.9563

Average 11.5 0.1072 138.3

According to the table:

a
S

S

b y Xa

Xy

XX

= =
−

= −

= − = − × −

15 9563
0 0489

326 6

138 2625 0 1072 326

.
.

.

. .

*

.. .6 173 3( ) =









So the regression equation is this:

    y X y
x

= − + = − +326 6 173 3
326 6

1. .
.

773 3.

                                                                                      
height             

1
age

                                            
height    age

*  If your result is slightly different from 326.6, the difference might be due to 
rounding. If so, it should be very small.

X X−( )
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which is the same as this:

    y X y
x

= − + = − +326 6 173 3
326 6

1. .
.

773 3.

                                                                                      
height             

1
age

                                            
height    age

We’ve transformed our original, nonlinear equation into a 
linear one!

    y X y
x

= − + = − +326 6 173 3
326 6

1. .
.

773 3.

                                                                                      
height             

1
age

                                            
height    age

    y X y
x

= − + = − +326 6 173 3
326 6

1. .
.

773 3.

                                                                                      
height             

1
age

                                            
height    age
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Analysis



Thanks for 
bringing 
the data.

Don’t mention it. 
It's nice of you to 
help your friend.

Well...

...I have my 
reasons.

Sorry 
I'm late!

Risa...

Oh, that's 
her.

My class 
ended late. 

I ran.
It's okay. 

We just got 
here too.

pant

Wheeze

Over here!

Predicting with Many Variables
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Oh! Who's 
your 

friend?Beam

Oh, yeah.

This is 
Kazami. He's 
in my history 

class.

Ah! Nice 
to meet 

you.

Hello!

We're going to 
cover multiple 

regression analysis 
today, and Kazami 
brought us some 
data to analyze.

No problem. 
This is going to 

help me, too.

Thanks for helping me.

You like 
croissants, 
don't you, 

Miu?

Of 
course! 

They're 
delicious.

Which bakery 
is your 

favorite?

Definitely Kazami 
bakery—Theirs 
are the best!

Kazami... 
oh!
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Then you 
must be...?

The heir to 
the Kazami 

bakery 
empire!

Risa, don't 
be dramatic.

It's just a 
small family 

business.

There are only 
ten right now, 
and most of 

them are here 
in the city.

We're planning 
to open a new 

one soon.

But I see 
kazami 

bakeries all 
over town.

so today...

We’re going to 
predict the sales 
of the new shop 
using multiple 
regression 

analysis.

Wow!

Yumenooka
Sone

Hashimoto 

station

Kikyou  
Town

Post 
Office

suidobashi station 

rokujo 
station

wakaba riverside Misato Isebashi

Terai  Station



Predicting with Many Variables  111

according to my notes, 
multiple regression 
analysis uses more 
than one factor to 
predict an outcome.

In simple regression 
analysis, we used one 
variable to predict 

the value of another 
variable.

and just one outcome 
variable, y. like this, see?

every x variable 
has its own a , but 
there's still just 

one intercept.

Yep. Just 
one b.

I get it!

In multiple 
regression analysis, 

we use more than one 
variable to predict 
the value of our 
outcome variable. 

multiple regression equation

outcome 
variable

predictor 
variables

partial regression 
coefficients

That's 
right.

regression 
analysis

multiple regression analysis

predictor 
variable

predictor 
variable 1

predictor
variable 2

outcome
variable

predictor
variable P

outcome
variable
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well...

are the steps 
the same as in 

simple regression 
analysis?

they're similar—
but not exactly 

the same.

I'll write 
that 

down.

Multiple Regression Analysis Procedure

draw a scatter plot of each predictor variable and the 
outcome variable to see if they appear to be related.

examine the accuracy of the multiple regression equation.

conduct the analysis of Variance (ANOVA) test.

calculate confidence intervals for the population.

make a prediction!

calculate the multiple regression equation.

click!

The Multiple Regression Equation

We have to look at 
each predictor alone 
and all of them 

together.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6
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Step 1: Draw a scatter plot of each predictor variable and the 
outcome variable to see if they appear to be related.

have you 
gotten 

results yet? 
Can I see?

first, let's look 
at the data from 

the shops already 
in business.

not yet. 
Be patient.

the outcome 
variable is 

monthly sales, 
and the other two 

are predictor 
variables.

Now draw a 
scatter plot 

for each 
predictor 
variable.

Bakery

Floor space 
of the shop 

(tsubo*)

Distance to the 
nearest station 

(meters)
Monthly sales 

(¥10,000)

Yumenooka Shop 10 80 469

Terai Station Shop 8 0 366

Sone Shop 8 200 371

Hashimoto Station Shop 5 200 208

Kikyou Town Shop 7 300 246

Post Office Shop 8 230 297

Suidobashi Station Shop 7 40 363

Rokujo Station Shop 9 0 436

Wakaba Riverside Shop 6 330 198

Misato Shop 9 180 364

Yep!

* 1 tsubo is about 36 square feet.
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scribble

almost 
done?

done!

Correlation Coefficient = .8924 Correlation Coefficient = -.7751

Floor space Distance to the nearest station

monthly sales 
are higher in 

bigger shops and 
in shops near a 
train station.

looks like 
both of 

these affect 
monthly  
sales.

hmm
m...

totally.

M
o

n
t
h
ly

 s
a
l
e
s

M
o

n
t
h
ly

 s
a
l
e
s

hold 
on...

Yumenooka Shop Yumenooka Shop

Sone Shop
Sone Shop

Hashimoto Station Shop Hashimoto Station Shop 
Kikyou Town ShopKikyou Town Shop

Post Office ShopPost Office Shop

Rokujo Station Shop Rokujo Station Shop

Suidobashi Station Shop 
Suidobashi 

Station Shop 

Wakaba Riverside Shop
Wakaba 

Riverside Shop

Misato Shop
Misato Shop

Terai Station Shop

Terai Station Shop

scribble
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Step 2: Calculate the multiple regression equation.

a lot of the 
coefficients we 

calculated during 
simple regression 
analysis are also 

involved in multiple 
regression.

That’s right!  
Let’s review.

but the  
calculation is a bit 
more complicated. 
Do you remember 

the method 
we used? 

first get the residual 
sum of squares, Se.

then differentiate by a1, a2, 
and b and set the equation 

equal to zero. find the values 
of a1, a2, and b that make Se 

as small as possible...

and presto! 
Piece of cake.

I don't 
think I like 
this cake.

Linear Least 
Squares 

regression?



Come on! 
sharpen your 

pencils and get 
ready!

aha! this is 
where we use 
the matrices...

we can find the 
partial regression 

coefficients...

...by doing this 
calculation!

what the 
heck is 
this?!

Here we go...

This big thing is 
equal to the partial 

regression coefficient! 
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here, I 
labeled 

everything.

It's no use!  
There are too 
many numbers!

this calculation 
will take weeks! 

Nay, Months!!

please, the 
computer is our 

only hope.

you 
wimps.

Floor space

The 1’s are a baseline 
multiplier used 

to calculate the 
intercept (b).

Distance to the 
nearest station

Monthly sales

click!

click!
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you should 
write this 

down.

there's 
one more 

thing...

what 
is it?

fine! 
I'll do it 

for you...*

hooray!!

Predictor variable
Floor space of the shop 
(tsubo) a1 = 41.5

a2 = –0.3

b = 65.3

Distance to the nearest 
station (meters)

Intercept

Partial regression 
coefficients

so here's 
the equation.you are 

a genius.

save
 it, 

lazybones.

monthly 
sales

floor 
space

distance to 
the nearest 

station

finally! Pay dirt.

* See page 209 for the full calculation.

…that will help 
you understand the 
multiple regression 
equation and multiple 
regression analysis.
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the line plotted by the 

multiple regression equation 
y = a1x1 + a2x2 + ... + apxp + b

will always cross the points 

( xi, x2, ... , xp, y ), where  

xi is the average of xi .

to put it differently, our equation y = 41.5x1 – 0.3x2 + 65.3 will 
always create a line that intersects the points where average 

floor space and average distance to the nearest station 
intersect with the average sales of the data that we used. 

so now we have 
an equation, 

but how well 
can we really 
predict the 

sales of the 
new shop?

we'll find out 
using regression 
diagnostics. we'll 
need to find R2, and 
if it's close to 1, 

then our equation is 
pretty accurate!

good memory!

this seems 
familiar...

think, 
think. 
where 
have 

I seen 
this?

Step 3: Examine the accuracy of the multiple regression equation.

oh yeah! when 
we plot our 

equation, the line 
passes through 
the averages.

my brain is 
melting.
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before we find R2, we need to find plain old 
R, which in this case is called the multiple 

correlation coefficient. Remember: R is a way 
of comparing the actual measured values (y) 

with our estimated values ( ŷ).*

we don't need Se 
yet, but we will 

use it later.

R2 is 
.9452.

Nice!

Bakery

Actual 
value  

y

Estimated value 
. .ŷ x x== −− ++41 0 3 65 31 2

 
. .ŷ x x== −− ++41 0 3 65 31 2 y y−− ŷ −− ŷ y y−−(( ))2 ( )2ŷ −− ŷ y y−−(( )) ( )ŷ −− ŷ y ŷ−−(( ))2

Yumenooka 469 453.2 137.2 121.4 18823.8 14735.1 16654.4 250.0

Terai 366 397.4 34.2 65.6 1169.6 4307.5 2244.6 988.0

Sone 371 329.3 39.2 –2.5 1536.6 6.5 –99.8 1742.6

Hashimoto 208 204.7 –123.8 –127.1 15326.4 16150.7 15733.2 10.8

Kikyou 246 253.7 −85.8 –78.1 7361.6 6016.9 6705.0 58.6

Post Office 297 319.0 −34.8 –12.8 1211.0 163.1 444.4 485.3

Suidobashi 363 342.3 31.2 10.5 973.4 109.9 327.1 429.2

Rokujo 436 438.9 104.2 107.1 10857.6 11480.1 11164.5 8.7

Wakaba 198 201.9 −133.8 –129.9 17902.4 16870.5 17378.8 15.3

Misato 364 377.6 32.2 45.8 1036.8 2096.4 1474.3 184.6

Total 3318 3318 0 0 76199.6 72026.6 72026.6 4173.0

Average 331.8 331.8

ŷy SeSyy Sŷŷ Sŷŷ

R2 = (.9722)2 = .9452

R
y y y y

y y y y

S

S
yy

yy

==
−−(( )) −−(( ))

−−(( )) ×× −−(( ))
==

sum of 

sum of sum of 

ˆ ˆ

ˆ ˆ

ˆ

2 2 ××××
==

××
==

S
yyˆ ˆ

.

. .
.

72026 6

76199 6 72026 6
9722

* As in Chapter 2, some of the figures in this chapter are rounded for 
readability, but all calculations are done using the full, unrounded 

values resulting from the raw data unless otherwise stated. 

R
y y y y

y y y y

S

S
yy

yy

==
−−(( )) −−(( ))

−−(( )) ×× −−(( ))
==

sum of 

sum of sum of 

ˆ ˆ

ˆ ˆ

ˆ

2 2 ××××
==

××
==

S
yyˆ ˆ

.

. .
.

72026 6

76199 6 72026 6
9722
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Is there a rule 
this time for how 

high R2 needs to be 
for the equation 
to be considered 

accurate?

No, but .5 can 
again be used as 

a lower limit.

so this multiple 
regression equation 
is really accurate!

yeah, we can 
predict sales 

of the new shop 
with confidence.

You can simplify the R2 calculation. 
I won’t explain the whole thing, 

but basically it’s something like this.*

okay.

yes, and when the 
value of R2 is 

closer to 1, the 
multiple regression 

equation is more 
accurate, just like 

before.

* Refer to page 144 for an explanation of S1y, S2y, ... , Spy.

R multiple correlation coefficient)2 =

=
+ + +

( 2

1 1 2 2a S a S a Sy y p py�
SS

S
Syy

e

yy

= −1

.9452 
is way 

above  .5!

So the way 
we calculate 
R in multiple 

regression is a 
lot like in simple 

regression, 
isn’t it?

We did it!
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before you get 
too excited, there's 

something you 
should know...

how can 
this be?

what?

this R2 might 
be misleading.

we did the 
calculations 

perfectly.

every time we 
add a predictor 

variable p...

...R2 gets larger. 
Guaranteed.

Suppose we add the age 
of the shop manager 
to the current data.

before adding 
another variable, 
the R2 was .9452.

age is now 
the third 
predictor 
variable.

why 
would 
age 

matter?

after adding 
this variable...

huh?!

Well, the 
trouble is...

Bakery

Floor 
area of 

the shop 
(tsubo) 

Distance  
to the 

nearest  
station 
(meters)

Shop 
manager’s 
age (years)

Monthly 
sales 

(¥10,000)

Yumenooka Shop 10 80 42 469

Terai Station Shop 8 0 29 366

Sone Shop 8 200 33 371

Hashimoto Station Shop 5 200 41 208

Kikyou Town Shop 7 300 33 246

Post Office Shop 8 230 35 297

Suidobashi Shop 7 40 40 363

Rokujo Station Shop 9 0 46 436

Wakaba Riverside Shop 6 330 44 198

Misato Shop 9 180 34 364

The Trouble with R2

R2 is 
.9452!

Okay,



floor 
area 

of the 
shop

floor 
area 

of the 
shop

distance 
to the 

nearest 
station

distance 
to the 

nearest 
station

age 
of the 
shop 

manager

age 
of the 
shop 

manager

but when we 
plot age versus 
monthly sales, 

there is no 
pattern, so...

Yet despite that, 
the value of R2 

increased.

As you can see, 
it's larger.

...it's .9495!

the age of the 
shop manager has 
nothing to do with 

monthly sales!

So what was 
the point of 
all those 

calculations?

Never 
fear.

the adjusted coefficient 
of determination, aka 

adjusted R2, will save us!

what? 
another R2?

Correlation coefficient = .0368

Age of the shop manager

M
o

n
t
h
ly

 s
a
l
e
s

I knew it!

Yumenooka Shop

Hashimoto Station Shop 

Sone Shop 

Kikyou Town Shop

Post Office Shop

Rokujo Station Shop 

Suidobashi 
Station 
Shop 

Wakaba 
Riverside 

Shop

Misato Shop
Terai Station Shop
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miu, could you 
find the value of 

adjusted R2 with and 
without the age of 
the shop manager?

let's 
see...

when the 
predictor 

variables are 
only floor area 

and distance...

the value of adjusted R2 (R2) can be 
obtained by using this formula.

R

S

S

e

y

2 1
1

= −
− −









sample size number of predictor variables

yy

sample size −








1

Um, I 
think  
so...

too many 

 layers! it’s worse 
than R2 !

go miu!

I got it!

...R2 is .9452.

1
1

−
− −











S

S

e

yy

sample size number of predictor variables

sammple size −










= − − −








−








=

1

1

4173 0
10 2 1
76199 6
10 1

.

. .9296

Adjusted R2

1
1

−
− −











S

S

e

yy

sample size number of predictor variables

sammple size −










= − − −








−








=

1

1

4173 0
10 2 1
76199 6
10 1

.

.

So adjusted R2 is:
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Wait a 
minute...

floor 
area 

of the 
shop

distance 
to the 

nearest 
station

age  
of the 
shop 

manager

the answer 
is .9296. how about 

when we also 
include the shop 
manager’s age?

We’ve already 
got R2 for that, 

right?

yes, it's 
.9495.

what are Syy and Se 

in this case?

so all I have to 
get is the value of 

adjusted R2...

Syy is the same as 

before. It's 76199.6.

we'll cheat and 
calculate Se using 

my computer.

predictor variables:

•	 floor area

•	 distance

•	 manager's age

great!

.9243

1
1
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
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
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
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.

.

It’s 
3846.4.

R2 = .9495

predictor va
R2

1
1

−
− −











S

S

e
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sammple size −








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= − − −








−








=

1

1

3846 4
10 3 1
76199 6
10 1

.

.
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see? adjusted R2 
to the rescue!

It 
worked!

look! the value 
of adjusted R2 is 
larger when the 
age of the shop 
manager is not 

included.

hey, look 
at this. adjusted R2 is smaller 

than R2 in both cases. 
Is it always smaller? 

good eye! 
yes, it is 
always 

smaller.

It means that adjusted 
R2 is a harsher judge 
of accuracy, so when 
we use it, we can be 

more confident in our 
multiple regression 

equation. 

Is that 
good?

adjusted 
R2 is 

awesome.

predictor variables

floor 
area and 
distance

floor 
area and 
distance

floor area, 
distance,  
and age

floor area, 
distance, 
and age
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Now...
since we’re happy 
with adjusted R2, 
 we'll test our 

assumptions 
about the 

population.

We'll do 
hypothesis and 

regression 
coefficient tests, 

right?

do you 
remember 
how we did 

the hypothesis 
testing before?

I think So. we 
tested whether 
the population 
matched the 

equation and then 
checked that A 

didn't equal zero.

right! it's 
basically 
the same 

with multiple 
regression.

now, we have 
more than one x 

and more than one 
A. at least one of 
these A's must not 

equal zero.

alternative hypothesis

If the floor area of the shop  
is x1 tsubo and the distance to  

the nearest station is x2 meters,
the monthly sales follow a normal 
distribution with mean A1x1 + A2x2 + B 

and standard deviation σ.

I see!

Hypothesis Testing with 
Multiple Regression

R2

Yes, but in 
multiple regression 

analysis, we have 
partial regression 

coefficients, instead.
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Step 4: Conduct the Analysis of Variance (ANOVA) Test.

here are our 
assumptions about the 

partial regression 
coefficients. a1, a2, and b 
are coefficients of the 

entire population.

if the regression equation obtained is

A1 is approximately a1.

A2 is approximately a2.

B is approximately b.

A1 is approximately 41.5.

A2 is approximately –0.3.

B is approximately 65.3.

could you apply 
this to kazami 
bakery's data?

the multiple 
regression equation is 
y = 41.5x1 − 0.3x2 + 65.3, 

so...

sure.

these are our 
assumptions.

wonderful!

the equation 
should 

reflect the 
population. σ =

− −
Se

sample size number of predictor variables 1

y a x a x b= + +1 1 2 2

.



Hypothesis Testing with Multiple Regression  129

There are 
two types.

one tests all the 
partial regression 

coefficients together.

the other tests the 
individual partial 

regression coefficients 
separately.

let's set the 
significance 
level to .05. 

Are you ready 
to try doing 
these tests?

yes, 
let's!

so, we have 
to repeat this 
test for each 
of the partial 
regression 

coefficients?

yes.

In other words, one of 
the following is true:

null 
hypothesis

null 
hypothesis

and

not

and

and

alternative 
hypothesis

alternative 
hypothesis

and

Now we need to 
test our model 
using an F‑test.
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first, we’ll test all the partial 
regression coefficients together.

 Step 1 Define the population. The population is all Kazami Bakery shops.

 Step 2 Set up a null hypothesis and 
an alternative hypothesis.

Null hypothesis is A1 = 0 and A2 = 0.
Alternative hypothesis is that A1 or A2 or both ≠ 0.

 Step 3 Select which hypothesis test 
to conduct.

We’ll use an F‑test.

 Step 4 Choose the significance level. We’ll use a significance level of .05.

 Step 5 Calculate the test statistic 
from the sample data.

The test statistic is:

S S Syy e e
−

÷
−number of predictor variables sample size number off predictor variables −

− ÷
− −

=

1

76199 6 4173 0
2

4173 0
10 2 1

60 4
. . .

.
S S Syy e e

−
÷

−number of predictor variables sample size number off predictor variables −

− ÷
− −

=

1

76199 6 4173 0
2

4173 0
10 2 1

60 4
. . .

.

=S S Syy e e
−

÷
−number of predictor variables sample size number off predictor variables −

− ÷
− −

=

1

76199 6 4173 0
2

4173 0
10 2 1

60 4
. . .

.

The test statistic, 60.4, will follow an F distribution 
with first degree of freedom 2 (the number of predictor 
variables) and second degree of freedom 7 (sample size 
minus the number of predictor variables minus 1), if the 
null hypothesis is true.

 Step 6 Determine whether the 
p-value for the test statistic 
obtained in Step 5 is smaller 
than the significance level.

At significance level .05, with d1 being 2 and d2 being 7 
(10 - 2 - 1), the critical value is 4.7374. Our test statistic 
is 60.4.

 Step 7 Decide whether you can reject 
the null hypothesis.

Since our test statistic is greater than the critical value, 
we reject the null hypothesis.

The Steps of ANOVA
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Next, we’ll test the individual partial 
regression coefficients. I will do 

this for A1 as an example.

Regardless of the result of step 7,  
if the value of the test statistic  

a
S

Se1
2

11 1
÷

− −sample size number of predictor variables
 

is 2 or more, we still consider the predictor variable 
corresponding to that partial regression coefficient 

to be useful for predicting the outcome variable.

 Step 1 Define the population. The population is all Kazami Bakery shops.

 Step 2 Set up a null hypothesis and 
an alternative hypothesis.

Null hypothesis is A1 = 0.
Alternative hypothesis is  A1 ≠ 0.

 Step 3 Select which hypothesis test 
to conduct.

We’ll use an F‑test.

 Step 4 Choose the significance level. We’ll use a significance level of .05.

 Step 5 Calculate the test statistic 
from the sample data.

The test statistic is:

a
S

Se1
2

11

2

1

41 5

÷
− −

=
sample size number of predictor variables

.
00 0657

4173 0
10 2 1

44
.

.
÷

− −
=

The test statistic will follow an F distribution with 
first degree of freedom 1 and second degree of freedom 
7 (sample size minus the number of predictor variables  
minus 1), if the null hypothesis is true. (The value of S11 
will be explained on the next page.)

 Step 6 Determine whether the 
p-value for the test statistic 
obtained in Step 5 is smaller 
than the significance level.

At significance level .05, with d1 being 1 and d2 being 7, 
the critical value is 5.5914. Our test statistic is 44.

 Step 7 Decide whether you can reject 
the null hypothesis.

Since our test statistic is greater than the critical value, 
we reject the null hypothesis.

The Steps of ANOVA
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0.0657 . . . . . .

. . . 0.00001 . . .

. . . . . . . . .

=

* Some people use the t distribution instead of the F distribution 
when explaining the "test of partial regression coefficients." Your 
final result will be the same no matter which method you choose.

so A1 doesn't 
equal zero! We 
can reject the 
null hypothesis.

you really 
did it! 

You're my 
hero, miu!

Finding S11 and S22

We use a matrix to find S11 and S22. 
We needed S11 to calculate the test 

statistic on the previous page, and we 
use S22 to test our second coefficient 

independently, in the same way.*

Floor space
Distance to the 
nearest station

This is S22.

You need to add a line with a 1 in all rows and columns.

This is the S11 that 
appeared in step 5.
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what's 
next? was it 

something about 
confidence?

Step 5: Calculate confidence intervals for the population.

yes, that's right. we're
going to calculate 

confidence intervals.

but this 
time...

...the calculation is extremely 
difficult. legend has it that a 
student once went mad trying 

to calculate it.

It starts out like 
simple regression 
analysis. but then 
the mahalanobis 

distance* comes in, 
and things get very 
complicated very 

quickly.

wow. do you 
think we can 

do it?

I know we can, 
but we'll be 

here all night. 
we could have a 
slumber party.

mahala... what?
slumber 

party?

* The mathematician P.C. Mahalanobis invented a way to 
use multivariate distances to compare populations. 
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all right, Let's 
stay up all night 

doing math!

no! I 
changed 
my mind! 
no math!

you really 
want to?

Can I 
borrow 

some 
PJs?

I'm in.

promise 
not to 
sleep?

let's have 
a pillow 

fight!

well then, i 
guess we'll 

have to find out 
the confidence 
intervals using 
data analysis 

software.

thank you, 
computer!

this time it's okay, 
but you shouldn't 
always rely on 

computers. doing 
calculations by 
hand helps you 

learn.

It helps 
you learn.

you are 
such a jerk 
sometimes!

sorry!

I thought it 
was funny!

eep!
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we'll need to choose the 
confidence level first. 

how 
about 
95%?

day
dre

am
in
g... stop daydreaming 

any pay attention!

sorry...

For a 10 tsubo 
shop that’s 80 m 

from a station, the 
confidence interval 

is 453.2 ± 34.9.*

So first  
we do 

453.2 + 34.9...
I got it! We’ve found out 
that the average shop 

earns between ¥4,183,000 
and ¥4,881,000, right?

precisely!

* This calculation is explained in more detail on page 146.

...and then 453.2 − 34.9.



136  Chapter 3  Multiple Regression Analysis

can you 
predict the 
sales, miu?

here is the data 
for the new shop 

we’re planning 
to open.

A shop in 

Isebashi? 

That’s close 

to my house!

Step 6: Make a prediction!

but how could we 
know the exact 
sales of a shop 
that hasn't been 
built? should 

we calculate a 
prediction interval?

In simple regression analysis, 
the method to find both the 
confidence and prediction 
intervals was similar. Is 

that also true for multiple 
regression analysis?

absolutely.

yes, it's 
similar.

¥4,473,000 
per month!

you're a genius, 
miu! I should 

name the shop 
after you.

you should 
probably 
name it 

after risa...

Floor space  
of the shop 

(tsubo)

Distance to the 
nearest station 

(meters)

Isebashi Shop 10 110

Yep! * This calculation was made using rounded numbers. If you 
use the full, unrounded numbers, the result will be 442.96. 

*
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so we'll 
use the 

maha...maha...
something 

again?

yeah. 
blah blah 
distance. It's the 

mahalanobis 
distance. 

yes, we need 
to use it 

to find the 
prediction 
interval.

sheesh!

the confidence 
level is 95%, so 

predicted sales...

...are between 
¥3,751,000 and 

¥5,109,000.

not bad!

so, do you think 
you'll open 
the shop?

these numbers are  
pretty good. You 
know, I think we 

just might!

this has been ace. 
Thank you, both 

of you!

whoa, whoa! 
hold on, there's 
just one more 

thing.

smirk

Could we...maybe, 
please use your 
computer again? 
Just once more?

If you 
insist.
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we need to check 
whether there's 
a better multiple 

regression 
equation!

a better 

equation?!

what's wrong 
with the one we 

have? What about 
my prediction? 
Meaningless!

now who's 
being dramatic?

just as with simple 
regression analysis, 
we can calculate a 

multiple regression 
equation using any 
variables we have 

data on, whether or 
not they actually 

affect the outcome 
variable.

like the age of 
the shop manager? 
we used that, even 

though it didn't have 
any effect on sales!

the equation 
becomes 

complicated if 
you have too 

many predictor 
variables.

age of the 

shop manager

predictor 

stew

height of 
the ceiling

number of seats

number of trays

exactly.

so many 
ingredients...
this soup is 

a mess.

Choosing the Best Combination of Predictor Variables
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the best multiple 
regression equation 
balances accuracy 
and complexity by 
including only the 

predictor variables 
needed to make the 

best prediction.
short is 
sweet.

there are several ways to find 
the equation that gives you the 

most bang for your buck. 

the method we'll use today 
is simpler than any of those. 

It's called best subsets 
regression, or sometimes, 
the round-robin method.

These are some common ways.

•	 forward selection

•	 backward elimination

•	 �forward-backward 
stepwise selection

•	 �Ask a domain expert 
which variables are 
the most important

round 
robin?

what the heck 
is that?

I'll show 
you. Suppose 
x1, x2 , and x3 

are potential 
predictor 
variables.

first, we'd calculate the 
multiple regression equation 

for every combination of 
predictor variables!

x1

x2

x3

x1 and x2

x2 and x3

x1 and x3

x1 and x2 and x3 

haha. 
this sure 
is round-

about.

difficult

easy

accurate  not accurate

a fat 
bird?
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let's replace x1, 
x2 , and x3 with 

shop size, distance 
to a station, and 
manager's age.

we'll make 
a table that 

shows the partial 
regression 

coefficients and 
adjusted R2...

Is our equation 
the winner?

...like  
this. presto!

1 is floor area, 2 is distance to a station, and 3 is manager's age. 
When 1 and 2 are used, adjusted R2 is highest.

now we really know that  
y = 41.5x1 – 0.3x2 + 65.3  

does a good job at 
predicting the sales at  

the new shop.

That’s right! 
Good work, 

folks!

so our 
equation is 
the best! 
we rock.

Predictor 
variables a1 a2 a3 b R2

1 54.9 –91.3 .07709

2 –0.6 424.8 .5508

3 0.6 309.1 .0000

1 and 2 41.5 –0.3 65.3 .9296

1 and 3 55.6 2.0 –170.1 .7563

2 and 3 –0.6 –0.4 438.9 .4873

1 and 2 and 3 42.2 –0.3 1.1 17.7 .9243
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so, tell 
me, miu.

are you starting 
to understand 
regression?

yeah! I can't 
believe how 

much I’ve 
learned!

I think  
I may have 
learned 

something, 
too.

you can 
pay us in 

croissants!

I earned 
one, too!

oh well... 
I can't say 
no to that.

risa is 
really cool, 

isn't she?

she 
sure is.

hey, miu!

I'll race you 
to the bakery!

really? then you 
should pay me a 
consultation fee.

let’s go, slowpokes!
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Assessing Populations with  
Multiple Regression Analysis

Let’s review the procedure of multiple regression analysis, shown 
on page 112.

1.	 Draw a scatter plot of each predictor variable and the outcome 
variable to see if they appear to be related.

2.	 Calculate the multiple regression equation.

3.	 Examine the accuracy of the multiple regression equation.

4.	 Conduct the analysis of variance (ANOVA) test.

5.	 Calculate confidence intervals for the population.

6.	 Make a prediction!

As in Chapter 2, we’ve talked about Steps 1 through 6 as if they 
were all mandatory. In reality, Steps 4 and 5 can be skipped for the 
analysis of some data sets.

Kazami Bakery currently has only 10 stores, and of those 
10 stores, only one (Yumenooka Shop) has a floor area of 10 tsubo1 
and is 80 m to the nearest station. However, Risa calculated a confi-
dence interval for the population of stores that were 10 tsubo and 
80 m from a station. Why would she do that?

Well, it’s possible that Kazami Bakery could open another 
10-tsubo store that’s also 80 m from a train station. If the chain 
keeps growing, there could be dozens of Kazami shops that fit that 
description. When Risa did that analysis, she was assuming that 
more 10-tsubo stores 80 m from a station might open someday.

The usefulness of this assumption is disputable. Yumenooka 
Shop has more sales than any other shop, so maybe the Kazami 
family will decide to open more stores just like that one. However, 
the bakery’s next store, Isebashi Shop, will be 10 tsubo but 110 m 
from a station. In fact, it probably wasn’t necessary to analyze such 
a specific population of stores. Risa could have skipped from calcu-
lating adjusted R2 to making the prediction, but being a good friend, 
she wanted to show Miu all the steps.

1. Remember that 1 tsubo is about 36 square feet.
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Standardized Residuals

As in simple regression analysis, we calculate standardized resi
duals in multiple regression analysis when assessing how well the 
equation fits the actual sample data that’s been collected.

Table 3-1 shows the residuals and standardized residuals for 
the Kazami Bakery data used in this chapter. An example calcula-
tion is shown for the Misato Shop.

Table 3-1: Standardized residuals of the Kazami bakery example

Bakery

Floor 
area 

of the 
shop 

x1

Distance 
to the 

nearest 
station 

x2

Monthly 
sales  

y
Monthly sales 
. . .y x x= − +41 5 0 3 65 31 2ˆ

Residual  
y y− ˆ

Standardized 
residual

Yumenooka Shop 10   80 469 453.2 15.8 0.8

Terai Station Shop 8     0 366 397.4 –31.4 –1.6

Sone Shop 8 200 371 329.3 41.7 1.8

Hashimoto 
Station Shop

5 200 208 204.7 3.3 0.2

Kikyou Town Shop 7 300 246 253.7 –7.7 –0.4

Post Office Shop 8 230 297 319.0 –22.0 1.0

Suidobashi 
Station Shop

7   40 363 342.3 20.7 1.0

Rokujo 
Station Shop

9     0 436 438.9 –2.9 –0.1

Wakaba 
Riverside Shop

6 330 198 201.9 –3.9 –0.2

Misato Shop 9 180 364 377.6 –13.6 –0.6

If a residual is positive, the measurement is higher than pre-
dicted by our equation, and if the residual is negative, the measure-
ment is lower than predicted; if it’s 0, the measurement and our 
prediction are the same. The absolute value of the residual tells us 
how well the equation predicted what actually happened. The larger 
the absolute value, the greater the difference between the measure-
ment and the prediction. 
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If the absolute value of the standardized residual is greater 
than 3, the data point can be considered an outlier. Outliers are 
measurements that don’t follow the general trend. In this case, 
an outlier could be caused by a store closure, by road construc-
tion around a store, or by a big event held at one of the bakeries—
anything that would significantly affect sales. When you detect an 
outlier, you should investigate the data point to see if it needs to be 
removed and the regression equation calculated again.

Mahalanobis Distance

The Mahalanobis distance was introduced in 1936 by mathe
matician and scientist P.C. Mahalanobis, who also founded the 
Indian Statistical Institute. Mahalanobis distance is very useful 
in statistics because it considers an entire set of data, rather than 
looking at each measurement in isolation. It’s a way of calculating 
distance that, unlike the more common Euclidean concept of dis-
tance, takes into account the correlation between measurements 
to determine the similarity of a sample to an established data set. 
Because these calculations reflect a more complex relationship, 
a linear equation will not suffice. Instead, we use matrices, which 
condense a complex array of information into a more manage-
able form that can then be used to calculate all of these distances 
at once.

On page 137, Risa used her computer to find the prediction 
interval using the Mahalanobis distance. Let’s work through that 
calculation now and see how she arrived at a prediction interval of 
¥3,751,000 and ¥5,109,000 at a confidence level of 95%.

Step 1

Obtain the inverse matrix of 
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.

The first matrix is the covariance matrix as calculated on 
page 132. The diagonal of this matrix (S11, S22, and so on) is the vari-
ance within a certain variable. 
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The inverse of this matrix, the second and third matrices shown 
here, is also known as the concentration matrix for the different 
predictor variables: floor area and distance to the nearest station. 

For example, S22 is the variance of the values of the distance 
to the nearest station. S25 would be the covariance of the distance to 
the nearest station and some fifth predictor variable.

The values of S11 and S22 on page 132 were obtained through 
this series of calculations.

The values of Sii and Sij in
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and the values of Sii and Sij obtained from conducting individual 
tests of the partial regression coefficients are always the same. 
That is, the values of Sii and Sij found through partial regression 
will be equivalent to the values of Sii and Sij found by calculating 
the inverse matrix. 

Step 2

Next we need to calculate the square of Mahalanobis distance for a 
given point using the following equation:

D x x x S x xM

T2 1( ) = −( ) ( ) −( )−

The x values are taken from the predictors, x is the mean of 
a given set of predictors, and S–1 is the concentration matrix from 
Step 1. The Mahalanobis distance for the shop at Yumenooka is 
shown here:
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
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
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=
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Step 3

Now we can calculate the confidence interval, as illustrated here:

The minimum value of the confidence interval is the same distance from 
the mean as the maximum value of the interval. In other words, the confidence 
interval “straddles” the mean equally on each side. We calculate the distance 
from the mean as shown below (D2 stands for Mahalanobis distance, and x rep-
resents the total number of predictors, not a value of some predictor):

F x
D

1 1 05
1

1

2

, ;.sample size
sample size sample size

− −( ) × +
−









 × − −

= − −( ) × +
−







 ×

S
x

F

e

sample size 1

1 10 2 1 05
1

10
2 4

10 1
417

, ;.
. 33 0

10 2 1

35

.
− −

=

As with simple regression analysis, when obtaining the predic-
tion interval, we add 1 to the second term:

F x
D

1 1 05 1
1

1

2

, ;.sample size
sample size sample size

− −( ) × + +
−









 × − −

S
x

e

sample size 1

If the confidence rate is 99%, just change the .05 to .01:

F x F

F

1 1 05 1 10 2 1 05 5 6

1

, ;. , ;. .

,

sample size

sample size

− −( ) = − −( ) =
−− −( ) = − −( ) =x F1 01 1 10 2 1 01 12 2;. , ;. .

You can see that if you want to be more confident that the pre-
diction interval will include the actual outcome, the interval needs 
to be larger.

Monthly sales

This is the confidence interval.

453 + 35 = 488453.2 - 35 = 418    a1 × 10 + a2 × 80 + b
= 41.5 × 10 - 0.3 × 80 + 65.3
= 453
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Using Categorical Data in Multiple Regression Analysis

Recall from Chapter 1 that categorical data is data that can’t be 
measured with numbers. For example, the color of a store manager’s 
eyes is categorical (and probably a terrible predictor variable for 
monthly sales). Although categorical variables can be represented 
by numbers (1 = blue, 2 = green), they are discrete—there’s no such 
thing as “green and a half.” Also, one cannot say that 2 (green eyes) 
is greater than 1 (blue eyes). So far we’ve been using the numeri-
cal data (which can be meaningfully represented by continuous 
numerical values—110 m from the train station is further than 
109.9 m) shown in Table 3-2, which also appears on page 113.

Table 3-2: Kazami Bakery Example data

Bakery

Floor space 
of the shop 

(tsubo)

Distance to the 
nearest station 

(meters)
Monthly sales 

(¥10,000)

Yumenooka Shop 10 80 469

Terai Station Shop 8 0 366

Sone Shop 8 200 371

Hashimoto Station Shop 5 200 208

Kikyou Town Shop 7 300 246

Post Office Shop 8 230 297

Suidobashi Station Shop 7 40 363

Rokujo Station Shop 9 0 436

Wakaba Riverside Shop 6 330 198

Misato Shop 9 180 364

The predictor variable floor area is measured in tsubo, distance 
to the nearest station in meters, and monthly sales in yen. Clearly, 
these are all numerically measurable. In multiple regression analy-
sis, the outcome variable must be a measurable, numerical variable, 
but the predictor variables can be 

•	 all numerical variables,

•	 some numerical and some categorical variables, or

•	 all categorical variables.

Tables 3-3 and 3-4 both show valid data sets. In the first, 
categorical and numerical variables are both present, and in the 
second, all of the predictor variables are categorical.
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table 3-3: A Combination of Categorical and Numerical Data

Bakery

Floor space 
of the shop 

(tsubo)

Distance to the 
nearest station 

(meters)
Free 

samples
Monthly sales 

(¥10,000)

Yumenooka Shop 10 80 1 469

Terai Station Shop 8 0 0 366

Sone Shop 8 200 1 371

Hashimoto Station Shop 5 200 0 208

Kikyou Town Shop 7 300 0 246

Post Office Shop 8 230 0 297

Suidobashi Station Shop 7   40 0 363

Rokujo Station Shop 9     0 1 436

Wakaba Riverside Shop 6 330 0 198

Misato Shop 9 180 1 364

In Table 3-3 we’ve included the categorical predictor variable 
free samples. Some Kazami Bakery locations put out a tray of free 
samples (1), and others don’t (0). When we include this data in the 
analysis, we get the multiple regression equation

y x x x= − + +30 6 0 4 39 5 135 91 2 3. . . .

where y represents monthly sales, x1 represents floor area, x2 
represents distance to the nearest station, and x3 represents free 
samples.

table 3-4: Categorical Predictor data Only

Bakery

Floor space 
of the shop 

(tsubo)

Distance to the 
nearest station 

(meters)
Samples 

every day

Samples on 
the weekend 

only
Monthly sales 

(¥10,000)

Yumenooka Shop 1 0 1 0 469

Terai Station Shop 1 0 0 0 366

Sone Shop 1 1 1 0 371

Hashimoto Station Shop 0 1 0 0 208

Kikyou Town Shop 0 1 0 0 246

Post Office Shop 1 1 0 0 297

Suidobashi Station Shop 0 0 0 0 363

Rokujo Station Shop 1 0 1 1 436

Wakaba Riverside Shop 0 1 0 0 198

Misato Shop 1 0 1 1 364

Less than 8 tsubo = 0 

8 tsubo or more = 1
Less than 200 m = 0 

200 m or more = 1

Does not offer samples = 0 

Offers samples = 1
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In Table 3-4, we’ve converted numerical data (floor space and 
distance to a station) to categorical data by creating some general 
categories. Using this data, we calculate the multiple regression 
equation

y x x x x= − + + +50 2 110 1 13 4 75 1 336 41 2 3 4. . . . .

where y represents monthly sales, x1 represents floor area, x2 
represents distance to the nearest station, x3 represents samples 
every day, and x4 represents samples on the weekend only.

Multicollinearity

Multicollinearity occurs when two of the predictor variables are 
strongly correlated with each other. When this happens, it’s hard to 
distinguish between the effects of these variables on the outcome 
variable, and this can have the following effects on your analysis:

•	 Less accurate estimate of the impact of a given variable on the 
outcome variable 

•	 Unusually large standard errors of the regression coefficients

•	 Failure to reject the null hypothesis

•	 Overfitting, which means that the regression equation describes 
a relationship between the outcome variable and random error, 
rather than the predictor variable

The presence of multicollinearity can be assessed by using an 
index such as tolerance or the inverse of tolerance, known as the 
variance inflation factor (VIF). Generally, a tolerance of less than 
0.1 or a VIF greater than 10 is thought to indicate significant multi-
collinearity, but sometimes more conservative thresholds are used. 

When you’re just starting out with multiple regression analysis, 
you don’t need to worry too much about this. Just keep in mind 
that multicollinearity can cause problems when it’s severe. There-
fore, when predictor variables are correlated to each other strongly, 
it may be better to remove one of the highly correlated variables 
and then reanalyze the data.

Determining the Relative Influence of Predictor 
Variables on the Outcome Variable

Some people use multiple regression analysis to examine the rela-
tive influence of each predictor variable on the outcome variable. 
This is a fairly common and accepted use of multiple regression 
analysis, but it’s not always a wise use.
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The story below illustrates how one researcher used multiple 
regression analysis to assess the relative impact of various factors 
on the overall satisfaction of people who bought a certain type of 
candy. 

Mr. Torikoshi is a product development researcher in a confec-
tionery company. He recently developed a new soda-flavored candy, 
Magic Fizz, that fizzes when wet. The candy is selling astonishingly 
well. To find out what makes it so popular, the company gave free 
samples of the candy to students at the local university and asked 
them to rate the product using the following questionnaire.

Magic Fizz Questionnaire

Please let us know what you thought of Magic Fizz by 
answering the following questions. Circle the answer that 
best represents your opinion.

Flavor 1. Unsatisfactory  

2. Satisfactory  

3. Exceptional

Texture 1. Unsatisfactory  

2. Satisfactory  

3. Exceptional

Fizz sensation 1. Unsatisfactory  

2. Satisfactory  

3. Exceptional

Package design 1. Unsatisfactory  

2. Satisfactory  

3. Exceptional

Overall satisfaction 1. Unsatisfactory  

2. Satisfactory  

3. Exceptional

Twenty students returned the questionnaires, and the results 
are compiled in Table 3-5. Note that unlike in the Kazami Bakery 
example, the values of the outcome variable—overall satisfaction—
are already known. In the bakery problem, the goal was to predict 
the outcome variable (profit) of a not-yet-existing store based on the 
trends shown by existing stores. In this case, the purpose of this 
analysis is to examine the relative effects of the different predictor 
variables in order to learn how each of the predictors (flavor, tex-
ture, sensation, design) affects the outcome (satisfaction).
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table 3-5: Results of Magic Fizz Questionnaire

Respondent Flavor Texture
Fizz 

sensation
Package 
design

Overall 
satisfaction

1 2 2 3 2 2

2 1 1 3 1 3

3 2 2 1 1 3

3 2 2 1 1 1

4 3 3 3 2 2

5 1 1 2 2 1

6 1 1 1 1 1

7 3 3 1 3 3

8 3 3 1 2 2

9 3 3 1 2 3

10 1 1 3 1 1

11 2 3 2 1 3

12 2 1 1 1 1

13 3 3 3 1 3

14 3 3 1 3 3

15 3 2 1 1 2

16 1 1 3 3 1

17 2 2 2 1 1

18 1 1 1 3 1

19 3 1 3 3 3

20 3 3 3 3 3

Each of the variables was normalized before the multiple 
regression equation was calculated. Normalization reduces the 
effect of error or scale, allowing a researcher to compare two vari-
ables more accurately. The resulting equation is

y x x x x= + + +0 41 0 32 0 26 0 111 2 3 4. . . .

where y represents overall satisfaction, x1 represents flavor, x2 
represents texture, x3 represents fizz sensation, and x4 represents 
package design.

If you compare the partial regression coefficients for the four 
predictor variables, you can see that the coefficient for flavor is the 
largest. Based on that fact, Mr. Torikoshi concluded that the flavor 
has the strongest influence on overall satisfaction.

Mr. Torikoshi’s reasoning does make sense. The outcome vari-
able is equal to the sum of the predictor variables multiplied by 
their partial regression coefficients. If you multiply a predictor vari-
able by a higher number, it should have a greater impact on the final 
tally, right? Well, sometimes—but it’s not always so simple.
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Let’s take a closer look at Mr. Torikoshi’s reasoning as 
depicted here:

Flavor

Package Design

Fi� Sensation

Texture

Overa� Satisfaction

In other words, he is assuming that all the variables relate 
independently and directly to overall satisfaction. However, this is 
not necessarily true. Maybe in reality, the texture influences how 
satisfied people are with the flavor, like this:

Flavor Package DesignFi� Sensation

Texture

Overa� Satisfaction

Structural equation modeling (SEM) is a better method for 
comparing the relative impact of various predictor variables on an 
outcome. This approach makes more flexible assumptions than 
linear regression does, and it can even be used to analyze data sets 
with multicollinearity. However, SEM is not a cure-all. It relies on 
the assumption that the data is relevant to answering the ques-
tion asked. 

SEM also assumes that the data is correctly modeled. It’s worth 
noting that the questions in this survey ask each reviewer for a 
subjective interpretation. If Miu gave the candy two “satisfactory” 
and two “exceptional” marks, she might rate her overall satisfac-
tion as either “satisfactory” or “exceptional.” Which rating she 
picks might come down to what mood she is in that day! 

Risa could rate the four primary categories the same as Miu, 
give a different overall satisfaction rating from Miu, and still be 
confident that she is giving an unbiased review. Because Miu and 
Risa had different thoughts on the final category, our data may 
not be correctly modeled. However, structural equation modeling 
can still yield useful results by telling us which variables have an 
impact on other variables rather than the final outcome.



4
Logistic 

Regression 
Analysis
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The Final Lesson ...and the 
croissants for 

breakfast.

I've got 
dad's 

coffee 
beans...

was there 
something 

else...

Hmmm...

oh yeah!

doggy
 snacks 

for 
Reggie!

It's  
him!



should 
i say 

hello?

I bet he 
doesn’t 

remember  
me.

risa would 
tell me to 
be bold. Should I...?

I'll tell him I 
have his book!

he'll want 
to know. 

he needs it. 

no big  
deal. 

Sorry 
I’m late!
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What...

...is risa 
doing with 

him?

have a 
seat.

miu!

huh?

you were 
daydreaming 
again. do you 
want to learn 
regression 

analysis  
or not?

I came in early 
just to teach you. 

The sun's not 
even up yet.

I'm sorry...
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you should be 
celebrating. 

this is the final 
lesson.

say 
hooray!

that's 
it!

risa...

thanks 
for 

cheering 
me up.

maybe 
it was 

somebody 
else.

We used Simple 
regression analysis 

(and multiple 
regression analysis) 

to predict the value of 
an outcome variable. 
Remember how we 

predicted the number 
of iced tea sales?

Binomial logistic 
regression analysis 
is a little different.

So what’s it 
used for?

It’s used 
to predict 

probabilities: 
whether 
or not 

something 
will happen!

Like yes 
and no, or 

success and 
failure?

you got it. 
probabilities are 
calculated as a 

percentage, which 
is a value between 

zero and 1.

the probability of john 
getting admitted to 
harvard university

the probability of 
winning the lottery

Woo.
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But 70% is greater 
than 1, isn't it?

Actually, 70% is 
equal to .7. When 
we do logistic 

regression analysis, 
the answer will be 

less than 1.

The logistic 
regression 
equation...

...looks 
like this.

That’s one 
big exponent! 

This looks 
complicated...

Don't worry, I'll show you a 
simpler way to write it. We'll 

take it step-by-step, and it 
won't seem so tough.

outcome 
variable (y)

Predictor 
variable ( x )

regression 
coefficient

To express it as a 
percentage, multiply 
by 100 and use the 
percent symbol.

Intercept
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the graph for 
the equation 

looks like this:

It's shaped 
like an s.

no matter what 
Z is, the value of 

y is never greater 
than 1 or less 

than zero.
Yeah! It looks 
like the S was 

smooshed 
to fit.

now, before we can 
go any further with 
logistic regression 
analysis, you need to 
understand maximum 

likelihood.

maximum likelihood is 
used to estimate the 

values of parameters 
of a population using a 
representative sample. 
the estimates are made 
based on probability.

 To explain, I'll 
use a hypothetical 

situation 
starring us!

maximum 
likelihood?

more 
probability!

I don't know 
if I'm cut out 
to be a star.

I've rewritten the equation using Z to represent the exponent. 
f(Z) is the probability of our outcome!

Maximum 
Likelihood
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The Maximum Likelihood Method

Imagine 
that...

...we went to 
school wearing 

our Norns 
uniforms.

Then we 
randomly picked 
10 students and 
asked if they 

like the uniform.
what?!

that'd be so 
embarrassing.

here are the 
imaginary results.

do you like the 
norns uniform?

student

yes

no

yes

no

yes

no

yes

yes

yes

yes

wow! most 
people seem 
to like our 

uniform.

If the popularity 
of our uniforms 
throughout the 

entire student body 
is the parameter p...

love it
Hate it

what do you 

think of this 

uniform?

well...

A

D

H

B

E

I

C

G

F

J
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...then the probability 
based on the imaginary 
survey results is this:

yes yes yes yes yes yes yesno no no

It's an 
equation?

yes, we solve it by 
finding the most 
likely value of p.

Either way, 
the answer is 

the same.

or

as you can see, when 
we plot the equations, 

they both peak at .7. 
that's the most likely 

value for p!

and to get a 
percentage, 

we multiply by 
100, so it's 70%, 

right?

We use one of 
these likelihood 

functions.

* Taking the log of this function can make later calculations easier.

*
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that's right. We take the log 
of this function because it 

makes it easier to calculate the 
derivative, which we need to find  

the maximum likelihood.

In the graphs, this 
peak is the value of 
p that maximizes the 

value of the function. 
It's called the 

maximum likelihood 
estimate.

So...

exactly!

now, let's review the 
maximum likelihood 
estimate for the 

popularity of our 
uniforms.

okay, 
risa.

likelihood function

max
imum

 

lik
elih

oo
d 

estim
ate

log-likelihood function

...since the functions 
peak at the same 

place, even though 
they have a different 
shape, they give us 
the same answer.
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Finding the Maximum Likelihood 
Using the Likelihood Function

7
1

3
1

1
0

7
1

3
1

1
1 0 1

7 1 3 0

7

× − ×
−

=

× − ×
−









 × −( ) = × −( )

−( ) − =

p p

p p
p p p p

p p

−− − =
− =

=

7 3 0

7 10 0

7
10

p p

p

p

Find the likelihood function. Here, p stands for Yes, and 1 − p 
stands for No. There were 7 Yeses and 3 Nos.

Obtain the log-likelihood function and rearrange it.

Differentiate L with respect to p and set the expression equal 
to 0. Remember that when a function’s rate of change is 0, we’re 
finding the maxima.

Rearrange the equation in Step 3 to solve for p.

We’ll use L to mean the log-likelihood 
function from now on.

and here's the 
maximum likelihood 

estimate!

p p p p p p p p p p

p p

× −( ) × × −( ) × × × × × −( ) ×
= −( )

1 1 1

17 3

L p p

p p

p p

= −( ){ }
= + −( )
= + −( )

log

log log

log log

7 3

7 3

1

1

7 3 1

dL
dp p p p p

= × + ×
−

× −( ) = × − ×
−

=7
1

3
1

1
1 7

1
3

1
1

0

Multiply both sides of 
the equation by p(1 - p).

Take the log of each component.

Use the Exponentiation Rule from page 22.

Yep, 70%.



huh? what 
kind of 
special 

example?

...the norns 
special!

next, we'll 
continue the 
lesson with a 
very special 

example.

we'll 
use...

what?!

you mean the 
norns special?

the one-of-a-kind, 
totally amazing cake 
that the shop owner 

invents each day.

Norns Special
¥7000

Yes!

Choosing Predictor Variables
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Norns doesn’t sell a 
special cake every day. 

People only buy it 
for a really special 

occasion, like a 
birthday.

so today we're going to 
find a logistic regression 

equation to predict 
whether the norns special 

will sell on a given day.

oh boy! this is 
really exciting!

I guess we'll need a 
data sample. but what 
should we measure? 

what affects if it 
sells or not?

that's a great 
question.

I've been trying 
to figure that 

out for a while. 
I've noticed that 

more people seem 
to buy the norns 
special when the 

temperature is high, 
and on Wednesdays, 

saturdays, and 
sundays.

yep. there are way 
more customers 
on the weekend...

...and on wednesdays, 
a large manga fan 
club meets here, 

and they really like 
to go big.

unsold sold

or an 
anniversary...

really?

party time!
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I've been 
keeping records 
of the sales and 
high temperature 

over the past 
three weeks.

wow! you 
deserve a 

raise!

It just looks like a 
list of numbers, but 
soon we'll turn it 

into an equation and 
make a prediction. 

like magic!

That’s right! 
the magic of 
regression 

analysis!

and 
now...

...things are 
about to get 

even more 
magical.

?

1 means Wednesday, 
saturday, or sunday. 
0 means other days.

1 means it was sold.  
0 means it was 

not sold.

wed, sat, 
or sun

high temp (°C) sales of 
norns specialMarch
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we used 1 to mean 
sold and 0 to 
mean unsold...

...which is how 
we represent 
categorical 

data as 
numbers, right?

right.

well, in logistic regression analysis, 
these numbers aren't just labels—

they actually measure the probability 
that the cake was sold. That’s 

because 1 means 100% and 0 means 0%.

oh! since we 
know it was sold, 

there's a 100% 
probability that 

it was sold.

we sure 
do.we also  

know for 
sure if it was 
wednesday, 
saturday, or 

sunday.

In this case, high temperature 
is measurable data, so we 
use the temperature, just 
like in linear regression 

analysis. categorical data 
also works in basically 
the same way as in linear 
regression analysis, and 

once again we can use any 
combination of categorical 

and numerical data.

but categorical 
data can have 
measurable 

probabilities.

sold

unsold



now, let's 
analyze the 

sales of the 
norns special. 
I typed up the 

steps.

will we calculate 
the equation and 
then get R2? and 

then find confidence 
and prediction 

intervals? oh, and 
the hypothesis  

thing?

yeah, 
something 
like that.

here are the five 
basic steps of 

logistic regression 
analysis.

Logistic Regression Analysis in Action!

That’s 
not so 

different.

Logistic Regression Analysis Procedure

draw a scatter plot of the predictor variables 
and the outcome variable to see whether they 

appear to be related.

Assess the accuracy of the equation.

Conduct the hypothesis tests.

Make a prediction!

Calculate the logistic regression equation.

Step 1

Step 2

Step 3

Step 4

Step 5
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This is the seven-
millionth graph 
i've drawn since 

we started.

and this time, 
put the outcome 
variable on the 
horizontal axis. 
the result will 
look different, 

you'll see.

Just do 
it, okay?

yes, 
ma'am.

sigh

these graphs do 
look different!

I put dots with the 
same value next 

to each other, so 
we can see the 

distribution.

and just as I thought—
it seems we sell more 
specials when it's hot 

and on wednesday, 
saturday, or sunday.

Sales of the Norns special Sales of the Norns special

W
e
d
n
e
s
d
a
y
, 
S
a
t
u
r
d
a
y
, 

o
r
 S

u
n
d
a
y

H
ig

h
 t

e
m

p
 (
°C

)
Sales of the Norns special by day of the week Sales of the Norns special by temperature

Step 1: Draw a scatter plot of the predictor variables and the 
outcome variable to see whether they appear to be related.

Correlation ratio = .5095 Correlation ratio = .4828
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So then I'll start 
calculating the 

logistic regression 
equation!

should I go 
find some 

fairy wings?

oh, thank 
goodness.  
So how do 
we do it?

I was up for days, 
subsisting on coffee 

and pudding. my 
roommate found 

me perched on the 
counter, wearing 

fairy wings...

...but I got 
my answer!

gulp

no need. 
we can 

just use my 
laptop!

oh, I 
tried 
that 

once.

Step 2: Calculate the logistic regression equation.

First, let’s 
enter the sample 

data into a 
spreadsheet. 

Then  
we follow 
these steps.
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Determine the binomial logistic equation for each sample.

Take the natural log to find the log-likelihood function, L.

Wednesday, 
Saturday, or 

Sunday
x1

High 
temperature

x2

Sales of the 
Norns special

y
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Norns special
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Obtain the likelihood function. The equation from Step 1 represents 
a sold cake, and (1 – the equation) represents an unsold cake.

1

1
1

1
1

1

11 2 1 2 10 28 0 24+
× −

+





× ×

+− × + × +( ) − × + × + − ×e e ea a b a a b a( )


11 242+ × +( )a b

Sold SoldUnsold
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We can plug these values into the likelihood function to calculate L, 
which we’ll use to calculate R2.

Find the maximum likelihood coefficients. These coefficients 
maximize log-likelihood function L. 
 
The values are:*

Calculate the logistic regression equation.
 
We fill in the coefficients calculated in Step 4 to get the follow-
ing logistic regression equation:

*See page 210 for a more detailed explanation of these calculations.

L
e e

e e=
+






+ −

+− × + × −( ) − × +
log log

. . . .

1

1
1

1

12 44 0 0 54 28 15 20 2 44 0 00 54 24 15 20 2 44 1 0 54 24 15 20

1

1. . . . .
log

× −( ) − × + × −( )





+ +

+



 e
e





= −8 9.

y
e x x

=
+ − + −( )

1

1 2 44 0 54 15 201 2. . .

a

a

b

1

2

2 44

0 54

15 20

=
=
= −








.

.

.



so this is the 
equation that we 

can use to predict 
whether we'll sell 

today's special!

Yep, this 
is it.

now we need to 
make sure that the 
equation is a good 
fit for our data.

Okay. so we find R2 and 
test the regression 
coefficients, right?

That’s right, 
although logistic 

regression analysis 
works slightly 

differently. 

huh? how 
come?

In logistic 
regression 
analysis, we 
calculate a 
pseudo-R2.*

Step 3: Assess the accuracy of the equation.

* In this example, we use McFadden’s 
pseudo-R2 formula.

It’s 
fake?
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here's the equation that 
we use to calculate R2 
in logistic regression 

analysis.

ack!!! It's 
so long!

I'm still not 
sure how to use 

this equation 
with the norns 
special data.

and here's a 
more general 

definition.

we just fill in 
the numbers 

for the norns 
special...

Whoa, 
I wasn't 

expecting 
that.

the n variables are 
a tally of the cakes 
that are sold (n1) or 

unsold (n0 ).

the number of data points whose 
outcome variable’s value is 1

the number of data points whose 
outcome variable's value is 0

maximum value of log-likelihood 
function L

maximum value of log-likelihood function L

don't 
worry, it’s 
not that 

hard.
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Hmmm... .36? 
That’s low, 

isn’t it?

Well...
but there's no set 
rule for how high 

R2 needs to be, 
right?

and to be fair, the R2 
in logistic regression 
analysis does tend to 

be lower. But an R2 
around .4 is usually a 
pretty good result.

so is our 
equation 
useful?

We’re not sure yet. 
we'll have to use a 
different method 

to find out.

there's 
another 

way?

look at 
this table.

?

click

just like in linear 
regression analysis, 

a higher R2 means 
the equation is more 

accurate.

That's  
true.

click
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Day

Wednesday, 
Saturday, or 

Sunday
x1

High temp. 
(°C)
x2

Actual sales
y

Predicted sales
y

5 0 28 1 .51 sold

6 0 24 0 .11 unsold

7 1 26 0 .80 sold

8 0 24 0 .11 unsold

9 0 23 0 .06 unsold

10 1 28 1 .92 sold

11 1 24 0 .58 sold

12 0 26 1 .26 unsold

13 0 25 0 .17 unsold

14 1 28 1 .92 sold

15 0 21 0 .02 unsold

16 0 22 0 .04 unsold

17 1 27 1 .87 sold

18 1 26 1 .80 sold

19 0 26 0 .26 unsold

20 0 21 0 .02 unsold

21 1 21 1 .21 unsold

22 0 27 0 .38 unsold

23 0 23 0 .06 unsold 

24 1 22 0 .31 unsold

25 1 24 1 .58 sold

ŷ

for one thing, the 
norns special did not 
sell on the 7th and 
the 11th, even though 
we predicted that 

it would.

great! 
anything 

else?

well...

but the table 
shows something 

else. can you 
see it?

best student 
ever!

brilliant!

on the 12th and the 
21st, we predicted 

that it wouldn't sell, 
but it did! we can see 
where the equation 

was wrong.

Day y y

7 0 .80 sold

11 0 .58 sold

ŷ

1
1

582 44 1 0 54 24 15 20+
=− × + × −e ( . . . ) .

this table  
shows the actual 
sales data for the 
norns special and 
our prediction. if 
the prediction is 
greater than .50, 
we say it sold. 

hmm...
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If we divide the number of 
times the prediction was 
wrong by the number of 

samples, like this, we have...

...the apparent 
error rate.

we'll get the 
error as a 
percentage!

so the apparent 
error rate in this 

case is...

and 19% is pretty low, 
which is good news.

oh, and one more thing...
you can also get a sense 

of how accurate the 
equation is by drawing 

a scatter plot of 
 ŷ  and ŷ .

The correlation 
coefficient is also useful. 
It tells us how well the 
predicted values match 

actual sales.

thanks for 
drawing it 
this time.

exactly.
...19%!

Yep.

Correlation coefficient = .6279

the number of samples that 
didn't match the prediction

total number of samples
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Step 4: Conduct the hypothesis tests.

As we did before, we 
need to do hypothesis 
testing to see if our 

regression coefficients 
are significant.

And since we have 
two predictors, 
we can try both 

ways again!

Comprehensive Hypothesis Test
Hypothesis test for an individual 

Regression Coefficient

null 
hypothesis

and

and

and

null 
hypothesis

alternative 
hypothesis

alternative 
hypothesis

one of the following 
is true:

right.

like this.

we'll use .05 as the 
significance level.

okay.
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Step 1 Define the populations. All days the Norns Special is sold, comparing 

Wednesdays, Saturdays, and Sundays against the 

remaining days, at each high temperature. 

Step 2 Set up a null hypothesis and 

an alternative hypothesis.

Null hypothesis is A1 = 0 and A2 = 0.

Alternative hypothesis is A1 ≠ 0 or A2 ≠ 0.

Step 3 Select which hypothesis test 

to conduct.

We’ll perform the likelihood ratio test.

Step 4 Choose the significance level. We’ll use a significance level of .05.

Step 5 Calculate the test statistic 

from the sample data.

The test statistic is:

2[L – n1loge(n1) – n0loge(n0) + (n1 + n0)loge(n1 + n0)]

When we plug in our data, we get:

2[–8.9010 – 8loge8 – 13loge13 + (8 + 13)loge(8 + 13)] 
= 10.1

The test statistic follows a chi-squared distribu-

tion with 2 degrees of freedom (the number of pre-

dictor variables), if the null hypothesis is true.

Step 6 Determine whether the 

p-value for the test statistic 

obtained in Step 5 is smaller 

than the significance level.

The significance level is .05. The value of the 

test statistic is 10.1, so the p-value is .006. Finally,  

.006 < .05.*

Step 7 Decide whether you can reject 

the null hypothesis.

Since the p-value is smaller than the significance 

level, we reject the null hypothesis.

we'll do the Likelihood Ratio test. This 
test lets us examine all the coefficients 

at once and assess the relationships 
among the coefficients.

* How to obtain the p-value in a chi-squared distri-
bution is explained on page 205.

The Steps of the Likelihood Ratio Test
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next, we'll use the Wald test to see 
whether each of our predictor variables 
has a significant effect on the sale of 
the Norns special. we'll demonstrate 

using days of the week.

In some references, this process is 
explained using normal distribution 

instead of chi-squared distribution. the 
final result will be the same no matter 

which method you choose.

Step 1 Define the population. All days the Norns Special is sold, comparing 

Wednesdays, Saturdays, and Sundays against the 

remaining days, at each high temperature.

Step 2 Set up a null hypothesis and 

an alternative hypothesis.

Null hypothesis is A = 0.

Alternative hypothesis is A ≠ 0.

Step 3 Select which hypothesis test 

to conduct.

Perform the Wald test.

Step 4 Choose the significance level. We’ll use a significance level of .05.

Step 5 Calculate the test statistic 

from the sample data.

The test statistic for the Wald test is

a
S

1
2

11

In this example, the value of the test statistic is:

2 44
1 5475

3 9
2.

.
.=

The test statistic will follow a chi-squared 

distribution with 1 degree of freedom, if the null 

hypothesis is true.

Step 6 Determine whether the 

p-value for the test statistic 

obtained in Step 5 is smaller 

than the significance level.

The value of the test statistic is 3.9, so the p-value 

is .0489. You can see that .0489 < .05, so the p-value 

is smaller. 

Step 7 Decide whether you can reject 

the null hypothesis.

Since the p-value is smaller than the significance 

level, we reject the null hypothesis. 

The Steps of the Wald Test
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So A ≠ 0. 
We can reject 

the null!

yes,  
we can.

and 
now...

...the most 
important 

part.

rattle

These 1s represent an 
immeasurable con-
stant. In other words, 
they are a placeholder. 

...and this is S22.S11 in Step 5 is this...

This is how we calculate the standard error matrix. The values of this 
matrix are used to calculate the Wald test statistic in Step 5 on page 180.

Wednesday, Saturday, or Sunday


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Step 5: Predict whether the Norns Special will sell.

today is sunday 
and the high is 
23°C, so this 

is the equation.

right.

Will we be 
able to...

Huh?

oh no!

It's less 
than .5.

looks like it 
won't sell.

I guess 
we'll have 
to eat it.

...sell the norns 
special today?

I'll use my 
computer 
to find the 

answer.

awesome.

.42

*

* This calculation was made using rounded numbers. If you use the full, unrounded numbers, the result will be .44.

Click
Clack
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well, that's it—
The last lesson.

now you know:

•	 Linear regression 
analysis

•	 �multiple regression 
analysis

•	 binomial logistic 
regression analysis

thank you so 
much, risa.

you were a 
great student.

Now give him his 
book back. And 

knock his socks 
off with your 
knowledge.
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risa?

I wanted to 
ask you...

I saw you at 
the mall...

...walking with him. 

oh, no, miu! 
no, we're not—

It’s okay if 
you like him, 

Risa.
miu, just 

listen to me!

you looked 
so happy.

sob

huh?

what?

um...

what?!
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hello?

Is the shop 
open yet?

hiroto!
you know 
his name...?

My cousin.

Miu...

cousin...?

risa!

yes, miu?

Let me 
introduce you 

to Hiroto...
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why didn't 
you just 
tell me?

you wouldn't 
let me get 
a word in 
edgewise.

but you know now, 
and he's right 

outside. Go and 
talk to him!

er, yeah, 
I...okay.

go on!

he came all 
the way out here 

to see you!  
go and give him 
back that book.

he did?

just 
go!
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uh...

hello!

here's 
your 
book. thanks.

my cousin said 
that you were 
keeping it safe 

for me.

I really  
appreciate it.

I...

I...

She 
did?

whoosh!
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I'm miu 
Igarashi.

I'm hiroto 
fukazawa.

would you 
like to study 

together 
sometime?

I was about 
to ask you the 

same thing.

Sure!
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Miu!

welcome to 
our shop!

It’s 
opening 

time!

Care for 
some tea?
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Logistic Regression Analysis in the Real World

On page 68, Risa made a list of the all the steps of regression analy-
sis, but later it was noted that it’s not always necessary to perform 
each of the steps. For example, if we’re analyzing Miu’s height over 
time, there’s just one Miu, and she was just one height at a given 
age. There’s no population of Miu heights at age 6, so analyzing the 
“population” wouldn’t make sense. 

In the real world too, it’s not uncommon to skip Step 1, draw-
ing the scatter plots—especially when there are thousands of 
data points to consider. For example, in a clinical trial with many 
participants, researchers may choose to start at Step 2 to save 
time, especially if they have software that can do the calculations 
quickly for them. 

Furthermore, when you do statistics in the real world, don’t just 
dive in and apply tests. Think about your data and the purpose of 
the test. Without context, the numbers are just numbers and sig-
nify nothing.

Logit, Odds Ratio, and Relative Risk 

Odds are a measure that suggests how closely a predictor and 
an outcome are associated. They are defined as the ratio of the 
probability of an outcome happening in a given situation (y) to 
the probability of the outcome not happening (1 – y):

y
y1 −

Logit

The logit is the log of the odds. The logistic function is its inverse, 
taking a log-odds and turning it into a probability. The logit is math-
ematically related to the regression coefficients: for every unit of 
increase in the predictor, the logit of the outcome increases by the 
value of the regression coefficient.

The equation for the logistic function, which you saw earlier 
when we calculated that logistic regression equation on page 170, 
is as follows:

y
e z

=
+ −

1
1

where z is the logit and y is the probability. 
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To find the logit, we invert the logistic equation like this:

log
y
y

z
1 −

= .

This inverse function gives the logit based on the original logis-
tic regression equation. The process of finding the logit is like find-
ing any other mathematical inverse:

Multiply both side of the equation by            .ez +( )1

Transpose terms.

y
e e

e
e

e
e

y e
e

e
e

y e y e

z z

z

z

z

z

z
z

z
z

z z

=
+

=
+

× =
+

× +( ) =
+

× +( )
× + =

− −

1
1

1
1 1

1
1

1

yy e y e

y y e

y
y

y e
y

y
y

e

y
y

e

z z

z

z

z

z

= − ×

= −( )

×
×

= −( ) ×
−

−
=

−
=

1

1
1

1
1

1

1

1
log log == z

1
1 − yMultiply both side of the equation by         .

 Therefore, the logistic regression equation for selling the Norns 
Special (obtained on page 172),

y
e x x

=
+ − + −( )

1

1 2 44 0 54 15 201 2. . .
,

can be rewritten as

log . . .
y
y

x x
1

2 44 0 54 15 201 2−
= + − .

So the odds of selling the Norns Special on a given day, at 
a given temperature are e x x2 44 0 54 15 201 2. . .+ − , and the logit is 2.44x1 + 
0.54x2 - 15.20.

Odds Ratio

Another way to quantify the association between a predictor and an 
outcome is the odds ratio (OR). The odds ratio compares two sets 
of odds for different conditions of the same variable.
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Let’s calculate the odds ratio for selling the Norns Special on 
Wednesday, Saturday, or Sunday versus other days of the week: 

sales rate of Wed, Sat, or Sun
sales rate of Wed, Sat, or1 −   Sun

sales rate of days other than Wed, Sat, or Sun
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
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This shows that the odds of selling the Norns special on one 
of those three days are 10 times higher than on the other days of 
the week. 

Adjusted Odds Ratio

So far, we’ve used only the odds based on the day of the week. If we 
want to find the truest representation of the odds ratio, we would 
need to calculate the odds ratio of each variable in turn and then 
combine the ratios. This is called the adjusted odds ratio. For the 
data collected by Risa on page 176, this means finding the odds 
ratio for two variables—day of the week and temperature—at the 
same time. 

Table 4-1 shows the logistic regression equations and odds 
when considering each variable separately and when consider-
ing them together, which we’ll need to calculate the adjusted 
odds ratios.

Table 4-1: The logistic regression equations and odds for the data on page 176

Predictor variable Logistic regression equation Odds

“Wed, Sat, or Sun” only y
e x

=
+ − −( )

1

1 2 30 1 611. . e x2 30 1 611. .−( )

“High temperature” only y
e x

=
+ − −( )

1

1 0 52 13 442. . e x0 52 13 442. .−( )

“Wed, Sat, or Sun” and 

“High temperature”
y

e x x
=

+ − + −( )
1

1 2 44 0 54 15 201 2. . . e x x2 44 0 54 15 201 2. . .+ −( )
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The odds of a sale based only on the day of the week are calcu-
lated as follows:

odds of a sale on Wed, Sat, or Sun
odds of a sale on days otther than Wed, Sat, or Sun

= =
× −

× −

e
e

e
2 30 1 1 61

2 30 0 1 61

2 30
. .

. .

. ×× − − × −( ) =1 1 61 2 30 0 1 61 2 30. . . .e

odds of a sale on Wed, Sat, or Sun
odds of a sale on days otther than Wed, Sat, or Sun

= =
× −

× −

e
e

e
2 30 1 1 61

2 30 0 1 61

2 30
. .

. .

. ×× − − × −( ) =1 1 61 2 30 0 1 61 2 30. . . .e

This is the unadjusted odds ratio for “Wednesday, Saturday, or 
Sunday.” If we evaluate that, we get e2.30 = 10, the same value we got 
for the odds ratio on page 192, as you would expect!

To find the odds of a sale based only on temperature, we look at 
the effect a change in temperature has. We therefore find the odds 
of making a sale with a temperature difference of 1 degree calcu-
lated as follows:

odds of a sale with high temp of  degrees

odds of a sa

k +( )1

lle with high temp of  degreesk
e
e

k

k
=

× +( )−

× −

0 52 1 13 44

0 52 1

. .

. 33 44

0 52 1 13 44 0 52 13 44 0 52
.

. . . . .= =× +( )− − × −( )e ek k

odds of a sale with high temp of  degrees

odds of a sa

k +( )1

lle with high temp of  degreesk
e
e

k

k
=

× +( )−

× −

0 52 1 13 44

0 52 1

. .

. 33 44

0 52 1 13 44 0 52 13 44 0 52
.

. . . . .= =× +( )− − × −( )e ek k

This is the unadjusted odds ratio for a one degree increase in 
temperature.

However, the logistic regression equation that was calculated 
from this data considered both of these variables together, so 
the regression coefficients (and thus the odds ratios) have to be 
adjusted to account for multiple variables.

In this case, when the regression equation is calculated using 
both day of the week and temperature, we see that both exponents 
and the constant have changed. For day of the week, the coefficient 
has increased from 2.30 to 2.44, temperature increased from 0.52 
to 0.54, and the constant is now –15.20. These changes are due to 
interactions between variables—when changes in one variable 
alter the effects of another variable, for example if the day being 
a Saturday changes the effect that a rise in temperature has on 
sales. With these new numbers, the same calculations are per-
formed, first varying the day of the week:

e
e

e
k

k

k
2 44 1 0 54 15 20

2 44 0 0 54 15 20

2 44 1 0 54 15
. . .

. . .

. .
× + × −

× + × −
× + × −= .. . . . .20 2 44 0 0 54 15 20 2 44− × + × −( ) =k e

This is the adjusted odds ratio for “Wednesday, Saturday, 
or Sunday.” In other words, the day-of-the-week odds have been 
adjusted to account for any combined effects that may be seen 
when temperature is also considered. 
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Likewise, after adjusting the coefficients, the odds ratio for tem-
perature can be recalculated: 

e
e

ek

k

2 44 1 0 54 1 15 20

2 44 1 0 54 15 20

2 44 0 0 54. . .

. . .

. .× + × +( )−

× + × −

× + ×

=
kk

k

k k

e
e

+( )−

× + × −
× +( )− − × −=

1 15 20

2 44 0 0 54 15 20

0 54 1 15 20 0 54
.

. . .

. . . 115 20 0 54. .( ) = e

This is the adjusted odds ratio for “high temperature.” In this 
case, the temperature odds ratio has been adjusted to account for 
possible effects of the day of the week. 

Hypothesis Testing with Odds

As you’ll remember, in linear regression analysis, we perform a 
hypothesis test by asking whether A is equal to zero, like this:

Null hypothesis Ai = 0

Alternative hypothesis Ai ≠ 0

In logistic regression analysis, we perform a hypothesis test by 
evaluating whether coefficient A as a power of e equals e0:

Null hypothesis

Alternative hypothesis 

Remember from Table 4-1 that e x2 30 1 611. .−( )  is the odds of sell-
ing the Norns Special based on the day of the week. If, instead, the 
odds were found to be e x0 1 611 − . , it would mean the odds of selling the 
special were the same every day of the week. Therefore, the null 
hypothesis would be true: day of the week has no effect on sales. 
Checking whether Ai = 0 and whether eAi = e0 = 1 are effectively the 
same thing, but because logistic regression analysis is about odds 
and probabilities, it is more relevant to write the hypothesis test in 
terms of odds.

Confidence Interval for an Odds Ratio

Odds ratios are often used in clinical studies, and they’re gener-
ally presented with a confidence interval. For example, if medical 
researchers were trying to determine whether ginger helps to alle-
viate an upset stomach, they might separate people with stomach 
ailments into two groups and then give one group ginger pills and 
the other a placebo. The scientists would then measure the dis-
comfort of the people after taking the pills and calculate an odds 

e eAi = =0 1

e eAi ≠ =0 1
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ratio. If the odds ratio showed that people given ginger felt better 
than people given a placebo, the researchers could use a confidence 
interval to get a sense of the standard error and the accuracy of the 
result. 

We can also calculate a confidence interval for the Norns Special 
data. Below, we calculate the interval with a 95% confidence rate.

=
=

−

−

e

e

a Si 1 96

2 44 1 96 1 5388

11

1 0

.

. . .

.

e2 44 11 5. .=

=
=

+

+

e

e

a Si 1 96

2 44 1 96 1 5388

11

130 5

.

. . .

.

If we look at a population of all days that a Norns Special was 
on sale, we can be sure the odds ratio is somewhere between 1 and 
130.5. In other words, at worst, there is no difference in sales based 
on day of the week (when the odds ratio = 1), and at best, there is 
a very large difference based on the day of the week. If we chose a 
confidence rate of 99%, we would change the 1.96 above to 2.58, 
which makes the interval 0.5 to 281.6. As you can see, a higher 
confidence rate leads to a larger interval. 

Relative Risk

The relative risk (RR), another type of ratio, compares the probabil-
ity of an event occurring in a group exposed to a particular factor to 
the probability of the same event occurring in a nonexposed group. 
This ratio is often used in statistics when a researcher wants to 
compare two outcomes and the outcome of interest is relatively 
rare. For example, it’s often used to study factors associated with 
contracting a disease or the side effects of a medication.

You can also use relative risk to study something less seri-
ous (and less rare), namely whether day of the week increases the 
chances that the Norns Special will sell. We’ll use the data from 
page 166.

First, we make a table like Table 4-2 with the condition on one 
side and the outcome on the other. In this case, the condition is 
the day of the week. The condition must be binary (yes or no), so 
since Risa thinks the Norns special sells best on Wednesday, Satur-
day, and Sunday, we consider the condition present on one of those 
three days and absent on any other day. As for the outcome, either 
the cake sold or it didn’t. 
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Table 4-2: Cross-tabulation Table of “Wednesday,  

Saturday, or Sunday” and “Sales of Norns Special”

Sales of Norns Special
Sum

Yes No

Wed, Sat, 
or Sun

Yes 6 3 9

No 2 10 12

Sum 8 13 21

To find the relative risk, we need to find the ratio of Norns 
Specials sold on Wednesday, Saturday, or Sunday to the total num-
ber offered for sale on those days. In our sample data, the number 
sold was 6, and the number offered for sale was 9 (3 were not sold). 
Thus, the ratio is 6:9.

Next, we need the ratio of the number sold on any other day 
to the total number offered for sale on any other day. This ratio 
is 2:12. 

Finally, we divide these ratios to find the relative risk:

sales rate of Wed, Sat, or Sun
the sales rate of days other  than Wed, Sat, or Sun

=
( )
( )

= ÷ = × = × =
6 9

2 12
6
9

2
12

6
9

12
2

2
3

6 4

So the Norns Special is 4 times more likely to sell on Wednes-
day, Saturday or Sunday. It looks like Risa was right!

It’s important to note that often researchers will report the 
odds ratio in lieu of the relative risk because the odds ratio is more 
closely associated with the results of logistic regression analysis 
and because sometimes you aren’t able to calculate the relative risk; 
for example, if you didn’t have complete data for sales rates on all 
days other than Wednesday, Saturday, and Sunday. However, rela-
tive risk is more useful in some situations and is often easier to 
understand because it deals with probabilities and not odds.
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This appendix will show you how to use Excel functions to calcu-
late the following:

•	 Euler’s number (e)

•	 Powers

•	 Natural logarithms

•	 Matrix multiplication

•	 Matrix inverses

•	 Chi-squared statistic from a p-value 

•	 p-value from a chi-squared statistic

•	 F statistic from a p-value

•	 p-value from an F statistic

•	 Partial regression coefficient of a multiple regression analysis

•	 Regression coefficient of a logistic regression equation

We’ll use a spreadsheet that already includes the data for the 
examples in this appendix. Download the Excel spreadsheet from 
http://www.nostarch.com/regression/.

Euler’s Number

Euler’s number (e), introduced on page 19, is the base number of 
the natural logarithm. This function will allow you to raise Euler’s 
number to a power. In this example, we’ll calculate e1.

1.	 Go to the Euler’s Number sheet in the spreadsheet.

2.	 Select cell B1. 

3.	 Click Formulas in the top menu bar and select Insert Function.
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4.	 From the category drop-down menu, select Math & Trig. Select 
the EXP function and then click OK.

5.	 You’ll now see a dialog where you can enter the power to which 
you want to raise e. Enter 1 and then click OK.

Because we’ve calculated Euler’s number to the power of 1, 
you’ll just get the value of e (to a few decimal places), but you can 
raise e to any power using the EXP function. 

Note 	 You can avoid using the Insert Function menu by entering =EXP(X) 
into the cell. For example, entering =EXP(1) will also give you the 
value of e. This is the case for any function: after using the Insert 
Function menu, simply look at the formula bar for the function you 
can enter directly into the cell.
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Powers 

This function can be used to raise any number to any power. We’ll 
use the example question from page 14: “What’s 2 cubed?”

1.	 Go to the Power sheet in the spreadsheet.

2.	 Select cell B1 and type =2^3. Press enter. 

In Excel, we use the ^ symbol to mean “to the power of,” so 2^3 
is 23, and the result is 8. Make sure to include the equal sign (=) at 
the start or Excel will not calculate the answer for you.

Natural Logarithms 

This function will perform a natural log transformation (see 
page 20).

1.	 Go to the Natural Log sheet in the spreadsheet.

2.	 Select cell B1. Click Formulas in the top menu bar and select 
Insert Function.

3.	 From the category drop-down menu, select Math & Trig. Select 
the LN function and then click OK.



Matrix Multiplication  201

4.	 Enter exp(3) and click OK. 

You should get the natural logarithm of e3, which, according to 
Rule 3 on page 22, will of course be 3. You can enter any number 
here, with a base of e or not, to find its natural log. For example, 
entering exp(2) would produce 2, while entering just 2 would give 
0.6931.

Matrix Multiplication

This function is used to multiply matrices—we’ll calculate the mul-
tiplication example shown in Example Problem 1 on page 41.

1.	 Go to the Matrix Multiplication sheet in the spreadsheet. 

2.	 Select cell G1. Click Formulas in the top menu bar and select 
Insert Function. 

3.	 From the category drop-down menu, select Math & Trig. Select 
the MMULT function and then click OK.
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4.	 Click in the Array1 field and highlight all the cells of the first 
matrix in the spreadsheet. Then click in the Array2 field and 
highlight the cells containing the second matrix. Click OK.

5.	 Starting with G1, highlight a matrix of cells with the same 
dimensions as the matrices you are multiplying—G1 to H2 
in this example. Then click in the formula bar.

6.	 Press ctrl-shift-enter. The fields in your matrix should fill with 
the correct values.

You should get the same results as Risa gets at the bottom of 
page 41. You can do this with any matrices that share the same 
dimensions. 

Matrix Inversion

This function calculates matrix inverses—we’ll use the example 
shown on page 44.
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1.	 Go to the Matrix Inversion sheet in the spreadsheet.

2.	 Select cell D1. Click Formulas in the top menu bar and select 
Insert Function. 

3.	 From the category drop-down menu, select Math & Trig. Select 
the MINVERSE function and then click OK.

4.	 Select and highlight the matrix in the sheet—that’s cells A1 to 
B2—and click OK. 

5.	 Starting with D1, select and highlight a matrix of cells with the 
same dimensions as the first matrix—in this case, D1 to E2. 
Then click in the formula bar.
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6.	 Press ctrl-shift-enter. The fields in your matrix should fill with 
the correct values.

You should get the same result as Risa does on page 44. You 
can use this on any matrix you want to invert; just make sure the 
matrix of cells you choose for the results has the same dimensions 
as the matrix you’re inverting. 

Calculating a Chi-Squared Statistic from a p-Value 

This function calculates a test statistic from a chi-squared distri-
bution, as discussed on page 54. We’ll use a p-value of .05 and 
2 degrees of freedom.

1.	 Go to the Chi-Squared from p-Value sheet in the spreadsheet. 

2.	 Select cell B3. Click Formulas in the top menu bar and then 
select Insert Function. 

3.	 From the category drop-down menu, select Statistical. Select 
the CHISQ.INV.RT function and then click OK.

4.	 Click in the Probability field and enter B1 to select the prob-
ability value in that cell. Then click in the Deg_freedom field 
and enter B2 to select the degrees of freedom value. When (B1,B2) 
appears in cell B3, click OK.
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You can check this calculation against Table 1-6 on page 56. 

Calculating a p-Value from a Chi-Squared Statistic

This function is used on page 179 in the likelihood ratio test 
to obtain a p-value. We’re using a test statistic value of 10.1 and 
2 degrees of freedom.

1.	 Go to the p-Value from Chi-Squared sheet in the spreadsheet.

2.	 Select cell B3. Click Formulas in the top menu bar and select 
Insert Function. 

3.	 From the category drop-down menu, select Statistical. Select 
the CHISQ.DIST.RT function and then click OK.
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4.	 Click in the X field and enter B1 to select the chi-squared value 
in that cell. Then click the Deg_freedom field and enter B2 to 
select the degrees of freedom value. When (B1,B2) appears in 
cell B3, click OK.

We get 0.006409, which on page 179 has been rounded down to 
0.006. 

Calculating an F Statistic from a p-Value  

This function gives us the F statistic we calculated on page 58.

1.	 Go to the F Statistic from p-Value sheet in the spreadsheet.

2.	 Select cell B4. Click Formulas in the top menu bar and select 
Insert Function.

3.	 From the category drop-down menu, select Statistical. Select 
the F.INV.RT function and then click OK.
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4.	 Click in the Probability field and enter B1 to select the probabil-
ity value in that cell. Click in the Deg_freedom1 field and enter 
B2 and then select the Deg_freedom2 field and enter B3. When 
(B1,B2,B3) appears in cell B3, click OK.

We get 4.747225, which has been rounded down to 4.7 in 
Table 1-7 on page 58. 
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Calculating a p-Value from an F Statistic

This function is used on page 90 to calculate the p-value in an 
ANOVA.

1.	 Go to the p-Value for F Statistic sheet in the spreadsheet. 

2.	 Select cell B4. Click Formulas in the top menu bar and select 
Insert Function. 

3.	 From the category drop-down menu, select Statistical. Select 
the F.DIST.RT function and then click OK.

4.	 Click in the X field and enter B1 to select the F value in that 
cell. Click in the Deg_freedom1 field and enter B2, and then 
click in the Deg_freedom2 field and enter B3. When (B1,B2,B3) 
appears in cell B3, click OK.
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The result, 7.66775E-06, is the way Excel presents the value 
7.66775 × 10–6. If we were testing at the p = .05 level, this would be a 
significant result because it is less than .05. 

Partial Regression Coefficient of a 
Multiple Regression Analysis

This function calculates the partial regression coefficients for the 
data on page 113, giving the results that Risa gets on page 118.

1.	 Go to the Partial Regression Coefficient sheet in the 
spreadsheet. 

2.	 Select cell G2. Click Formulas in the top menu bar and select 
Insert Function. 

3.	 From the category drop-down menu, select Statistical. Select 
the LINEST function and then click OK.
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4.	 Click in the Known_y’s field and highlight the data cells for your 
outcome variable—here it’s D2 to D11. Click in the Known_x’s 
field and highlight the data cells for your predictor variables—
here B2 to C11. You don’t need any values for Const and Stats, 
so click OK. 

5.	 The full function gives you three values, so highlight G1 to I1 
and click the function bar. Press ctrl-shift-enter, and the high-
lighted fields should fill with the correct values.

You can see that the results are the same as Risa’s results on 
page 118 (in the text, they have been rounded). 

Regression Coefficient of a 
Logistic Regression Equation 

There is no Excel function that calculates the logistic regression 
coefficient, but you can use Excel’s Solver tool. This example cal-
culates the maximum likelihood coefficients for the logistic regres-
sion equation using the data on page 166.
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1.	 Go to the Logistic Regression Coefficient sheet in the 
spreadsheet. 

2.	 First you’ll need to check whether Excel has Solver loaded. 
When you select Data in the top menu bar, you should see a 
button to the far right named Solver. If it is there, skip ahead 
to Step 4; otherwise, continue on to Step 3.

3.	 If the Solver button isn’t there, go to File4Options4Add-Ins 
and select the Solver Add-in. Click Go, select Solver Add-in 
in the Add-Ins dialog, and then click OK. Now when you select 
Data in the top menu bar, the Solver button should be there.

4.	 Click the Solver button. Click in the Set Objective field and 
select cell L3 to select the log likelihood data. Click in the By 
Changing Variable Cells field and select the cells where you 
want your results to appear—in this case L5 to L7. Click Solve. 
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You should get the same answers as in Step 4 on page 172 (in 
the text, they’ve been rounded). 
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series at http://www.nostarch.com/manga/.



Updates

Visit http://www.nostarch.com/regression/ for updates, errata, and other 
information.
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PRaise for the manga guide ™ series

“Highly Recommended.” — Choice Magazine

“Stimulus for the next generation of scientists.” — Scientific computing

“A great fit of FOrm and subject. Recommended.” — Otaku USA Magazine

Make Statistics a Cakewalk!

Like a lot of people, Miu has had trouble 

learning regression analysis. But with new 

motivation—in the form of a handsome but 

shy customer—and the help of her brilliant 

café coworker Risa, she’s determined to 

master it.

Follow along with Miu and Risa in The 
Manga Guide to Regression 
Analysis as they calculate the effect 

of temperature on iced tea orders, 

predict bakery revenues, and work out 

the probability of cake sales with simple, 

multiple, and logistic regression analysis. 

You’ll get a refresher in basic concepts 

like matrix equations, inverse functions, 

logarithms, and differentiation before 

diving into the hard stuff. Learn how to:

☕	Calculate the regression equation

☕	Check the accuracy of your equation with 

the correlation coefficient

☕	Perform hypothesis tests and analysis 

of variance, and calculate confidence 

intervals

☕	Make predictions using odds ratios and 

prediction intervals

☕	Verify the validity of your analysis with 

diagnostic checks

☕	Perform chi-squared tests and F-tests to 

check the goodness of fit

Whether you’re learning regression 

analysis for the first time or have just 

never managed to get your head around it, 

The Manga Guide to Regression 
Analysis makes mastering this tricky 

technique straightforward and fun.

Find more Manga Guides at www.nostarch.com/manga

$24.95 ($28.95 CDN)	 shelve in: math/Statistics
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